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Abstract Advanced glycation end-products (AGEs) of the
Maillard reaction were originally measured according to their
fluorescent and browning properties. A subsequent study with
instrumental analyses such as high-performance liquid chro-
matography and gas chromatographymass spectrometrymore
clearly demonstrated the involvement of each AGE structure
in pathological conditions. Furthermore, immunochemical
methods have also been developed to clarify the localization
of AGEs in tissues and measurement of AGEs in multiple
clinical samples. Although the involvement of AGEs in age-
related diseases has progressed due to immunochemical tech-
niques, the relationship between AGE structure and diseases
has not been clear because little was known about the epitope
structure of each anti-AGE antibody. However, the develop-
ment of epitope-identified antibodies against AGEs has made
it possible to clarify AGE structures involved in diseases. This
review discusses not only the usability of anti-AGE antibodies
to evaluate AGEs and disease pathology and screen AGE
inhibitors, but also describes their usage.
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Hemoglobin A1c (HbA1c) was identified as glycated hemo-
globin and has been used worldwide as a marker of blood
glucose control for diabetic patients. Although there was no
evidence whether the Maillard reaction progressed to ad-
vanced stage in vivo, Monnier et al. [1] demonstrated that
the AGE-like fluorescent intensity in the dura mater of the
human brain increased in an age-dependent manner and was
increased by the pathogenesis of diabetes, strongly indicating
that this reaction progressed till the formation of AGEs in vivo.
This report reviews the study of glycation and importance of
immunohistochemical approaches to detection of AGEs
in vivo.

Localization of AGEs in vivo

One of the advantages of immunochemical detection is to clar-
ify the localization of antigens in tissues (Fig. 1). Amonoclonal
anti-AGE antibody, 6D12, is a classic antibody to detect AGE-
modified proteins [2]. An enhanced accumulation of AGEs is
observed in patients who have severe complications, including
nephropathy [3–5] and atherosclerosis [6–8]. Although the epi-
tope structure of 6D12 was not initially identified since it was
developed by immunizationwith anAGE-modified protein that
possess many AGEs structures, a subsequent study revealed
that 6D12 recognizes not only Nε-(carboxymethyl)lysine
(CML) but also Nε-(carboxyethyl)lysine (CEL) [9], demon-
strating that AGEs previously detected by 6D12 in vivo may
have been CML or CEL. A potential link between AGE accu-
mulation and the aging process in neurons has also been report-
ed. Jono et al. [10] demonstrated that the accumulation of
imidazolone, pentosidine and CML in the CA4 region in-
creased with age, suggesting that the accumulation of AGE
structures in the CA4 region might be closely related to the
aging process in neurons (Table 1).
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An immunochemical approach in AGE research is valuable
to identify new AGE structures. Glycolaldehyde (GA) is
formed from serine with hypochlorous acid by the action of
myeloperoxidase and reacts with proteins to form several
products [11]. Therefore, antibodies have been prepared by
immunization with GA-modified proteins. Human atheroscle-
rotic lesions were stained by monoclonal antibodies against
CML [8], and GA-pyridine [12]. As shown in Fig. 1, CML
was noted not only in the cytoplasm of foamy macrophages
(Fig. 1A), but also in the extracellular matrices (Fig 1B). On the
other hand, GA-pyridine was localized exclusively in the cyto-
plasm of foamy macrophages (Fig. 1C). By purification with
high-performance liquid chromatography (HPLC), a GA5-
reactive compound was isolated and its chemical structure
was characterized as 3-hydroxy-4-hydroxymethyl-1-(5-ami-
no-5-carboxypentyl)pyridinium cation, referred to as GA-pyri-
dine. This study demonstrated that the identified epitope
structures of anti-AGE antibodies are useful to evaluate the
biological distribution of AGEs.

Production of antibodies against AGE structures

AGEs are generated not only from glucose but also from car-
bonyl compounds such as glyoxal [13], methylglyoxal [14],
glucosone [15], 3-deoxyglucosone [16] and GA [11], and
those aldehydes rapidly modify proteins to form several
AGE structures (Fig. 2). The preparation of AGE-specific an-
tibodies is difficult because AGEs are modified amino acids
with molecular weights of less than 500 Da. Although 1-ethyl-

3-(3-dimethylaminopropyl)carbodiimide hydrochloride
(EDC) is the most conventional coupling reagent for small
molecules and produces a peptide bond between the carrier
protein and hapten, EDC-conjugated hapten-carrier adducts
often fail to produce immune responses against small mole-
cule haptens [17]. Under this condition, CML, a major anti-
genic AGE structure, was conjugated to human serum albu-
min (HSA) with three different cross-linkers, EDC, 1-ethyl-
3-(3-dimethylaminopropyl)carbodiimide hydrochloride
(BS3) and glutaraldehyde, and their efficacies in the produc-
tion of antibodies were compared. Although all three CML-
conjugated HSAs were strongly recognized by anti-CML an-
tibody, only CML-conjugated HSA prepared by glutaralde-
hyde cross-linking produced an antibody against CML [17].
Similarly, antibodies against CEL, S-(2-succinyl)cysteine
(2SC) and CMC were also obtained by conjugation to carrier
proteins using glutaraldehyde. In this way, the preparation of
epitope-specific anti-AGE antibodies can be standardized.

Elucidation of formation pathways of AGEs

Although the involvement of oxidation in CML formation
from Amadori products has been suggested [18], it is not
known which reactive oxygen species are responsible for this
process. However, our previous study demonstrated that CML
is generated by the oxidative cleavage of Amadori products by
hydroxyl radical and peroxynitrite, indicating that CML may
be an important biological marker of oxidative stress in vivo
[15, 19] (Fig. 3). CML formation was also observed when
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glycated-HSA, a model Amadori protein, was incubated with
activated neutrophils and completely inhibited in the presence
of a scavenger for hypochlorous acid (HOCl) (Fig. 3), dem-
onstrating that HOCl-mediated CML formation from
Amadori products plays a role in CML formation and tissue
damage at sites of inflammation [20].

Post-translational modification is associated
with glycation research

We previously demonstrated that 2SC is formed by a reaction
between the thiol group of proteins and fumarate, a Krebs
cycle intermediate. The level of 2SC significantly increases
during the maturation of 3T3-L1 fibroblasts to adipocytes
[21]. The intracellular AGE content is reported to increase
when bovine endothelial cells are incubated with 30 mM glu-
cose [22]. Thus, we previously compared the 2SC and AGE
content in adipocytes. The level of 2SC increased >10-fold
during adipogenesis in medium containing 30 mM glucose,
whereas the leve l s of AGEs such as CML and
Nε-(carboxyethyl)lysine (CEL) did not change [21]. This
strongly demonstrates that the type of post-translational mod-
ification depends on the tissues and the metabolic abnormal-
ities. Analysis of the 2SC proteome demonstrated that cyto-
skeletal proteins, enzymes, heat shock and chaperone pro-
teins, regulatory proteins, and a fatty acid-binding protein
were modified by 2SC [21]. Furthermore, Cys-39, which is
involved in cross-linking of adiponectin monomers to form
trimers, was identified as a key site of 2SC-modification of
adiponectin in adipocytes. 2SC was found only in the intra-
cellular, monomeric forms of adiponectin and was not detect-
able in polymeric forms of adiponectin in the cell culture
medium or plasma. Therefore, immunochemical and instru-
mental analyses demonstrated new phenomena wherein
succination of adiponectin blocked its incorporation into tri-
meric and higher molecular weight, secreted forms of
adiponectin. Taken together, our study demonstrated that
the increase in fumarate and 2SC is the result of mito-
chondrial stress in adipocytes during adipogenesis and
2SC may be a useful biomarker of mitochondrial stress
in lifestyle-related diseases [23]. Although AGE struc-
tures, such as CML and pentosidine, are commonly
measured in biological samples due to their stability
and autofluorescent properties, 2SC is a prominent
post-translational modification observed during the mat-
uration of adipocytes. Therefore, the specific detection of each
AGE component, including 2SC, is necessary in order to clar-
ify the relationship between post-translational modifications
and disease (Fig. 1).

In some situations, modified peptides are difficult to iden-
tify by an instrumental analysis, probably because of the neg-
ative or positive charges of 2SC and AGE molecules. ToT
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identify the 2SC-modified proteins, a polyclonal anti-2SC an-
tibody was developed according to the same method that is
used to produce anti-AGE antibodies. Thus, synthesized S- 2-
succinylcysteamine (2SCEA) was cross-linked to keyhole
limpet hemocyanin with glutaraldehyde [17], which was then
immunized to rabbits. In fact, although approximately 60
spots in adipocytes were found to be positive for 2SC-

proteins by immunoblotting with the anti-2SC antibody in a
two-dimensional PAGE analysis, 13 types of 2SC-peptides
were identified by MALDI-TOF/TOF [21]. This result dem-
onstrated that mass spectrometry is superior for the quantifi-
cation and identification of small molecules such as 2SC and
AGEs, whereas antibodies are still invaluable for the detection
of modified-proteins.
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Inhibitors for AGE formation

Preventive medicine is the most important approach to
preventing lifestyle-related diseases, and improving the daily
nutritional intake is thought to prevent the pathogenesis of such
diseases. Because the accumulation of AGEs is increased by
the pathogenesis of lifestyle-related diseases, AGE inhibitors
may be a potential strategy to prevent such diseases. Indeed,
AGE inhibitors have been globally developed to prevent
lifestyle-related diseases such as diabetic complications and
atherosclerosis. Aminoguanidine is the first AGE inhibitor with
an amino residue which traps the aldehyde group of reducing
sugars [24]. Thiamine and its derivative, benfotiamine, are
known to decrease the methylglyoxal level in vivo and inhibit
the development of incipient nephropathy [25] and retinopathy
[22] in streptozotocin-induced diabetic rats. Pyridoxamine has
been shown to significantly inhibit the progress of nephropathy
[26] and retinopathy [27], although the serum glucose concen-
tration remained unchanged in a rat model of streptozotocin-
induced diabetes.

Screening of AGE inhibitors by an enzyme-linked immuno-
sorbent assay (ELISA) is useful since AGEs can be measured
rapidly in a large number of samples [28] (Fig. 1). We previ-
ously reported that a high concentration (>1 mM) of catechol
compounds, such as epicatechin, gallic acid and 4-MC, en-
hance CML formation by producing H2O2, but that, at lower
(10 μM) concentrations, they inhibit CML formation due to
their high antioxidative activities [29]. In concrete terms, after
10 days of incubation with 50 μM 4-methylcatechol in hyper-
glycemic medium, the cytoplasm of the THP-1 macrophages
was diffusely positive for anti-CML antibodies. Furthermore,
the oral administration of epicatechin (500 mg/kg/day) to STZ-
induced diabetic mice for 45 days enhanced the accumulation
of CML on the surface of gastric epithelial cells in the stomach
[29]. This indicates that the effect of catechol compounds on
the enhancement of the formation of CML is observed based on
our in vitro studies, including a cell culture system and animal
experiments. Thus, the excessive administration of catechol
compounds in the form of Bsupplemental tablets^ should in-
crease catechol concentration more than 1 mM at viscera could
be a potential enhancer of CML formation and thus result in the
induction of unfavorable effects in vivo. This study provided
evidence that natural compounds containing catechol structure
enhance CML formation and thus high-dose flavonoid supple-
mentation should be conducted with care to prevent any unfa-
vorable effects of antioxidants.

Difficulty of measuring AGEs in physiological
samples by immunological assays

Although the quantification of AGEs by instrumental analyses
is superior to that of immunochemical analyses, anti-AGE

antibodies are an easy-to-use tool for estimating the AGE
content and examining the histological localization of AGEs.
However, the immunochemical measurement of AGEs in
physiological samples can be influenced by potential artifacts
due to pretreatment steps, such as heating and alkaline treat-
ment. For instance, the pentosidine level in physiological sam-
ples is used as a sensitive marker for the early diagnosis of
renal failure. In the quantitative measurements of pentosidine
reported to date, a rapid ELISA has been widely used to esti-
mate the blood pentosidine levels in a number of clinical sam-
ples, because HPLC methods require multiple preparation
steps before the analysis. However, the currently used clinical
analysis of the plasma/serum pentosidine level by an ELISA
requires incubation of the plasma/serum at 100 °C for 15 min
to inactivate the protease [30], which is required before the
anti-pentosidine antibody can bind to the pentosidine. The
serum pentosidine content, as measured by HPLC, increased
by heating in a temperature- and time-dependent manner [31].
A similar tendency was also observed in CML formation.
Thus, CML was generated from glycated HSA by heat treat-
ment (above 80 °C) and increased in a time-dependent manner
[32]. These results demonstrated that AGEs could be generat-
ed artificially through the heating process. Furthermore, an
autoantibody against AGEs [33, 34] was also shown to inter-
fere with the detection of AGEs in biological samples by a
competitive ELISA, strongly demonstrating that the measure-
ment system of AGEs should be carefully considered. In ad-
dition, although the detection of AGEs by immunochemistry
requires the blocking of antigens, conventional blocking re-
agents, such as animal sera, skim milk and purified serum
albumin contain AGEs, and may result in artifacts. Rabbani
et al. used a synthetic polypeptide, polythreonine, to prevent
staining artifacts [35].

Although the plasma pentosidine concentration is relatively
lower than other AGEs, such as CML and methylglyoxal-
derived hydroimidazolone-1 (MG-H1) [36], its physiological
concentration is frequently measured due to its autofluorescent
properties and stability against acid hydrolysis. In contrast, the
measurement of the MG-H1 concentration is limited to some
facilities since multiple preparation steps, such as enzymatic
hydrolysis, are required to measure MG-H1 by instrumental
analyses. Furthermore, there is limited presently reliable and
commercially available antibody against MG-H1. The mea-
surement of AGEs is therefore expected to become more im-
portant as clinical markers if antibodies that can detect AGEs
with high biological concentrations become available. The
structures of AGEs in some articles are unknown because the
AGE contents are estimated by fluorescent intensity and
epitope-unidentified antibodies. However, since AGEs are gen-
erated from many different pathways, such as glycolysis, in-
flammation and lipid peroxidation, the precise detection of
those structures can be markers of metabolic abnormalities.
Thus, the conventional detection of AGEs by epitope-
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identified antibodies is important for clarifying the association
between AGEs and diseases. Furthermore, we previously esti-
mated the levels of skin AGEs by measuring the intensity of
fluorophores in the fingertip. Although the structure could not
be identified by the measurement of fluorescence intensity, the
results are evidence that the accumulation of fluorophores in the
fingertip increases with increased numbers of microvascular
complications [37]. There are several detection methods such
as instrumental analysis, immunochemistry and skin fluores-
cence intensity, those have their own advantages. Therefore, it
is necessary to use them depending on purpose.
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