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Abstract Paramagnetism-assisted nuclear magnetic reso-
nance (NMR) techniques have recently been applied to a wide
variety of biomolecular systems, using sophisticated immobi-
lization methods to attach paramagnetic probes, such as spin
labels and lanthanide-chelating groups, at specific sites of the
target biomolecules. This is also true in the field of carbohy-
drate NMR spectroscopy. NMR analysis of oligosaccharides
is often precluded by peak overlap resulting from the lack of
variability of local chemical structures, by the insufficiency of
conformational restraints from nuclear Overhauser effect
(NOE) data due to low proton density, and moreover, by the
inherently flexible nature of carbohydrate chains. Paramagnet-
ic probes attached to the reducing ends of oligosaccharides
cause paramagnetic relaxation enhancements (PREs) and/or
pseudocontact shifts (PCSs) resolve the peak overlap prob-
lem. These spectral perturbations can be sources of long-
range atomic distance information, which complements the
local conformational information derived from J couplings
and NOEs. Furthermore, paramagnetic NMR approaches, in
conjunction with computational methods, have opened up
possibilities for the description of dynamic conformational
ensembles of oligosaccharides in solution. Several applica-
tions of paramagnetic NMR techniques are presented to dem-
onstrate their utility for characterizing the conformational

dynamics of oligosaccharides and for probing the
carbohydrate-recognition modes of proteins. These tech-
niques can be applied to the characterization of transient,
non-stoichiometric interactions and will contribute to the vi-
sualization of dynamic biomolecular processes involving sug-
ar chains.
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Introduction

Visualization of the dynamic behavior of biomolecules is cur-
rently an indispensable approach in every field of life science.
This trend has been promoted by the development of biophys-
ical methodologies, including various microscopic and spec-
troscopic techniques, along with computational simulation. It
should be emphasized that progress resulting from the use of
these methods has been boosted by the exploitation of chem-
ical probes typified by fluorescent dyes and gold nanoparticles
[1–4].

Nuclear magnetic resonance (NMR) spectroscopy is a po-
tentially powerful technique for the atomic visualization of
dynamic conformations and of interactions between biomole-
cules in solution. Needless to say, this technique provides
glycochemists with valuable information regarding the cova-
lent linkages and tertiary conformations of carbohydrate
chains through chemical shifts, spin–spin couplings (J cou-
plings), and nuclear Overhauser effects (NOEs) [5–8]. Protein
structural biologists have reaped the maximum benefit of such
NMR information. Through the development and improve-
ment of hardware and software, along with sample preparation
methodologies that include sophisticated stable isotope-
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labeling methods, they have successfully determined the
atomic coordinates of proteins [9]. Carbohydrate NMR spec-
troscopy remains less mature in comparison with protein
NMR studies [10]. In addition to the difficulties of sample
preparation, carbohydrate NMR spectroscopists often suffer
from the overlap of peaks due to the lack of variability of local
chemical structures, as well as an insufficiency of conforma-
tional restraints provided by NOE data due to low proton
density, compared with proteins. More essentially, the consid-
erable number of degrees of freedom available to the internal
motions of carbohydrate chains hampers traditional ap-
proaches for their conformational characterization [11].

Paramagnetism-assisted NMR approaches have recently
been rekindled in the fields of NMR structural biology, includ-
ing carbohydrate structural studies [12–15]. This revival has
occurred in the context of the development of molecular
biology-based sample preparation, in conjunction with the
development of chemically designed paramagnetic probes as
intelligence sources [16–23]. This article will outline how
paramagnetic NMR techniques could be applied to the char-
acterization of the conformational dynamics and interactions
of sugar chains, so as to cope with the aforementioned diffi-
culties in carbohydrate NMR spectroscopy.

Paramagnetic effects as sources of long-distance
information

Magnetic dipole–dipole interactions between nuclei and an
unpaired electron induce a variety of paramagnetic effects
that modulate NMR signals according to their geometric
relationships [24, 25]. For example, an effect known as para-
magnetic relaxation enhancement (PRE) can dramatically
increase NMR relaxation rates, resulting in line-broadening
of signals from the nuclei spatially proximal to the

paramagnetic center (Fig. 1) [26]. Pseudocontact shift
(PCS), observed as a modification of chemical shift values,
is caused by paramagnetic metal ions with anisotropic mag-
netic susceptibility (Fig. 1) [27, 28]. Table 1 lists the lantha-
nide probes often used during paramagnetic NMR analyses
of biomacromolecules [14]. For example, Gd3+ is used as a
strong PRE sauce but not for PCS observations because of
its isotropic magnetic susceptibility. By using highly para-
magnetic lanthanides such as Dy3+, PCS can be measured
for nuclei even around 40 Å from the ion. However, they
often provide unfavorable relaxation enhancement for the
spatially proximal nuclei, resulting difficulty of observing
their NMR signals. Little paramagnetic ions provide less
PCS and PRE and therefore can offer proximal distance
information. The intensity of these perturbations shows an
r−3- (PCS) and r−6-dependence (PRE) upon the distance (r)
between individual nuclei and the unpaired electron. The
unpaired electron, which has a large magnetic moment,
can affect the NMR signals of nuclei surrounding it in a
wide area through through-space dipole interactions [29].
Hence, when characterizing biomolecular conformations
and interactions, PRE and PCS measurements provide
long-distance information that is independent of NOE- and
J coupling-derived information, which, in contrast, offer in-
formation regarding local conformations.

In addition to these benefits, the anisotropy of the
magnetic susceptibility associated with paramagnetic
ions tightly attached to the biomolecule causes its weak
molecular alignment with the high magnetic field. This
enables observation of internuclear residual dipolar cou-
plings (RDCs), which depend on the orientation of in-
dividual vectors connecting two nuclear spins. Thus,
RDC can be a source of information for characterizing
the conformation and internal motion of biomolecules
[30, 31].

Fig. 1 NMR spectral perturbations caused by paramagnetic effects. The
R2 enhancement through dipole–dipole interactions is shown in Eq. (1),
whereμ0 is the permeability of vacuum, γI is the gyromagnetic ratio of the
nucleus, ωI/2π is the Larmor frequency of the nucleus, g is the electronic
g-factor, μB is the Bohr magneton, S is the spin, r is the distance between
the paramagnetic center and the nucleus, and τc is the correlation time.
The correlation time is defined as 1/τc=1/τr+1/τe, where τr and τe are the

rotational correlation times of the molecule and the effective electron
relaxation time, respectively. In Eq. (2) for PCS, Δχax and Δχrh are the
axial and rhombic components, respectively, of the anisotropic magnetic
susceptibility (Δχ) tensor. The polar coordinates of the nucleus, r, θ, and
φ, are defined with respect to the paramagnetic center and the principal
axis of theΔχ tensor. Adapted from Zhang et al. 2013 [12] with permis-
sion from The Chemical Society of Japan
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Paramagnetic probes of biomolecular NMR

Appropriate paramagnetic probes, i.e., paramagnetic metal
ions or spin labels, are required to observe paramagnetic ef-
fects. Paramagnetic NMR spectroscopy has traditionally been
developed for the characterization of metalloproteins because
they possess endogenous paramagnetic probes and have in-
trinsic metal ion-binding sites that can be used to incorporate
paramagnetic ions [32, 33]. Many lectins harbor metal ions
such as Ca2+ at their carbohydrate recognition sites [34] and,
therefore, would be well-targeted by this approach [35–38].
Metal coordination by Lewis X was probed using paramag-
netic effects induced byMn2+ or Co2+ ions that were substitut-
ed for the physiologically coordinated Ca2+ ion [39].

NMR shift reagents containing lanthanide ions or paramag-
netic relaxation reagents such as Gd3+ have been employed as
exogenous paramagnetic probes to resolve peak overlap prob-
lems and identify peaks originating from the probe-accessible
sites [40]. Thus, modulation of the NMR spectrum upon addi-
tion of these reagents into a solution containing a target mole-
cule facilitates spectral analysis. Moreover, paramagnetism-

induced spectral changes can offer useful information about
molecular conformation, given that the probe preferentially
binds a specific site on the molecule [41].

Sophisticated paramagnetic approaches based on a more
general method for the site-specific attachment of paramag-
netic probes onto target recombinant proteins have recently
been developed. These probes are typically attached through
disulfide formation at a mutationally introduced cysteine res-
idue [42]. A variety of paramagnetic tags containing an ion-
binding derivative, such as a metal-binding peptide [18, 21,
23] or a synthetic metal chelator, have been created to immo-
bilize the paramagnetic center on diamagnetic proteins [16,
17, 20]. Stable organic radicals, such as the nitroxide radical,
are also widely utilized for the site-directed spin labeling of
proteins [22].

Paramagnetic probes can be site-specifically incorporated
into the target protein by modification of their specific ligands,
thereby providing information concerning microenvironments
surrounding the bound ligand [43, 44]. A pioneering study by
McConnell and coworkers achieved the detailed characteriza-
tion of an antigen-binding site of a monoclonal antibody

Table 1 Magnetic properties of major metal ions used in paramagnetism-assisted NMR techniques

Paramagnetic Diamagnetic

Relaxation reagent Shift reagent
(Little paramagnetic)

Shift reagent
(Moderately paramagnetic)

Shift reagent
(Highly paramagnetic)

Gd3+, Mn2+ Eu3+, Ce3+, Sm3+ Er3+, Yb3+ Tb3+, Dy3+, Tm3+ La3+, Lu3+, Ca2+

Fig. 2 Synthetic tags for sugar chains subjected to paramagnetism-
assisted NMR analysis. a Nitroxide radicals for spin labeling [48, 49,
55, 78], b and c lanthanide-chelating units based on ethylenediamine

[57–59, 61] and phenylenediaminetetraacetic acid [50, 53, 54, 56, 60],
respectively, and d a DOTA (1,4,7,10- tetrakis (carboxymethyl)-1,4,7,10-
tetraaza-cyclododecane) derivative [79]
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directed against a spin-labeled dinitrophenyl hapten [45–47].
Thus, paramagnetic NMR methods are also useful for probing
biomolcular interactions. Prestegard and co-workers employed
spin-labeled ligands, for example an N-acetyllactosamine at-
tached with a TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl)
moiety (Fig. 2) at its reducing terminus, for mapping the carbo-
hydrate recognition domain of galectin 3 (Gal-3 CRD) and the
substrate-binding site of α-2,6-sialyltransferase (ST6Gal-I) [48,
49]. A geometric model of the disaccharide accommodated in
the active site was constructed according to a complementary
approach that included PRE, saturation transfer difference, and
transferred NOE observations between the substrates and the
protein. Lanthanide-tagged lactose has recently been used as a
sensitive tool to monitor carbohydrate-lectin interactions via
PCS detection [50].

Reciprocally, carbohydrate-binding proteins could be para-
magnetically labeled in order to investigate the conformations
of bound ligands. For sugar-lectin docking simulations, the

Gal-3 CRD was fused to a lanthanide-binding peptide to pro-
vide PCSs and RDCs as conformational constraints for the
bound lactose, complementing a single intermolecular NOE
observed for the complex [51].

Conformational analyses of sugar chains based
on paramagnetic effects

Paramagnetic tagging of oligosaccharides has recently been
proposed for their conformational analysis. Immobilization of
the paramagnetic center is crucial for accurate quantitation of
observed paramagnetic effects in this approach, because mo-
tional freedom of the tag moiety causes ambiguities during data
interpretation [52]. Hence, a selective amination reaction at the
reducing terminus and subsequent formation of a rigid amide
linkage is often employed for paramagnetic tagging of oligo-
saccharides. This method is applicable not only to totally

Fig. 3 PCS observation of high-mannose-type oligosaccharide M9. a
Introduction of the paramagnetic lanthanide-chelating tag. b Anomeric
region of the 1H–13C HSQC spectra of the tagged sugar complexed with

Tm3+ (red) and La3+ (blue). Chemical shift differences induced by PCS
are indicated by arrows. Adapted from Yamaguchi et al. 2014 [61] with
permission from John Wiley and Sons
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synthetic oligosaccharides [53, 54], but also to oligosaccharides
obtained from natural glycoproteins and glycolipids [55, 56].

The rigidity of the ion-coordinating units and the choice of
ion species are also important factors for appropriate PCS
measurements with quantitative data interpretation. Several
paramagnetic tags capable of chelating a metal ion have been
developed based on phenylenediamine- or ethylenediamine-
tetraacetic acid (EDTA) and used to perform PCS measure-
ments of oligosaccharides (Fig. 2) [50, 53, 57–59]. Lanthanide
ions, such as Tm3+ and Dy3+, introduced onto the reducing
termini of target oligosaccharides using these reagents serve as
useful paramagnetic probes for determining the tertiary con-
formations of oligosaccharides.

PCSs have been observed for N,N′-diacetylchitobiose
covalently attached to an EDTA-based lanthanide-chelating
tag at its reducing end [57, 58]. Using two-dimensional
1H-13C heteronuclear single quantum coherence (HSQC)
spectra, PCS values were estimated as the differences in
1H and 13C chemical shifts between the carbohydrate com-
plexes with a diamagnetic reference La3+ ion and those with
a paramagnetic ion, e.g., Tm3+. The experimentally obtain-
ed PCS values exhibited excellent agreement with those
estimated by back-calculation based on the reported 3D
conformation of N,N′-diacetylchitobiose. This demon-
strates that paramagnetism-assisted NMR could be applica-
ble to the determination of the 3D conformations of oligo-
saccharides in solution, if the molecule could be sufficient-
ly rigid. Furthermore, the introduction of lanthanide tags
causes distinct PCSs even for identical non-reducing termi-
nal groups in multiantenary oligosaccharides, resolving
their severely overlapping peaks and facilitating spectral
analysis [60, 61].

Exploration of the conformational dynamics
of oligosaccharides

Unlike N,N′-diacetylchitobiose, most oligosaccharides are in-
herently flexible. To explore the conformational spaces of
such flexible biomolecules, computational approaches such
as molecular dynamics (MD) simulations are potentially very
powerful. Note that simulation results depend heavily on cal-
culation protocols, including initial structures and computa-
tional times. NMR spectroscopy can be employed for exper-
imental evaluation of the results of calculation.

Erdélyi et al. successfully characterized the conformational
space of lactose using an approach based on cross validation
of selection of the conformations by inspecting Monte Carlo
conformational search against their experimental PCS and
RDC data [59]. This highlighted the utility of paramagnetic
NMR approaches to give improved insight into the dynamic
behavior of this disaccharide in solution.

MD-derived conformational ensembles occupied by a se-
ries of sialyl oligosaccharide moieties of gangliosides, includ-
ing the GM3 trisaccharide, the GM2 tetrasaccharide, and the
GM1 pentasaccharide, were also evaluated using the lantha-
nide tagging approach [53, 54, 56]. The PCS-validated con-
formational ensemble models of the GM1 and GM2 oligosac-
charides share striking similarities, indicating that the outer-
most galactose residue has no significant impact on the con-
formation of the remaining parts of these glycans. By contrast,
the GM3 trisaccharide exhibited a distinct conformational en-
semble for the sialyl linkage due to the restriction of confor-
mational freedom by the N-acetylgalactosamine branch.

PCS-based conformational analysis has also been applied
to complex-type and high-mannose-type oligosaccharides

Fig. 4 Superimpositions of 240
conformers derived from NMR-
validated replica exchange MD
simulations of the high-mannose-
type M9 (left) and M8B (right)
oligosaccharides. Adapted from
Yamaguchi et al. 2014 [61] with
permission from John Wiley and
Sons
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[60, 61]. A triantennary oligosaccharide containing nine man-
nose residues, M9, as well as its derivative M8B was
overexpressed in genetically engineered yeast cells as fully
13C-labeled forms [62, 63] and attached to an EDTA-based
lanthanide-chelating tag (Fig. 3a). The experimental PCS
values obtained for these oligosaccharides (Fig. 3b) were
poorly simulated by conventional MD simulation techniques,
even though the total calculation time periods were expanded
to 3 microseconds. By contrast, simulation results obtained
employing a generalized-ensemble algorithm finally satisfied
the experimental data. The NMR-validated conformational
ensembles of M9 and M8B indicated that the removal of the
non-reducing terminal mannose residue from the D2 branch
results in a significant expansion of the conformational space,
with an increased population of the foldback conformations,
in which the D2 and D3 termini gain access to the reducing-
terminal residue (Fig. 4). These results are qualitatively con-
sistent with previous reports based on chemical shift, J cou-
pling, NOE, and PRE data [55, 62, 64–70] and, furthermore,
give quantitative insights into conformational fluctuations of
this biologically important class of oligosaccharides [71, 72].

Perspectives

Paramagnetism-assisted NMR spectroscopy provides long-
range atomic distance information that can be used to charac-
terize the overall conformations of oligosaccharides and their
dynamics in solution, complementing local conformation in-
formation derived from J couplings and NOEs. We have al-
ready mentioned that paramagnetically labeled ligands can
probe the carbohydrate binding-sites of proteins, offering con-
formational information about the bound ligands. Finally, we
should stress that paramagnetism-assisted NMR technique
can be useful for characterizing non-stoichiometric interac-
tions as well as transient interactions. Iwahara et al. success-
fully characterized transient encounter complexes formed be-
tween DNA and a transcription factor by inspecting PRE data
[73]. This line of approach could be applicable for probing
dynamic interaction processes involving sugar chains. In this
sense, membrane systems will be fascinating targets for ap-
plying paramagnetic NMR approaches. The PRE-based tech-
niques have been utilized to determine the conformations of
ganglioside GM1 embedded in phospholipid bicelles [74] and
for characterizing the interaction of amyloid β with GM1
clusters [75]. Paramagnetic probes are currently developed
for magnetic resonance analysis of biomolecules in cellular
environments [76, 77]. Design and creation of novel paramag-
netic probes will open up new avenues for in-cell and on-cell
NMR approaches, as well as magnetic resonance imaging
toward the visualization of dynamic biomolecular processes
of glycobiological interest.
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