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Abstract
Glycans play an important physiological role and are drawing attention as biomarkers that capture pathophysiological changes.
Glycans can be detected by mass spectrometry, but recently matrix-assisted laser desorption/ionization- mass spectrometry
imaging (MALDI-MSI) has enabled the visualization of glycans distribution on tissues. In this study, focusing on sialylated
glycan (sialoglycans), we investigated the amidation reaction used to visualize glycans distribution, and developed a method of
sialic acid derivatization by benzylamidation which is more sensitive than conventional amidation. Furthermore, we adapted this
method for visualizing glycans in formalin-fixed paraffin-embedded (FFPE) liver tissue from normal mice and non-alcoholic
steatohepatitis (NASH)model mice usingMALDI-MSI. As a result, an increase in the distribution of glycanN-Acetylneuraminic
acid-(NeuAc) ions was observed in the NASHmouse liver, and the change in glycan structure in the NASHmodel was clarified.
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Derivatization

Introduction

Glycans are one of the polysaccharides linked to serine/
threonine (O-linked) or asparagine (N-linked) residues in pro-
tein [1]. They exist on cell-surface membrane glycoproteins.
In many cases, glycans are involved in the regulation of bio-
logical processes, indicating that the alteration of glycans
might be regarded as valuable biomarkers for various disease
states. Thus, glycans can be used as a target molecule for
biomarker discovery.

In particular, glycans with sialic acids (sialoglycans) play
important roles in biological processes such as cell

differentiation, viral infection, and cancer development.
Sialic acids often exist on the non-reducing terminal ends of
N-glycans orO-glycans. The common sialic acids areN-acetyl
neuraminic acid (Neu5Ac) and N-glycolyl neuraminic acid
(Neu5Gc). In humans, N-glycolyl neuraminic acids (NeuGc)
are not synthesized because the gene encoding cytidine 5′-
monophosphate (CMP)-Neu5Ac hydroxide is missing. Some
other mammalian species, such as mice, have the gene
encoding CMP-Neu5Ac hydroxide, thus NeuGc exists on
the glycoprotein.

Glycans can be detected by mass spectrometers, such as
electrospray ionization mass spectrometry coupled with
high-performance liquid chromatography (LC-ESI MS) and
matrix-assisted laser desorption/ionization mass spectrometry
(MALDI MS).

Released N-glycans from glycoproteins can be detected by
LC-ESI MS, which can elucidate the global glycan structures
on the cell surface glycoprotein [2]. On the other hand, recent
studies have endorsed the use of MALDI-MS for visualizing
the distributions of glycan structures in tissue samples; thus
several MALDI-MS imaging (MALDI-MSI) protocols have
been developed for visualization in different organs such as
the brain, kidney, and liver, and in normal or disease tissues
[3–5].
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Although MALDI-MSI can be used to visualize glycan
distribution, the detection of sialoglycans is still a chal-
lenge for MALDI-MS. The carboxyl group of the sialic
acid often makes positive-mode detection difficult.
Negative-mode detection is one of the ways to detect
sialoglycans, however, it is not sufficient for sialoglycans.
Another way is to neutral ize the sial ic acids by
permethylation [6, 7] esterification [8], hydrazidation [9],
or amidation [10, 11] of the carboxyl group. Holst et al.
reported an on-tissue sialic acid derivatization method by
dimethylamidation and amidation [12]. However, the sig-
nal intensities were insufficiently strong to detect sialic
acids, so that there might be several undetected glycans.

Here, we developed a method for sialic acids derivatization
to visualize glycans (including sialoglycans) on tissue sections
with high sensitivity. We report that benzylamidation of the
sialic acids is applicable to the released sialo N-glycans from
glycoprotein and N-glycans on the tissue surface. The combi-
nation of the benzylamidation and MALDI-MSI provided a
clear image of sialo N-glycans distribution, enabling us to
compare normal mouse liver tissue and non-alcoholic
steatohepatitis (NASH) mouse liver tissue [13].

Materials and methods

Chemicals and reagents

Methanol, xylene, ethanol, dimethyl sulfoxide (DMSO),
t r i f luoroacet ic acid (TFA) were purchased from
FUJIFILM Wako Pure Chemical Industries (Osaka,
Japan). Bovine fetuin, 2, 4- dihydroxybenzoic acid
(DHB), benzylamine hydrochloride, and aniline hydrochlo-
ride were purchased from Sigma-Aldrich (Steinheim,
Germany). 1-ethyl-3-(3- (dimethylamino)propyl) carbodiimide
(EDC), isopropylamine, and acetohydrazide were purchased
from Tokyo Chemical Industry (Tokyo, Japan). (7-
Azabenzotriazol-1-yloxy) tripyrrolidinophosphonium
hexafluorophosphate (PyAOP) was purchased from
Carbosynth Limited (Berkshire, UK). N-glycosidase F
(PNGase F) enzyme was purchased from Roche Diagnostics
(Mannheim, Germany) or N-zyme Scientifics (Doylestown,
PA). Ultrapure water was used for all experiments.

Polyvinylidene difluoride (PVDF) (0.2 μm, for sequenc-
ing, 78.4 cm) was purchased from Bio-Rad (Hercules, CA).
Cation-exchange columns were made of (30 mg) Dowex
50 W-X8 resin (Supelco, Bellefonte, PA) packed on top of a
10 μl filter tip. The resins were protonated with 1 M HCl
(50 μL, 3 times), washed with methanol (50 μL, 3 times),
and then equilibrated with water (50 μL, 3 times) before use.
Microtiter plates (96-well flat bottom) were purchased from
Costar.

Tissue preparation

Three normal mice (C57BL/6 J) and three NASH mice
(C57BL/6 J-NASH) (male, 12-week-old) were purchased
from Charles River Laboratories Japan Inc. (Kanagawa,
Japan). Mouse livers were extirpated and stored in −80 °C
until usage. For LC-ESI MS analysis, left lobes of mouse
livers were trimmed and snap frozen, then two 100 μm-thick
sections were collected and LC-ESI MS analysis was per-
formed. For MALDI-MSI analysis, another left lobe was
formalin-fixed and paraffin-embedded (FFPE) and tissue sec-
tions were cut at 6 μm thickness, mounted onto ITO-coated
glass slides (Bruker Daltonics, Bremen, Germany).

Investigation of the labeling reagent for sialo N-
glycan derivatization

Prior to in situ sialic acid derivatization, the nucleophiles for
the sialic acid derivatization were investigated. The free N-
glycans released from bovine fetuin were used for this inves-
tigation. In this study, we selected compounds with benzyl
groups for derivatization, expecting high ionization
efficiency.

Sialo N-glycan release from bovine fetuin protein

This protocol was modified to reference [2, 14]. Enzymatic
release and purification of N-glycans from bovine fetuin was
performed as follows:

10 μg of bovine fetuin was dot-blotted onto a
polyvinylidene difluoride (PVDF) membrane prewetted with
ethanol. After drying at room temperature overnight, the
PVDFmembrane was washed with ethanol for 1 min and then
washed with water three times for 1 min. The protein on the
membrane was stained for 5 min with Direct Blue 71 solution
(mixture of 800 μl of solution A, 0.1% [w/v] Direct Blue 71
[Sigma-Aldrich]; 10 ml of solution B, acetic acid: ethanol:
water = 1:4:5). After destaining with solution B for 1 min,
the PVDF membrane was dried at room temperature for 4 h.
Proteins stained blue were cut from the PVDF membrane and
placed in a 1.5-ml polypropylene tube. The spots were then
covered with 500 μl of 1% (w/v) poly (vinylpyrrolidone)
40,000 in 50% (v/v) methanol, agitated for 20 min, and
washed 5 times with water (500 μl). PNGase F (2 U in
10 μl of 10 mM NH4HCO3 was added to the tube and incu-
bated at 37 °C for 15 min. An additional 10 μl of water was
added to the tube and incubated at 37 °C overnight to release
N-glycans. To collect the released N-glycans, the samples
were sonicated for 10 min, and the released N-glycans
(20 μl) were transferred to new 1.5-ml polypropylene tubes.
The sample membrane was washed with water (50 μl twice),
and the washings were combined. Combined N-glycans were
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divided into 20 μL aliquots and used for derivatization as
described below.

Hydrolysis of the glycosidic linkages of the sialic acids
ilycans

To evaluate the signal intensity of the glycans without sialic
acids, the glycosidic bond of the sialic acids was cleaved by
acid-hydrolysis treatment as follows:

10 μL of the sialo N-glycans released from fetuin (released
sialo N-glycans) was diluted with 10 μL of 10 mM HCl and
heated to 80 °C for 2 h. Then 10μL of 10mMTris-HCl buffer
(pH 8.0) was added to each sample, and the desialo N-glycans
were purified by hydrophilic interaction liquid chromatogra-
phy (HILIC) using a Sep-Pak NH2 column (Waters, Milford,
MA).

Acetohydrazidation

Acetohydrazidation of released sialo N-glycans was per-
formed according to the procedure by Toyoda et al. [9]. A
volume of 10 μL of each fetuin glycan solution was added
to 50 μL of 1 M acetohydrazide and then adjusted to pH 3
with 1 M HCl. Then, derivatized glycans were purified by
HILIC same as above.

Benzylamidation and other amidation

Benzylamidation was performed as follows:
Equivalent amount of 100 pmol of the released sialo N-

glycans were added to derivatization solution (125 mM
PyAOP, 15% N-MM, and 500 mM of each amine in
DMSO). The mixtures were first incubated for 1.5 h at room
temperature, then purified by using a Sep-Pak NH2 cartridge,
and finally concentrated by freeze-drying. Derivatized glycans
were reconstituted in 10 μL of water, and mixed with matrix
solution (20 mg/ mLDHB in 50%methanol/0.1% TFA/1mM
NaCl), then they were analyzed by MALDI-TOF MS.

Other amidation reactions were performed using aniline
hydrochlor ide, methylamine-hydrochlor ide [11] ,
dimethylamine [10], isopropylamine [11] and analyzed same
as above.

On-tissue derivatization and N-glycan release for
MALDI-MSI

The ITO-coated glass slides were placed onto a heating block
at 60 °C for 1 h to enhance adherence of the FFPE sections,
sequentially washed in xylene (2 × 10 min), 100% ethanol
(2 × 2 min), and 70% ethanol (2 × 2 min) to remove paraffin,
and then dried at room temperature for 30min. Next, on-tissue
derivatization was performed by incubating the slides in de-
rivatization solution (125 mM PyAOP, 15% N-MM, 500 mM

amine in DMSO) for 1.5 h at room temperature with slow
rotation. After derivatization, tissue sections were rinsed with
100% ethanol, sequentially washed with 100% ethanol (2 ×
5 min) and water (2 × 5 min) and dried at room temperature
(30 min). PNGase F solution (20 μL in 200 μL water) was
sprayed onto the ITO-coated slides using an air-brush sprayer
(GSI Creos, Tokyo, Japan). N-glycans were released by incu-
bating overnight at 37 °C in a humid environment protected
from evaporation. The tissuewas covered with matrix solution
(20 mg/ mL DHB in 50% methanol/0.1% TFA/1 mM NaCl)
using an airbrush sprayer. As another control, the procedure
was repeated on subsequent sections, but with other derivati-
zation steps, such as acetohydrazidation, dimethyl amidation,
neuraminidase treatment, and without amidation to evaluate
the differences between native sialoN-glycans and derivatized
sialo N-glycans (or desialo N-glycans) and to assess if the
derivatization procedure leads to high detection signal
intensities.

MALDI-MS and MS imaging

The MALDI-MS and MALDI-MSI analysis was performed
on a UltrafleXtreme MALDI-TOF/TOF instrument (Bruker
Daltonics) in positive ion reflectron mode. The conditions
were set as follows: m/z range, 700 to 4000. For imaging,
the following conditions were set: 1000 laser shots per pixel,
and a 100 μm× 100 μm spatial resolution. MALDI data ac-
quisition was enabled by using the Flex software suite
(flexControl, flexImaging 4.0, flexAnalysis 3.4; Bruker
Daltonics).

LC-ESI MS for analysis of glycan alditols

Frozen tissue sections cut by Cryostat CM1950 (Leica
Biosystems) were homogenized by pipetting in lysis buffer
(50 mM Tris-HCl, 100 mM NaCl, 1 mM EDTA, containing
protease inhibitor, pH 7.4). The homogenized tissues were
centrifuged (760 g, 4 °C, 20 min), then the supernatants were
ultracentrifuged (120,000 g, 4 °C, 80 min). The pellets were
resuspended in TritonX-114 solution (50 mM Tris-HCl,
100 mM NaCl, containing 1% TritonX-114, pH 7.4) by vig-
orous pipetting, and the resuspensions were incubated first for
10 min on ice then for 20 min at 37 °C and finally centrifuged
(1940 g, 2 min). The detergent layers were transferred to new
1.5 mL tubes, then after adding cold acetone, incubated
−30 °C for overnight and finally spun down (1940 g,
2 min). The resulting pellets were used for this study as mem-
brane proteins.

The precipitated membrane proteins were dissolved with
10 μL of 8 M urea. The solubilized proteins were dot-blotted
(4 times with 2.5 μL) onto a PVDF membrane prewetted with
ethanol. After drying at room temperature overnight, the
PVDF membrane was washed with ethanol for 1 min, washed
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with water three times for 1 min, stained for 5 min with Direct
Blue 71 for protein visualization (800 μl solution A: 0.1% [w/
v] Direct Blue 71 [Sigma-Aldrich] in 10 ml solution B: acetic
acid: ethanol: water = 1:4:5). After destaining with solution B
for 1 min, the PVDF membrane was dried at room tempera-
ture for 4 h. N-glycans were released from the dot-blotted
proteins and then were reduced toN-glycan alditols essentially
by using the method of Nakano et al. [2].

Dried N-glycan alditols were resuspended in 10 mM
NH4HCO3 (15 μL) immediately before LC-ESI MS analyses.
N-glycan alditols were separated using a porous graphitized
carbon column (5 μm HyperCarb, 100 × 1.0 mm ID, Thermo
Fisher Scientific). Separation of N-glycan alditols was
achieved using a sequence of isocratic and two segmented
linear gradients: 0–8 min, 10 mM NH4HCO3; 8–38 min,
6.75–15.75% (v/v) CH3CN in 10 mM NH4HCO3; 38–
73 min, 15.75–40.5% (v/v) CH3CN in 10 mM NH4HCO3

(flow rate: 50 μL/min). With regard to the mass spectrometer
(LTQ Orbitrap XL, a hybrid linear ion trap-orbitrap mass
spectrometer; Thermo Fisher Scientific), the voltage of the
capillary source was set at 3 kV, and the temperature of the
transfer capillary was maintained at 300 °C. The capillary
voltage and tube lens voltage were set at −18 V and −
110 V, respectively. MS spectra were obtained using the
orbitrap detector in negative ion mode (mass range, m/z 500
to m/z 2500; resolution, 15,000; mass accuracy, 5 ppm), and
MS/MS spectra were obtained using the ion trap detector (data
dependent top 3, CID). Monoisotopic masses of glycans ob-
served inMSwere computed to find possible monosaccharide

compositions using the GlycoMod tool available on the
ExPASy server (http://au.expasy.org/tools/glycomod; mass
tolerance for precursor ions, ± 0.01 Da). Xcalibur software
ver. 2.2 (Thermo Fisher Scientific) was used to display the
base peak chromatogram (BPC) and extracted ion chromato-
gram (EIC) and to analyze MS and MS/MS data.

Results and discussion

Investigation of the derivatization method using
sialoglycans released from bovine fetuin

We aimed to develop a new, more sensitive derivatization
method than the conventional method, that could be used for
MALDI-MS imaging of sialo N-glycans. We investigated the
labeling reagents which can ionize sialo N-glycans efficiently.
Prior to on-tissue sialylation, we tested new labeling reagents
(benzylamine and aniline) for N-glycan sialylation, and we
also tested the conventional methods to compare the signal
intensities of the products of MALDI ionization. Released
sialo N-glycans from bovine fetuin were used because their
structures have been identified and all of them had a terminal
Neu5Ac [15, 16].

For carboxylic acid activator, we used (7-azabenzotriazol-
1-yloxy) tripyrrolidinophosphonium hexafluorophosphate
(PyAOP) because PyAOP labels the sialic acid amines effi-
ciently, forming α2, 3- and α2, 6-linkages in one step. The

Table 1 Comparison of the signal
intensities of derivatized tri-
sialylated tri-antennary glycans

Labeling reagent Theoretical mass

[M+Na]+
Observed mass

[M+Na]+
Signal intensity* Relative intensity

Acetohydrazide 3126.3 3127.4 1061 1.0

Methylamine 2941.1 2942.4 503 0.5

Dimethylamine 2983.2 2984.4 1033 1.0

Isopropylamine 3025.3 3027.4 602 0.6

Phenylamine 3127.4 3128.4 1327 1.3

Benzylamine 3169.4 3170.4 5922 5.6

*Signal intensity represents sum of the 5000 laser shots

Table 2 Signal intensities:
derivatized tri-sialylated tri-
antennary glycans compared to
the hydrolyzed form

Labeling reagent Theoretical mass

[M+Na]+
Observed mass

[M+Na]+
Signal intensity* Relative intensity

Hydrolysis

(− sialic acid)

2028.7 2028.8 5566 1.0

Phenylamine 3127.4 3128.4 1327 0.2

Benzylamine 3169.4 3170.4 5922 1.1

*Signal intensity represents sum of the 5000 laser shots
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glycans were labeled with amines or acetohydrazide and de-
tected by MALDI-MS in positive ion mode.

As a result, each amidation reaction enabled us to detect the
sialo N-glycans of fetuin (mono or bi-sialylated bi-antennary
glycans, and mono, bi, tri, or tetra-sialylated tri-antennary gly-
cans, a total of 6 peaks including the isomers), however, the
native-form of sialo N- glycans was not detected. The
benzylamide forms and phenylamide forms of sialoN-glycans
were detected with a theoretical mass shift (benzylamide:
+89.1 Da, phenylamide: +75.1 Da), indicating that
sialoglycans were successfully amidatedwith PyAOP reagent,
and the derivatized sialo N-glycans could be detected by
MALDI- MS.

Table 1 shows the signal intensities of tri-sialylated tri-
antennary glycans. The signal intensities of the benzylamide
form and phenylamide form were compared to those of forms
obtained by conventional methods (with acetohydrazide, me-
thylamine, dimethylamine, and isopropylamine as labeling
reagents) and also the hydrolyzed form (i.e., sialic acids re-
moved by acid hydrolysis). The signal intensities of the
acetohydrazide, methylamide, dimethylamide, or
isopropylamide forms of sialylated N-glycans were quite
low. On the other hand, intensity was 5.6-fold higher for the
benzylamide form than the acetohydrazide form. Compared to
the hydrolyzed form (See Table 2), the benzylamide form
showed almost the same intensity (Relative intensity: 1.1),
indicating that the benzylamide form had not been affected
by ionization suppression of the sialic acids. Thus, MALDI-
MS can detect the benzylamide form with higher sensitivity
than conventional forms. The signal intensity of the
phenylamide form was also higher than that of conventional
forms. Aromatic compounds are generally stable thus their
molecular ions usually show high signal intensity. Linking
aromatic compounds to sialoglycans raises the signal intensi-
ties of their cations, compared to the other labeling methods.
However, the intensity of the phenylamide form was much
lower than that of the benzylamide form of sialo N-glycans.
Therefore, we adopted benzylamide as our labeling reagent
for the following MALDI-MSI experiment (reaction scheme,
see Fig. 1, Sialic acid-Galactose- Derivatized sialic acid-
Galactose-).

To confirm and visualize the distribution of sialoN-glycans
on the tissue surface, we next performed MALDI-Mass
Spectrometry Imaging (MALDI-MSI) using normal and
NASH mouse livers and performed MALDI-MS to identify
the method of labeling producing the most detectable signal.

Profiling of N-glycan in the mouse liver tissue by LC-
ESI MS

To identify and profile N-glycans in mouse livers, we per-
formed LC-ESI MS measurement by using the LTQ
Orbitrap XL (ThermoFisher Scientific). N-glycans on the
normal/NASH liver cell membrane proteins were extracted
from two liver cryosections (approximately 60 mg of tissue)
and detected by LC-ESI MS analysis as N-glycan alditols.

The base peak chromatograms (BPC) of the separated N-
glycans showed a difference in global distribution between the
normal liver and NASH liver. Each N-glycan was associated
with its own peak (Fig. 2) and a total of 51 N-glycans were
identified (summarized in Table 3 LC-ESI MS).

These glycan structures included the high-mannose type,
asialo-, monosialo-, disialo-, trisialo-, and tetrasialo-N-glycans
with or without fucosylation. High-mannose type glycans and
disialo-bi-antennary N-glycan, which contains Neu5Gc at
each non-reducing terminal, were observed in large amounts
in each liver. To analyze the difference between normal and
NASH livers, we compared the extracted ion chromatogram
(EIC) of N-glycans that seemed to be altered in the NASH
sample (Fig. 3). Compared to normal liver, NASH liver
showed increased N-glycans containing NeuAc or fucose
and decreased N-glycans containing NeuGc.

MALDI-MSI detection of in situ benzylamidated
sialoglycans

In order to demonstrate coarse MS measurement of the on-
tissue N-glycans, FFPE normal mouse liver sections were
used for MALDI-MSI data acquisition. The on-tissue glycan
derivatizations have been successfully performed by incubat-
ing the slides with tissue sections immersed in derivatization
solution. Compared to the non-enzymatic treatment, the

Sialic acid

DMSO

Deriva�zed Sialic acid

+ H2O

Benzylamine
PyAOP
N-MM

Fig. 1 Reaction scheme of sialic acid benzyl amidation
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PNGase F treatment resulted in several peaks assigned puta-
tive identities as N-glycans (putative glycan peaks). All puta-
tive glycan peaks were detected as sodium adducts. Figure 4

shows the peaks detected after acetohydrazidation,
dimethylamidation, or benzylamidation. From LC-ESI MS
measurement described above, 2 NeuGc-biantennary glycans

Table 3 N-glycan candidates detected by MALDI-MSI profiling and further identified by LC- ESI MS

Structure no. Composition LC-ESI MS MALDI-MSI

Mass: [M] Mass: [M-2H]2− Intensity in EIC

Normal NASH

1 H4+H3N2 1560.556 779.270 194,000 292,000 D
2 H5+H3N2 1722.609 860.297 487,000 533,000 D
3 H6+H3N2 1884.662 941.323 482,000 675,000 D
4 H3+H3N2 1398.503 698.244 133,000 275,000 D
5 H7+H3N2 2046.715 1022.350 39,500 116,000 D
6 a H2N1G1+H3N2 1746.620 872.302 47,700 82,000 –

b 21,100 38,000 –
7 a H1N1G1+H3N2 1584.567 791.276 33,200 57,900 –

b 9230 14,900 –
8 F1+H2N2 896.349 447.167 12,800 97,300 –
9 H2+H3N2 1236.450 617.217 11,700 22,000 D
10 N2F1+H3N2 1464.561 731.273 72,400 71,300
11 a H3N1G1+H3N2 1908.673 953.329 52,400 75,100 D

b 33,000 45,600
12 a H2N2G1+H3N2 1949.700 973.842 21,000 36,000 D

b 81,600 116,000
c 23,600 46,800

13 a H2N2G2+H3N2 2256.791 1127.388 353,000 781,000 D
b 323,000 376,000
c 68,100 75,300

14 a H2N2G1A1+H3N2 2240.796 1119.390 6030 40,000 D
b 10,900 27,500
c 14,600 35,600

15 a H2N2A2+H3N2 2224.801 1111.393 6950 9610 D
b 5940 15,400
c 10,500 21,000

16 a H3N2G1+H3N2 2111.753 1054.869 4960 84,800 D
b 7090 26,600

17 a H2N2F1G1+H3N2 2095.758 1046.871 7850 35,600 D
b 30,200 80,600
c 6670 19,900
d 23,200 67,000

18 a H2N2G3+H3N2 2563.881 1280.933 37,000 19,200 D
b 41,900 27,400
c 20,700 8530

19 a H2N2F1G2+H3N2 2402.849 1200.417 89,900 145,000 D
b 60,700 128,000
c 38,500 97,900

20 a H3N2F1G1+H3N2 2257.811 1127.898 32,400 202,000 D
b 11,000 62,400

21 a H2N2F1G1A1+H3N2 2386.854 1192.419 10,300 29,100 D
b 26,300 69,600
c 45,500 85,500

22 a H2N2F1A2+H3N2 2370.859 1184.422 9860 28,200 D
b 25,800 69,600
c 45,500 85,500

23 a H3N3G3+H3N2 2929.014 1463.499 19,300 42,000 D
b 134,000 141,000

24 H3N3F1G3+H3N2 3075.072 1536.528 12,300 14,600 D
25 H3N3F1A3+H3N2 3027.087 1512.536 4250 11,000 –
26 H4N4G4+H3N2 3601.237 1799.611 8240 14,500 D

*Refer to Fig. 2 for explanation of structure no.

H = hexose; N =N-acetylhexosamine; A =N-acetylneuraminic acid; G =N-glycolylneuraminic acid; F = fucose. D =Detected by MALDI-MSI mea-
surement from both normal and NASH mouse livers
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(Fig. 3, 13a) detected with the highest intensity as
sialoglycans, thus we compared the intensities of derivatized
2 NeuGc-biantennary glycans. As a result, benzylamidation
derivatives analysis clearly showed peaks that seemed to be
good S/N ratio. The intensities and numbers of detected peaks
were clearly larger when derivatization is by benzylamidation
than by other methods (Fig. 4C), especially peaks with m/z
values >2000.

Comparison of detected N-glycan between normal
and NASH mouse livers

Table 3 provides a combined list of the N-glycans which were
identified and characterized by LC-ESI MS profiling and fur-
ther analyzed by on tissue-derivatization MALDI-MSI. The
proposed compositions and structures are provided as well as
the calculated [M-2H]2− from GlycoMod (web tool). These
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results showed there were overlaps of observed N-glycans for
both measurement methods. The majority of the N-glycans
were sialylated forms, thus the sialic acid derivatization was
effective for liver tissues. InMALDI-MSI, the benzylamidation
led to the detection of 13 distinct sialo N-glycans, which was
more than acetohydrazidation (only 1 sialo N-glycan detected),
indicating that the benzylamidation can be a powerful method
of on-tissue N-glycan sialylation. Including asialo N-glycans, a
total of 21 N-glycans were detected (summarized in Table 3
MALDI-MSI), indicating that asialo N-glycans are also detect-
able through derivatization.

Next, comparing the mass spectrum of sialo N-glycans be-
tween normal and NASH mouse livers, peaks at m/z 2423.5,

m/z 2439.5, m/z 2455.5, m/z 2221.5, m/z 2570.0, m/z 2586.0,
m/z 2602.0, and m/z 2367.5 were shown to be altered in
NASH liver. The sialo N-glycans were visualized using
Fleximaging software (Fig. 5).

2 NeuGc-biantennary glycans with ions at m/z 2455.5 were
the most abundant of all glycans in both livers and their abun-
dance was greater in normal liver. On the other hand, 1 NeuAc
and 1 NeuGc-biantennary glycan, and 2 NeuAc-biantennary
glycans (m/z 2439.5 and m/z 2423.5) were relatively increased
in NASH liver compared to normal liver. These results indicate
that the abundance of Neu5Ac was increased in NASH liver.

The fucosylated sialo N-glycans (m/z 2570.0, m/z 2586.0,
m/z 2602.0, and m/z 2367.5) were also increased in NASH
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Fig. 4 Comparison of the labeling reagent for MALDI-MSI detection of
N-glycans on the normal mouse liver. Sialoglycans on FFPE normal
mouse liver tissue were labeled with (a) acetohydrazide, (b)

dimethylamine, or (c) benzylamine, and the signal intensities of the 2
NeuGc-biantennary glycans were compared on the same scale
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Fig. 5 MALDI-MSI of the N-glycans on the normal and NASH mouse
FFPE livers. (a) Optical image of the tissue slices (above: left median lobe
of the NASHmouse, below: left median lobe of the normal mouse) on an
ITO-coated glass slide. Area surrounded by white dotted line was

measured by MALDI-MSI measurement. (b) 2 NeuAc-bi antennary; (c)
1 NeuAc and 1 NeuGc-biantennary; (d) 2 NeuGc-biantennary; (e) 1
NeuGc-triantennary; (f) high-mannose; (g), (h), (i), and (j) are (b), (c),
(d), and (e), respectively, with fucosylation
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liver, compared to the glycans without fucosylation (m/z
2423.5, 2439.5, 2455.5, and 2221.5). There are some reports
that N-glycan fucosylation is related to cancer [17], and that
fucosylation seemed to be important in NASH progression to
cancer.

Conclusion

In this study, we reported a new derivatization method which
enables us to detect on-tissue sialo N-glycans with high sen-
sitivity. Benzylamide forms of sialo N-glycans were success-
fully detected by MALDI-MSI with benzylamidation
affording higher signal intensity than previous derivatization
methods. Using this method, we could visualize several sialo
N-glycans and alteration of their levels in normal and NASH
mouse livers. We expect our method will be used to obtain
important biological information such as change in
glycobiomarker distribution during disease development,
which can be monitored by this technique.

Abbreviations MALDI -MSI, matrix-assisted laser desorption/
ionization- mass spectrometry imaging; FFPE, formalin-fixed paraffin-
embedded; NASH, non-alcoholic steatohepatitis; NeuAc, N-
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