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Abstract Ion mobility mass spectrometry (IM-MS) is a
promising analytical technique for glycomics that separates
glycan ions based on their collision cross section (CCS) and
provides glycan precursor and fragment masses. It has been
shown that isomeric oligosaccharide species can be separated
by IM and identified on basis of their CCS and fragmentation.
These results indicate that adding CCSs information for gly-
cans and glycan fragments to searchable databases and anal-
ysis pipelines will increase identification confidence and ac-
curacy. We have developed a freely accessible database,
GlycoMob (http://www.glycomob.org), containing over 900
CCSs values of glycans, oligosaccharide standards and their
fragments that will be continually updated. We have measured
the absolute CCSs of calibration standards, biologically
derived and synthetic N-glycans ionized with various adducts
in positive and negative mode or as protonated (positive ion)
and deprotonated (negative ion) ions.
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Introduction

Protein glycosylation is a prevalent post-translational modifica-
tion, involving complex biosynthesis pathways, that modifies
specific sites along the protein backbone. Glycosylation plays
an important role in numerous biological processes, ranging
from fertilization and immune response to cell−cell recognition
and inflammation [1–3]. Advances in glycan characterisation
technologies have increased our understanding of the molecular
and structural roles of glycans in biological processes, which has
led to the development of biotherapeutics including, monoclonal
antibodies with specific glycoforms, that is driving drug design
and vaccine programmes [4]. Despite the far-reaching functional
and structural roles of glycans, supporting computational
methods to store and handle the growing volumes of data still
remain in their infancy, lagging behind other -omics bioinfor-
matics activities. Furthermore, the absence of sophisticated tools
directly impacts the quality of data reported in other databases,
as exemplified by the carbohydrate stereochemistry and nomen-
clature misassignments in the Protein Data Bank [5].

Several initiatives to catalogue and organise glycan-related
(structural and experimental) information have been released
starting with CarbBank [6] and followed by the KEGG GLY-
CAN database [7], the Consortium for Functional Glycomics
(CFG) [8], GLYCOSCIENCES.de [9], EUROCarbDB [10],
GlycomeDB [11] and UniCarbKB [12]. A key impetus in
glycomics is now perceptible in the move toward large-scale
analysis of the structure and function of glycans. A diverse range
of technologies and strategies is being applied to address the
technically difficult problems of glycan structural analysis and
subsequently the investigation of their functional roles [13].
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Mass spectrometry (MS), either directly or in conjunction
with chromatographic separation, is widely employed for the
characterisation of oligosaccharides [14], yet studies remain
hampered due to the inherent complexity of glycan structures.
A technique that has the potential to improve glycan analysis is
ion mobility-MS (IM-MS), in which ions are separated accord-
ing to their mass, charge, size and shape. IM-MS separates ions
based on the time required to traverse a region of neutral gas,
generally helium or nitrogen, under the influence of a weak
electric field and reports both an arrival time and mass-to-
charge (m/z) value. The arrival time can be converted into a
collision cross sections (CCS) which is an absolute value
reflecting the rotationally averaged structure of the glycan ion.
To date, only a limited number of reports apply IM-MS for
glycomics [15–18], but we have demonstrated its potential in-
cluding the separation of isomeric glycans, and by combining
IM-MS with fragmentation to provide informative spectra of
N-glycans released from sub-microgram amounts of human im-
munodeficiency virus gp120 [19–21].

Some commercially available IM-MS instruments use a non-
uniform travelling wave (TW) field to transport ions through the
IM cell and require calibration with known compounds to

estimate CCSs. We have shown that when estimating CCSs
using TW IM-MS instruments (TWCCS) it is vital to use known
calibrant CCS valuesmeasured in the same IMgas and are of the
same sample molecular class as the analyte (i.e., dextran CCSs
measured in N2 for estimating N-glycans in N2) [20, 21]. Drift
tube IM-MS instruments that utilize a uniform electric field on
the other hand, do not require calibration and CCS (DTCCS)
measurements are highly reproducible, precise and referred to
as Babsolute^ in this report.

IM-MS derived CCSs have considerable potential as an
additional dimension of structural information that is highly
complementary to existing glycomics data storage and analy-
sis pipelines. Because of the compatibility of ion mobility-
mass spectrometry (IM-MS) with other separation techniques
such as high-pressure liquid chromatography (U/HPLC), it is
conceivable to implement CCS information in already
existing databases. However, there are no tools available for
supporting such data collections. Here, we address this defi-
ciency by introducing the GlycoMob database that is tailored
towards the storage of IM-MS data including absolute drift
tube DTCCS and traveling wave TWCCS values, and how the-
se data add new functionality to UniCarbKB.

Fig. 1 Screenshot showing the absolute CCSs of RNase B native glycans
and fragments in helium and nitrogen. The CCS measurements are
grouped together by the drift gas, selecting either of the tabs above the
main table will display the relevant data sets. Users can automatically

search the table content via the ‘Filter by CCS’ bar, additional search
options include by composition and glycoprotein listed in the side panel
or the main ‘Query’ page
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Database implementation

GlycoMob (http://www.glycomob.org) is a modular extension
of the freely available UniCarbKB framework that extends the
MS resources provided by UniCarb-DB. The application is
developed with the Play Framework using Java and Scala
with a PostgreSQL database. The GlycoMob database
schema (or collection of structures, experimental data and
associated metadata) is embedded into the UniCarbKB
database infrastructure. The integration of GlycoMob with
UniCarb databases allows for improved data discovery and
cross-referencing over the curated and experimentally verified
data collections provided by the UniCarbKB initiative [22,
12].

Design and search features

GlycoMob aims to reinforce and implement data-sharing stan-
dards to provide a framework that supports new and current

analytical technologies. As such, GlycoMob adopts the
UniCarbKB user interface to retain familiarity across all
UniCarb-related resources. The database is organized into three
major sections including: (i) a complete listing of structures and
compositions stored in the database; (ii) biological content-
specific data collections, including glycans released from puri-
fied glycoproteins; and (iii) a description of analysed commer-
cial glycans. Each section can be accessed from the GlycoMob
homepage. In addition, GlycoMob can be searched in three
ways: (i) by CSS value and underivatised mass; (ii) by glyco-
protein; and (iii) by monosaccharide composition. Each search
function can be accessed from the navigation bar and detailed
information is provided. By default the search results will return
matching structures or compositions.

Glycan structure CSS values

The first release of GlycoMob includes a broad range of
masses and CCSs for native glycans as well as their fragments.

Fig. 2 Screenshot of the GlycoMob homepage as part of the UniCarbKB
database. In the centre of the page is a concise summary of the data
available including the glycoproteins analysed and associated number

of CCS values for native structures and fragments. Embedded links in
the table will redirect the user to the relevant data content pages
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In total, over 350 CCS values are attributed to 70 precursor
glycan structures determined in both N2 and He drift gases.
Furthermore, the database includes over 300 fragment ion
measurements, predominately determined in the negative ion
mode, which can be used to complement structure assign-
ments using IM. As an example, the experimental CCS values
obtained for native glycans and fragments from ribonuclease
B are shown in Fig. 1 and the coverage of data accumulated
from the standard glycoproteins is summarised in Fig. 2. Each
entry is comprehensively annotated and includes: a descrip-
tion of the glycoprotein from which the glycans were released
or, in the case of commercial standards, a reference to the
supplier. Additional information on experimental conditions
including gas pressures and voltages are also documented.

Experimental methods

GlycoMob has been populated initially with N-glycans re-
leased from four common well-characterised glycoproteins

whose structures span all major classes, from high-mannose
to complex. A detailed description of the experimental
methods and procedures has been previously reported [20].
Briefly, N-linked glycans were released using hydrazine, from
the glycoproteins porcine thyroglobulin, ribonuclease B,
chicken ovalbumin, and bovine fetuin obtained from Sigma
Chemical Co., Ltd. (Poole, Dorset, U.K.) and subsequently
reacetylated prior to analysis. For the glycoprotein standards
thyroglobulin and fetuin, sialic acids were removed by heating
with 1% acetic acid for 1 h at 70 °C. For electrospray analysis,
samples were dissolved in water:methanol (1:1, v:v) at ∼1 mg/
mL. Additionally, CSS measurements were generated for the
widely used calibration standard dextran (Fluka and Sigma-
Aldrich).

Measurements of absolute collision cross sections were
performed using a Synapt G1 HDMS quadrupole/IMS/oa-
ToF instrument (Waters Co., Manchester, U.K.) modified for
drift tube operation [23]. The reported drift tube CCS repre-
sent averages of three (He) or two (N2) replicates acquired in
independent measurements. In addition, high-resolution TW

Fig. 3 High-mannose summary page. For each structure entry the CCSs
measured in positive and negative mode using either nitrogen or helium
drift gas are shown together with its adducts. Additionally, ion mobility
data sets can be accessed from the ‘Glycoprotein Standards’ and
‘Dextran’ drop down lists in the right side panel. Users can select the

embedded UniCarb-DB and UniCarbKB links to access relevant mass
spectra and structural information, respectively. The structures are
displayed using the hybrid Consortium for Functional Glycomics [25]
and Oxford graphical notation [26, 27]

402 Glycoconj J (2016) 33:399–404



IM-MS measurements were performed on an unmodified
Synapt HDMS G2-S 8000m/z quadrupole/IMS/oa-ToF MS
instrument (Waters Corporation, Manchester, U.K.). Based
on these data, travelling wave CCS values were estimated as
reported previously [20], and used to construct GlycoMob.

The coverage of GlycoMob also includes CSS (drift tube
and travelling wave) measurements for synthetic pure high-
mannose N-glycans (Dextra, Reading, UK) as [M+H]+, [M+
Na]+, [M+K]+, [M-H]−, [M+Cl]− and [M+H2PO4]

− ions in He
and N2 drift gases [24] (Fig. 3).

Bridging GlycoMob with UniCarb-related databases

A significant problem facing the glycobioinformatics commu-
nity is the distribution of data. The principal objective of the
UniCarbKB initiative is not only to connect related data col-
lections, but also to provide descriptive metadata that is rep-
resentative of the reported data. Efforts led by the Minimum
Information for A Glycomics Experiment (MIRAGE) [28]
project and the ontology work of GlycoRDF [29] aim to alle-
viate this situation by providing standardized data terms. In
this context, fully characterized structures stored in GlycoMob
(e.g., high-mannose standards) are linked to the tandem MS
data repository UniCarb-DB. Similarly, users can access data
stored in the curated glycan structure database UniCarbKB
(and vice-versa), by following the links for individual glyco-
protein entries and glycan compositions. Such connections
allow researchers to easily navigate between databases and
view experimental tandem MS spectra and related structural/
glycoprotein information.

GlycoMob adopts GlycoRDF to provide a common stan-
dard for representing the stored information. GlycoRDF aims
to enhance data interoperability by providing an ontology to
standaridise glycomics data for building data-driven applica-
tions, which efficiently integrate heterogeneous datasets
through the provision of a single SPARQL endpoint that can
be used to query and return data from the semantic web. For
example, such an endpoint enables users to simultaneously
query GlycoMob, UniCarb and other RDF-compatible data-
bases to answer complex research questions. The develop-
ment of web applications to perform such queries is in its
infancy, however, examples (using SPARQL) are provided
on the UniCarbKB RDF site (http://rdf.unicarbkb.org).

Discussion

CCS measurements provide an additional parameter that can
be used to improve the specificity of glycan identification.
Here, we have described GlycoMob a novel database solution
for storing and making available experimentally confirmed
CSS values acquired from both TW and DT IM-MS

instruments for the glycomics domain, which starts to address
the lack of resources available for this emerging technology.

The database provides access to a broad dataset for CCS
calibration of TW IM-MS instruments using native N-linked
glycans released from naturally occurring and commercially
available glycoproteins. Access to such data not only assists
calibration, but also will provide an extra level of confidence
in the characterization of N-glycan structures. Its availability
will serve as a tool for the development of new analytical tools
for structural data querying and spectra interpretation, in par-
ticular, when connected to liquid chromatography-MS-based
workflows and the MS/MS database UniCarb-DB that con-
tains masses, retention times and fragment information.

By providing a common interface to high-quality data, we
believe that GlycoMob can become a vital resource for ana-
lyzing glycomic ion mobility data. As the technology im-
proves and further data are generated, the database will be
continually updated with new CCS values and associated data
for glycans released by PNGaseF and hydrazinolysis, thereby
providing a leading platform for IM-MS.
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