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Abstract This review discusses the challenges involved in
the characterization of the glycosylation of therapeutic
glycoproteins. The focus is on methods that are most
commonly used in regulatory filings and lot release testing
of therapeutic glycoproteins. The different types of assays
for carbohydrate analysis are reviewed, including the
distinction between assays appropriate for lot release or
better suited to testing during early drug development or in-
depth characterization of the glycosylation. Characteristics
of the glycoprotein and production process that should be
considered when determining the amount of testing, the
number of different methods to employ and when the
testing should be performed during development of protein
therapeutics is also discussed.
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A DNA sequence provides all of the information necessary
for a cell to produce a recombinant protein with the same
amino acid sequence as the native protein but it does not
dictate exactly how that protein will be glycosylated.
Therefore, using a human DNA sequence does not guarantee
that the molecule will be glycosylated as it is when synthe-
sized by our bodies. The peptide sequence may determine
where glycosylation is added to the protein but the mix of
glycosyltransferases, within the cell the protein is expressed
in and even the conditions under which those cells are
cultured will determine what oligosaccharide structures are

added to the molecule [1–3]. And even though glycosylation
is dependent upon the machinery (glycosyltransferases)
present, the cells do not add identical oligosaccharide
structures to each protein molecule. This means a glycopro-
tein is always present in many different glycoforms (the
same protein molecule with different oligosaccharides).

It is difficult to know a priori what the “correct”
glycosylation is for any therapeutic since:

1. There is rarely information on the glycosylation of the
human molecule let alone how the glycosylation affects
the molecule.

2. The therapeutic is usually delivered from the blood-
stream, which might not be where it is normally found
in the human body. It is therefore often exposed to
different receptors than the native protein.

3. Human proteins are glycosylated in many different
ways so there are no rules for what is appropriate
“human glycosylation” and

4. The optimal glycosylation for any molecule is often a
trade-off since, for example, the ideal glycosylation for
efficacy (i.e. receptor binding) might not be ideal for a
long half-life in the bloodstream.

Other than choosing an expression system that tends to
glycosylate in a certain fashion or has been engineered to
glycosylate in a desired manner there is little that can be
done to change the glycosylation of the molecule other than
limited in vitro modifications.

Although the first two recombinant proteins approved as
therapeutics were not glycoproteins (insulin and human
growth hormone) about 40% of the approved therapeutics
today are glycoproteins (excluding monoclonal antibodies,
see Table 1). Approximately 70% of the approved thera-
peutic glycoproteins have been expressed in CHO cells
(Table 1) which means there is now a great deal of
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Table 1 The glycosylation of approved therapeutics

Generic Designation Therapeutic Protein Expression System Glycosylationa

Agalsidase alfa α-galactosidase A Human cell line N-links [5, 6]

Agalsidase beta α-galactosidase A CHO cells N-links [5, 6]

Aldesleukin Interleukin 2 E. coli None

Alefacept The extracellular CD2-binding portion of the human
leukocyte function antigen-3 (LFA-3) linked to the Fc
portion of human IgG1

CHO cells N-links [7]

Algulcosidase alfa Acid glucosidase CHO cells N-links [8, 9]

Alteplase Tissue plasminogen activator CHO cells N-links [10–13]

Anakinra Interleukin-1 receptor antagonist (IL-1Ra) E. coli None

Anti-hemophilic factor Factor VIII BHK & CHO cells N-links & O-links
[14, 15]

Antithrombin alfa Antithrombin Transgenic goat’s milk N-links [16, 17]

Becaplermin Platelet-derived growth factor S. cerevisiae None

Calcitonin-salmon Salmon calcitonin E.coli None

Chorionic Gonadotropin alfa Chorionic Gonadotropin CHO cells N-links & O-links
[18–20]

Darbepoietin alfa Engineered erythropoietin with 2 extraN-glycans (long-acting) CHO cells N-links & O-links
[21, 22]

Denileukin diftitox Diphtheria toxin fragments A and B (Met1-Thr387)-His
followed by the sequences for interleukin-2 (IL-2; Ala1-
Thr133)

E.coli None

Dibotermin alfa Bone morphogenic protein 2 (BMP-2) CHO cells N-links

Dornase alfa Deoxyribonuclease I CHO cells N-links [23]

Drotrecognin alfa (activated) Activated Protein C Human kidney cell line (293
cells)

N-links [24]

Epoetin alfa Erythropoietin CHO cells N-links & O-links
[21, 22, 25]

Etanercept A dimeric fusion protein consisting of the extracellular ligand-
binding portion of the human 75 kilodalton (p75) tumor
necrosis factor receptor (TNFR) linked to the Fc portion
of human IgG1

CHO cells N-links & O-links
[26]

Factor VIIa Factor VIIa BHK cells N-links & O-links
[27]

Factor VIII Antihemophilic Factor BHK cells & CHO cells &
animal cell line

N-links [28]

Factor IX Factor IX CHO cells N-links and O-links
[29–31]

Filgrastim G-CSF with an N-terminal methionine E. coli None

Follitropin beta Follicle-stimulating hormone CHO cells N-links [32, 33]

Galsulfase N-acetylgalactosamine 4 sulfatase (Arylsulfatase B) CHO cells N-links [34]

Glucagon Glucagon S. cerevisiae None

Hepatitis B vaccine Surface antigen of Hepatitis B S. cerevisiae N-links & O-links
[35–37]

Hepatitis B vaccine S, pre-S and pre-S2 Murine cell line N-links & O-links
[35–37]

Hirudin Hirudin S. cerevisiae None

Human growth hormone Human growth hormone E. coli None

Human Papilloma (HPV)
Vaccine

Virus-like particles (VLPs) of the major capsid (L1)
protein of HPV Types 6, 11, 16, and 18

S. cerevisiae N-links [38]

Hyaluronidase Human hyaluronidase CHO cells N-links [39]

Imiglucerase β-glucocerebrosidase CHO cells N-links [40–42]

Insulin Insulin E. coli and S. cerevisiae None

Insulin aspart Insulin with proline substituted with aspartic acid at B28 S. cerevisiae None

Insulin detemir Long-acting insulin analog S. cerevisiae None

Insulin glargine Insulin modified by replacing the asparagine at position 21 with
glycine and adding 2 arginines to the C-terminus of the B chain

E. coli None

Insulin glylisine Rapid-acting insulin analog E. coli None
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information available on the glycosylation of recombinant
proteins expressed in CHO cells. The glycosylation patterns
of different commonly used cell lines is reviewed in
Grabenhorst [4]. There are also many groups working at
engineering the glycosylation in different expression sys-
tems [2]. The goal of these engineering efforts is to improve

the consistency, reduce the heterogeneity and/or make it
possible to produce specific glycoforms.

Glycosylation can impact the pharmacokinetics, phar-
macodynamics and/or efficacy of a glycoprotein therapeu-
tic. It is therefore necessary to analyze the glycosylation on
glycoproteins being developed as therapeutics. However, it

Table 1 (continued)

Generic Designation Therapeutic Protein Expression System Glycosylationa

Insulin lispro Insulin with lysine (B28) and proline (B29) switched E. coli None

Interferon-11 (missing N-
terminal proline)

Interferon-11 missing the N-terminal proline E. coli None

Interferon alfa-2a Interferon alpha-2a E. coli None

Interferon alfa-2b Interferon alpha-2b E. coli None

Interferon alfacon-1 Engineered type-1 interferon E. coli None

Interferon beta-1a Interferon beta CHO cells N-links [43–46]

Interferon beta-1b Interferon beta with serine substituted for cysteine at position 17 E. coli None

Interferon gamma-1b Interferon gamma E. coli None

Laronidase α-L-iduronidase CHO cells N-links [47, 48]

Lenograstim Granulocyte colony stimulating factor (G-CSF) CHO cells O-links [49]

Lepirudin Hirudi S. cerevisiae None

Lutropin alfa Luteinizing hormone CHO cells N-links [50, 51]

Lyme Disease Vaccine OspA. Lipoprotein from the surface ofBorrelia burgdorferi. E. coli None

Mecasermin rinfabate Complex of rh IGF-1 and IGFBP-3 E. coli None

Mecasermin IGF-1 E. coli None

Moroctocog alfa Factor VIII with residues744-1637of the B domain deleted CHO cells N-links [28]

Nesiritide Human B-type natriuretic peptide (hBNP) E. coli None

Octogog alfa Factor VIII CHO cells & BHK cells N-links [28]

Oprelvekin Interleukin 11 E. coli None

Osteogenic protein 1
(BMP-7)

Osteogenic protein 1 (BMP-7) CHO cells N-links [52]

Palifermin Keratocyte growth factor E. coli None

Parathyroid hormone
(shortened form)

Shortened form of parathyroid hormone E. coli None

Peginterferon alfa-2a Peglylated interferon alpha-2a E. coli None

Peginterferon alfa-2b Pegylated interferon alpha-2b E. coli None

Pegfilgrastim Pegylated G-CSF with an N-terminal methionine E. coli None

Pegvisomant Pegylated growth hormone receptor antagonist E. coli None

Protropin Human growth hormone with an additional N-terminal
methionine

E. coli None

Rasburicase Urate oxidase S. cerevisiae None

Reteplase Amino acids 1–3 and 176–527 of tissue plasminogen
activator

E. coli None

Sargramostim Granulocyte macrophage colony-stimulating factor (Leu
substitution at position 23)

S. cerevisiae None

Semorelin Human growth hormone-releasing hormone (1–29 NH2) Synthetic peptide None

Somatropin Human growth hormone E. coli,C127 cells and S.
cerevisiae

None

Tasonermin Tumor Necrosis Factor (TNF) alfa-1a E. coli None

Tenecteplase Engineered version of tissue plasminogen activator (t-PA) CHO cells N-links [10–13]

Teriparatide Human parathyroid hormone (1–34) E. coli None

Thyrotropin alfa Thyroid stimulating hormone CHO Cells N-links [50, 51, 53,
54]

Vibrio Cholerae Vaccine Contains cholera toxin β subunit V. cholerae None

aWhere possible the references are for glycosylation of the drug, however, this information is not available for many drugs so the references are
for general information on glycosylation of the protein
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can still be difficult to determine how much glycosylation
analysis should be performed at the different stages of
development or which assays should be used for the
analysis. These issues are addressed in this review.

This topic was last reviewed in 1990 by Michael
Spellman [55] when there were very few approved
recombinant glycoprotein therapeutics, let alone the pros-
pect of biosimilars or follow-on biologics. The list of
approved recombinant glycoprotein therapeutics is now
much longer and there is much more known about the
glycosylation of recombinant glycoproteins (see Table 1 for
a summary) and some of the problems that are likely to
arise while developing a glycoprotein therapeutic. There are
now more and better analytical tools available for carbo-
hydrate analysis. There may not be a consensus on the best
specific methods but certain types of analysis have become
the standard for assessing the consistency of glycosylation.

This review will cover N-linked glycosylation (where
glycans are attached to asparagine residues in the peptide
sequence, sees Figs. 1 and 2) and mucin-type O-linked
glycosylation (where GalNAc is attached to serine/threo-
nine residues and then additional monosaccharides may be
added to the GalNAc, see Fig. 3). Other types of glyco-
sylation are reviewed by Vliegenthart [56] and Spiro [57].

Due to the wealth of literature already available on mono-
clonal antibodies (reviewed in [58] and [59]), the focus of this
review will be on glycoprotein therapeutics and not mono-
clonal antibodies. Nonetheless, the strategy and analytical
methods discussed in this review do also apply to the charac-
terization of the glycosylation of monoclonal antibodies.

An historical perspective

The first two glycoproteins approved as therapeutics were
tissue plasminogen activator (t-PA) and erythropoietin. The

glycosylation of t-PA was shown to affect its enzymatic
activity [60–62] and the plasma clearance of the molecule
[63–65]. Glycosylation was also shown to be necessary for
the activity [66–68] and plasma clearance of erythropoietin
(reviewed by Takeuchi [21]). These two molecules demon-
strate how glycosylation can have a significant impact on
plasma clearance and why it isn’t always easy to predict
what impact the glycosylation will have on the plasma
clearance of your molecule.

Alteplase (t-PA) has 3 glycosylation sites; one which is
glycosylated with oligomannose structures and two that are
glycosylated with complex oligosaccharides although one
of these is only occupied 50% of the time [10]. The plasma
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Fig. 1 An imaginary complex N-linked oligosaccharide demonstrat-
ing modifications that can occur on these oligosaccharide structures.
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Fig. 3 O-linked oligosaccharide core structures. These structures can
be extended, much like N-linked oligosaccharides. is GlcNAc;
is galactose and is GalNAc
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clearance of t-PA is mediated through receptors that bind to
the protein and the mannose receptor that binds to the
oligosaccharides [69–72]. T-PA binds to the mannose
receptor with a higher affinity than other glycoproteins
containing oligomannose structures and there is evidence
that the underlying protein structure enhances the binding
to the mannose receptor [73].

Tenecteplase is an engineered version of t-PA in which
the glycosylation site containing oligomannose structures
has been removed and a new glycosylation site (which is
glycosylated with complex structures) has been added to
the molecule. Tenecteplase has a much longer plasma half-
life than alteplase and is a good demonstration of how
difficult it can be to understand the role that glycosylation
plays in plasma clearance. Some of the increase in half-life
seen with Tenecteplase can be attributed to the removal of
the oligomannose structures (because of clearance by
mannose receptors) but not all, since a mutant with only
the oligomannose site removed does not have a half-life as
long as tenecteplase [74]. A nonglycosylated version of t-
PA (produced in E. coli) in which a large part of the
molecule has been deleted (reteplase) has a similar half-life
to tenectaplase [75].

Erythropoietin also has an interesting glycosylation
story. Erythropoietin has 3 N-linked oligosaccharides and
one O-linked oligosaccharide [22]. Erythropoietin tends to
be glycosylated predominantly with triantennary and
tetraantennary oligosaccharides, whether it is the natural
urinary form or the recombinant expressed in CHO [76] or
BHK cells (reviewed by Takeuchi [21]). Polylactosamine
(the repeating disaccharide [3Galβ1-4GlcNAcβ1]n that is
attached to terminal galactose residues on complex struc-
tures) is also commonly seen on the molecule. Polylactos-
amine is more common on the molecule expressed in CHO
or BHK cells than on the natural urinary form [21]. The
glycosylation of erythropoietin has been shown to be
necessary for its activity [66–68] as well as its secretion
and function [77]. As has been reported for other
glycoprotein growth factors [78], EPO binds better to its
receptor when the molecule is desialylated, however; the
loss of sialic acid results in a dramatic reduction in in vivo
activity [79, 80]. Although the loss of in vivo activity in
glycoprotein therapeutics is often attributed to the efficient
clearance of undersialylated molecules by the hepatic asialo
glycoprotein receptor [81], most often the role of carbohy-
drates in plasma clearance is more complicated than can be
explained by the asialoglycoprotein receptor alone. In EPO,
branching of the oligosaccharide chains seems to play a role
since a version of EPO with more biantennary structures
(rather than the typical tetraantennary structures) was
shown to clear much faster even though most of its
galactose residues were sialylated and it had a three-fold
higher in vitro activity [82].

There is a new version of EPO in which two additional
N-linked oligosaccharide structures are present [83]. This
molecule has been shown to be safe and has a much longer
plasma half-life. There have been no reports of patients
developing antibodies to this molecule, even though
glycosylation sites have been added to the molecule [83].

When the first protein therapeutics were produced the
methods used for characterizing their glycosylation came
from academic groups that had skillfully worked out ways
to identify the oligosaccharide structures on glycoproteins
or other glycans. The techniques utilized included FAB-
MS, NMR, lectin blots and columns, multi-dimensional
HPLC methods and GC-MS, among others. These techni-
ques had been developed to enable scientists to determine
the exact structure of oligosaccharide structures, including
the glycan linkages between the monosaccharide units.
Although these methods were tremendously important for
determining the glycosylation of those first recombinant
proteins—these methods did not transfer well to biotech-
nology laboratories. In biotechnology laboratories the
emphasis was more on demonstrating that the glycosylation
was consistent batch-to-batch (as opposed to identifying
each oligosaccharide on a molecule), and analyzing many
samples at once to compare their glycosylation. Data were
required quickly and techniques would need to be run by
scientists with relatively little experience in carbohydrate
chemistry. The first real assays developed for the unique
needs of biotechnology came when Hardy and Townsend
published their HPAEC methods for a one-dimensional
separation of oligosaccharides (now referred to as oligo-
saccharide profiling) and monosaccharide analysis using an
HPLC [84, 85] and reviewed in [86, 87]. The key to these
methods was a detector that was sensitive to under-
ivitized carbohydrates (which are very difficult to detect
by UV) and a chromatography method that was able to
separate oligosaccharides and monosaccharides far better
than any previous method. These methods for carbohy-
drate analysis were the first designed to address the
issues unique to biotechnology. Since then, many
methods have been developed that work well in the
biotechnology laboratory.

A strategy

Unfortunately, there is no single method that can be used to
completely characterize the glycosylation on a molecule
and different methods must be employed, depending upon
the type of glycosylation on the molecule and the specific
information that is required. Oligosaccharides can be
analyzed in three different ways: while attached to the
protein (peptide mapping and analysis of glycopeptides),
after releasing intact from the protein (oligosaccharide
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profiling) or after being broken down into their constituent
monosaccharide units (monosaccharide analysis).

The degree to which the glycosylation on the therapeutic
is analyzed may vary during drug development. How
thorough the characterization of the glycosylation needs to
be and how early in drug development it is started should
depend upon consideration of factors such as whether the
glycosylation is known to have an impact on the efficacy or
the pharmacokinetics, any special issues raised by the
expression system used to produce the protein, or changes
in the expression system that would affect the glycosyla-
tion. If specific types of glycosylation are necessary for
optimal activity, then the glycosylation may need to be
characterized early in development. And conversely, if your
expression system might be adding glycosylation that is not
ideal or could be a safety concern then this will need to be
addressed early in development. If there is any reason to
believe that the glycosylation is not consistent, especially if
changes in glycosylation are coincident with any changes in
the pharmokinetics or activity of your molecule then more
detailed analysis may become necessary to understand this
relationship.

Unless there is reason to believe that very specific types
of glycosylation (i.e. more highly branched complex
structures) are required for an efficacious product, regula-
tory agencies are usually more concerned with demonstrat-
ing that the glycosylation is consistent (often referred to as
having “consistent heterogeneity”) rather than on the
identification of all the different oligosaccharides present
on the molecule. This is especially true if the role of
glycosylation on the function of the glycoprotein is well
understood and/or it has been expressed in an expression
system where the glycosylation patterns have been well
characterized. The heterogeneity in glycosylation profiles
of many therapeutics does make it far more challenging to
assess whether two different lots of a drug have comparable
glycosylation.

It is always wise to monitor the glycosylation for
consistency throughout product development to demon-
strate that your process produces molecules with consistent
glycosylation and for the reassurance that the molecules
used in preclinical and clinical work have a similar
glycosylation profile to the ultimate molecule headed for
the market. Due to this, it is usually wise to begin analyzing
glycosylation by the time the first clinical, or even pre-
clinical lots are produced.

Analytical methods used to analyze the glycosylation of
therapeutic proteins can be separated into two categories:
methods needed to demonstrate the consistency of
glycosylation from lot to lot (likely to become release
assays, which will need to be validated) and methods used
for more in depth analysis of the glycosylation (used to
characterize specific critical lots and/or to understand

changes in glycosylation patterns, that won’t necessarily
be validated).

The most common method used for demonstrating the
lot-to-lot consistency of glycosylation on a protein thera-
peutic is oligosaccharide profiling. These methods provide
an overview of the heterogeneity of the molecule, can be
validated and transferred to a QC setting for release testing
and should be very sensitive to changes in glycosylation.
These methods can be useful from early in development
and it is the most common type of analysis used for lot
release-testing to demonstrate the consistency of the
glycosylation once a product has been approved. Further-
more, most of these methods can be used to separate
oligosaccharide structures for identification or further
characterization, when and if this becomes necessary (either
by on-line methods or by isolating them and doing further
analysis on the fractions). For all of these reasons,
oligosaccharide profiling methods are used for most
therapeutic glycoproteins starting prior to clinical trials
and are usually included as a release test by the time the
drug is marketed. Due to the important role that sialic acid
has been shown to play in the half-life of protein
therapeutics in the bloodstream, sialic acid is often
quantified on therapeutics. The efficacy of a drug is also
more likely to be affected by differences in sialylation
than other modifications in the glycosylation (see Figs. 1,
2, and 3 for examples of modifications). This makes sialic
acid analysis the second most common type of glycosyl-
ation analysis for therapeutics and like oligosaccharide
profiling, is usually used prior to the start of clinical trials
and often becomes a release test by the time the drug is
marketed.

Another reason for analyzing the sialic acid on your
molecule is to determine whether there is any N-
glycolylneuraminic acid (NGNA or NeuGc) present.
NeuGc is a sialic acid found in many animal cells
(including CHO cells) that is not found in humans
because we lack the enzyme required for its synthesis.
Historically, this has created concern over the presence of
this sialic acid on therapeutics but it has now been
demonstrated that although humans cannot synthesize
NeuGc, it is found in normal human tissues [88]. It would
appear that humans pick up NeuGc from diet [88, 89] and it
is incorporated into tissues. In fact, Byres et al. have shown
that the presence of this NeuGc on human tissues creates
high affinity receptors for a bacterial toxin [90]. It has also
been demonstrated that many humans produce antibodies
against oligosaccharide structures with terminal NeuGc
[91].

Beyond these two analyses there are additional assays
used for analyzing glycosylation. Determining whether
further analysis is required and which additional methods
are employed depends upon the role of glycosylation on
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your molecule and the expression system used. These
different methods and the information obtained from them
are described in the next section.

Oligosaccharide profiling

Oligosaccharide Profiling (also referred to as mapping or
fingerprinting) is the best method for monitoring the
consistency of the glycosylation of your molecule. With
this method, oligosaccharides (N-linked and/or O-linked)
are released intact from the molecule and separated to
create the profile. This profile can be a chromatogram from
an HPLC/CE separation, a mass profile generated using
mass spectrometry or the pattern of bands generated by gel
electrophoresis of oligosaccharides. For a therapeutic, it is
most important that the profile is sensitive to changes in
glycosylation, especially any changes in glycosylation that
are known to affect the safety or efficacy or the molecule.
The method must also be robust and reproducible. It is
helpful if the same method can be used for routine testing
and further characterization/identification of the oligosac-
charides (i.e. by isolating the peaks or by on-line mass
spectrometric analysis).

N-linked oligosaccharides are most commonly removed
enzymatically from glycoproteins using peptide:N-glycosi-
dase F (PNGase F). PNGase F has been shown to release
oligomannose, hybrid and complex oligosaccharides from
glycoproteins. It will not release oligosaccharides from the
asparagine unless both the carboxyl and amino termini are
in peptide bonds [92, 93]. There is also one report in the
literature [48] of a bisphosphorylated glycopeptide that was
resistant to PNGase F until it was desphosphorylated.
PNGase F will not release any oligosaccharide that contains
a fucose linked α1-3 to the GlcNAc bound to the
asparagine [94]. Plants and insect cells add fucose in this
linkage. N-linked oligosaccharides can also be released by
peptide:N-glycosidase A (PNGase A), which releases all
classes of oligosaccharides [92, 93]. The different enzymes
used to release glycans are reviewed in O’Neill [95].

N-linked oligosaccharides can also be released chemi-
cally using hydrazinolysis [96, 97]. This method has not
been commonly used since PNGase F has become
commercially available, because of the safety issues created
by the chemicals used in this procedure and the complexity
of the procedure. N-acetyl and N-glycolyl groups are also
lost when oligosaccharides are released by hydrazinolysis
[98, 99].

For many laboratories, the fastest and easiest way of
profiling oligosaccharides is by mass spectrometry, espe-
cially MALDI-TOF MS. This method has the advantage of
providing more information on the types of oligosaccharide
structures present because the masses of the oligosacchar-

ides can be matched to possible oligosaccharide structures.
There are software packages that can perform this analysis.
However, all possible isobaric oligosaccharides (oligosac-
charide structures having the same mass) must be carefully
considered when matching possible oligosaccharide struc-
tures to masses. An understanding of glycosylation path-
ways, in general and in different expression systems is
critical when eliminating impossible or unlikely glycan
structures. In early drug development, generating oligosac-
charide mass profiles is often the preferred method of
oligosaccharide profiling. However, there has been resis-
tance to validating these methods and transferring them into
QC laboratories due to concerns over the accuracy of
quantification by mass spectrometry (even though it has
been demonstrated that it can be used quantitatively [100]),
the complexity of the equipment, the volume of data
generated and the challenges of data analysis. This has left
oligosaccharide mass profiling as an incredibly valuable
method during early drug development, when oligosacchar-
ides need to be identified, as an orthogonal method (to
HPLC or CE methods) later in development and when
critical lots need to be analyzed (for example, process
qualification lots). Mass spectrometric methods have been
reviewed recently by Wada [100] and Stadlmann [101].

Although electrophoretic methods [102], mass spectrom-
etry [100, 103] and CE [102, 104, 105] are all used for
oligosaccharide profiling, HPLC methods have been the
most commonly used method for lot release. There are
many HPLC separations for N-linked oligosaccharides
described in the literature (reviewed in [106]), however,
many of them are not all that useful for N-linked
oligosaccharide profiling of therapeutic glycoproteins. To
be useful for the profiling of therapeutic glycoproteins a
method should:

1. Generate a good separation in one dimension (earlier
methods separated oligosaccharides based upon one
characteristic on one column, then another on a second
column).

2. Shifts in the oligosaccharide pattern should be predictive of
changes in the glycoform distribution (i.e. changes in size
or charge can be inferred from a shift in retention times)

3. Utilize a sensitive method for detection (important since
oligosaccharides do not contain good chromophores)

4. Be amenable to further characterization of the oligo-
saccharides, either by collecting the oligosaccharides
for further analysis or by on-line analysis.

Although oligosaccharide profiling by HPLC may not
immediately provide many specific details about the
glycosylation of the molecule (methods utilizing mass
spectrometry are better at this) it is a very sensitive test of
lot-to-lot variation in the glycosylation. It is also a relatively
simple analysis to perform and a good HPLC profiling
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method can provide important information on consistency
even if the identity of the oligosaccharides in each peak is
not known. It is possible to develop platform methods that
will work well for most glycoproteins without the need for
extensive optimization for individual glycoproteins. HPLC
profiling data can be collected to demonstrate the consis-
tency of glycosylation early in drug development and then
the oligosaccharide peaks in the profile can be identified
later in development. It is however, important to choose an
oligosaccharide profiling method that has been documented
to provide sufficient detail and able to detect relevant
changes in glycosylation.

High pH anion-exchange chromatography (HPAEC) of
underivatized oligosaccharides with pulsed-amperometric
detection (PAD) was the first oligosaccharide profiling
method ([85, 107] and reviewed in [86]) that addressed the
needs of monitoring the glycosylation of therapeutic
glycoproteins. In this method, oligosaccharides are separat-
ed using high pH (pH 12). The high pH converts hydroxyl
groups to oxyanions and differences in the interaction of
these oxyanions in the oligosaccharides with the anion
exchange resin result in differences in the retention times.
Although these methods provided very good separations of
oligosaccharides they are difficult to work with, because the
mobile phases contain a large amount of salt (sodium
hydroxide and sodium acetate) which is difficult to remove
from isolated oligosaccharides. Different oligosaccharides
respond differently to this form of detection making
quantification, or even relative quantification of different
oligosaccharides impossible. Although recent advances in
the technology have made this less of an issue, the gold
electrode gets fouled over time, which affects the response
and creates issues with day-to-day reproducibility.

Separations on amide or amino columns are now
available that are as sensitive to changes in the oligosac-
charide structure as the HPAEC methods and these have
become the method of choice for many laboratories. These
separations use a combination of both normal phase and
anion-exchange separations [108–112]. Weak anion-
exchange methods were historically used to separate
oligosaccharides into charged groups, but they were unable
to separate oligosaccharides within a charged group. These
new methods, like HPAEC, are capable of separating the
oligosaccharides into charged groups and then separating
oligosaccharides based upon size/monosaccharide compo-
sition and/or linkages within charge groups. Siemiatkoski et
al. also report an excellent separation of the neutral
oligosaccharides on monoclonal antibodies using one of
these columns without any organics in the mobile phases
[113].

These separations on amide/amino columns are per-
formed with fluorescently labeled oligosaccharides. The
two most commonly used fluorescent labels are 2-AA (2-

aminobenzoic acid) and 2-AB (2-aminobenzamide) [114],
which are attached to the reducing end of the oligosaccha-
ride using reductive amination. There is an alternative
protocol for labeling with Fmoc-Cl (9-fluorenylmethyl
chloroformate) where the label is attached to the reducing
end of an intermediate of the oligosaccharide formed during
release of the oligosaccharide by PNG’ase F [115]. The
different types of labeling used for carbohydrates are
reviewed in [114, 116].

RP-HPLC is another separation that has been used for
oligosaccharide profiling [112, 117]. And more recently
RP-HPLC using graphitized carbon columns [118] because
they retain carbohydrates better (even underivitized) than
other reversed-phase resins. Both these separations have the
disadvantage of not being able to separate into charged
groups. Since negatively-charged groups (sialic acid,
phosphate and sulfate) are often critical to the function of
glycoproteins it is preferable to be able to easily determine
changes in the amount of charged oligosaccharides on your
molecule, which is easier done with separations involving
anion-exchange. However, RP-HPLC has been shown to
work very well in LC-MS applications [119].

The methods used for profiling O-glycans are very
similar to those used for N-glycans except there is no
enzyme commercially available that will release all O-
glycans from proteins. O-Glycanase will release certain O-
glycans, but not all, from proteins [120]. O-glycans must
therefore be released chemically from proteins and as a
consequence of the chemical release care must be taken to
not degrade the released oligsaccharide in the process. The
most common technique is β-elimination [121]. This β-
elimination has the disadvantage of producing reduced
oligosaccharides, which precludes using reductive amina-
tion to label the released oligosaccharides with a chromo-
phore/fluorophore (the most common method for labeling
oligosaccharides).

There are several methods that leave the reducing end of
the O-glycan intact. The most common method is hydrazi-
nolysis. Hydrazinolysis is also used to release N-glycans
but by altering the temperature of the reaction it is possible
to favour the release of N-linked or O-linked oligosacchar-
ides [96, 97]. The disadvantages for releasing O-glycans are
the same as described for the removal of N-linked
oligosaccharides (see above). However, using this release
method has allowed for fluorescent labeling of the released
O-links and separation by normal-phase chromatography
[122, 123].

A method using ethylamine to remove O-glycans has
been reported [124] although with a low recovery of O-
glycans relative to the original β-elimination. An ammoni-
um based β-elimination [125] has recently become popular
(and is in use in our labs). This method releases both N-
linked and O-linked oligosaccharides. Both of these
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methods release glycans with the reducing end intact
allowing for labeling of the released oligosaccharides.

Due to the greater difficulty in removing O-links from
the protein, especially without losing the reducing end,
there are far fewer examples of oligosaccharide profiles of
O-glycans. HPAEC-PAD has been used [126] and the
separation of neutral O-links on an amino column [127,
128]. There are also reports of separation on amide columns
[111, 129] and also RP-HPLC separations [123, 128].

As with N-linked oligosaccharide profiling, it is also
possible to perform LC-MS using some of these profiling
methods [128, 130, 131].

When more specific details of the glycosylation of your
molecule is necessary an oligosaccharide profile alone will
not provide sufficient information on the oligosaccharides
present. A more extensive characterization might be
necessary in order to select an expression system, cell
culture conditions or optimize purification of the molecule.
Certain lots of material also require a more detailed analysis
of the glycosylation (i.e. reference lots, validation or
process qualification lots and comparability studies). Add-
ing additional testing of key lots and demonstrating that
these lots are comparable, as shown by the oligosaccharide
profiling method, serves to validate that the oligosaccharide
profiling method(s) is sufficient for demonstrating consis-
tent glycosylation and that the method is not missing any
changes in glycosylation. The methods used for identifica-
tion of the oligosaccharides are described later in this
review (under Structural Characterization), but some of the
HPLC methods have the advantage of working as LC-MS
methods [132] and CE can also be coupled to MS
(reviewed in [133, 134]).

Due to the complexity of oligosaccharides, information
from two or more techniques may be required to confirm the
identity of certain oligosaccharides. For instance, the
retention time of an oligosaccharide on an oligosaccharide
profile or the mass could be consistent with a fucosylated
oligosaccharide structure and monocompositional analysis
could support the presence of fucose on the glycoprotein (or
on the isolated oligosaccharide itself). Further information
from techniques such as oligosaccharide sequencing using
fucosidases, GC-MS analysis or MSn would still be required
to determine the position and linkage of the fucose residue.

Monosaccharide composition

For the determination of the monosaccharide composition
of glycoproteins or glycans, oligosaccharides are hydro-
lyzed into monosaccharides and the monosaccharides are
then separated and quantified. Typically, fucose, galactose,
mannose, GlcNAc and GalNAc are measured since they are
the most common monosaccharides; however, there are

methods that can be used to separate different mixes of
monosaccharides. This discussion will focus on methods
used to measure the monosaccharides present on a
glycoprotein; similar methods can also be optimized for
isolated oligosaccharides or polysaccharides. The downside
of monosaccharide analysis is that much information is lost
upon hydrolysis (size of oligosaccharides, branching) and
therefore, it is always more informative to examine the
intact oligosaccharides rather than measuring the hydro-
lyzed monosaccharides.

Two methods have been most commonly used for
monosaccharide analysis: gas-liquid chromatography cou-
pled with mass spectrometry and HPLC. Due to the
chemistry involved in the GC methods and the more
specialized equipment required for this analysis, the HPLC
methods are much more commonly used. More information
on the GC methods can be found in the following
references [135–138] but this review will concentrate on
the HPLC and CE methods.

All of the HPLC and CE methods require that
oligosaccharides are first hydrolyzed into their consistuent
monosaccharide units using acid hydrolysis. Choosing
conditions for the acid hydrolysis is complicated because
no acid hydrolysis has been demonstrated to work for all
glycans. Different monosaccharides are released at different
rates by and the rate of release can even be affected by their
glycosidic linkage. Once released, monosaccharides are
destroyed at different rates by the acid. In particular,
GlcNAc and GalNAc residues are much more stable in
acid and more difficult to hydrolyze than the other
monosaccharides ([139] and reviewed in [140]).

For the best accuracy, the recommendation has been to
hydrolyze at 100°C in 4 M HCl for 6 h for amino sugars
and 2 M TFA for 4 h for the other neutral monosaccharides
[84, 139]. In practice, most laboratories settle for a
compromise of 2 M TFA for 3–6 h at 100°C [84, 139,
141] understanding that the amino sugars will not be 100%
released from the sample, but finding that two separate
hydrolyses are not worth the effort given the limitations of
this analysis. An alternative method using 4 N TFA for 2 h at
121°C for all monosaccharides has also been reported [142].

Once the hydrolysis of the monosaccharides is complete
then the monosaccharides can be separated underivatized
by HPAEC and detected by PAD or they can be labeled and
separated by HPLC or CE (reviewed by Anumula [114]).

Sialic acid analysis

Sialic acids are a family of negatively charged mono-
saccharides (reviewed in [143]) that are usually found at the
termini of oligosaccharides. Typically, the addition of sialic
acid to oligosaccharide chains prohibits any further elon-
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gation of the oligosaccharide chains, although in some cells
sialic acid polymers (with sialic acids linked α2-8 to each
other) are formed [144]. The most common sialic acid is N-
actetylneuraminic acid (abbreviated as NeuAc, Neu5Ac or
NANA) but there are many possible modifications of this
molecule. The modification that is found on many
therapeutic glycoproteins and has received much attention
is N-glycolylneuraminic acid (abbreviated as NeuGc,
Neu5Gc or NGNA). As discussed earlier in this review
humans are unable to synthesize NeuGc.

Sialic acids are easier to remove from oligosaccharide
chains, but they are also more acid labile. They are
hydrolyzed using milder hydrolysis conditions than other
monosaccharides. With the milder acid hydrolysis there is
much less destruction of the released sialic acid than seen
during the hydrolysis of neutral monosaccharides where
there is significant destruction of the released monosac-
charides. Quantitative release of sialic acids is also much
easier to achieve than for some of the neutral monosac-
charides that are difficult to hydrolyze. The most common
methods for sialic acid analysis are reviewed in Manzi
[145] and Zanetta [146].

Specialized methods

Oligosaccharides on some therapeutics will have a modifi-
cation that will require development of a specialized assay.
Two examples are: galactose residues linked α1-3 to
galactose residues and mannose 6-phosphate residues.
GalαGal is of interest because some expression systems
will add these structures and humans do not add galactose
in this linkage [147]. As well, all humans have high
concentrations of antibodies against this epitope in their
serum [147]. Mannose 6-phosphate is added to lysosomal
proteins to assist in targeting to the lysosome [148, 149] but
can also be found on other proteins (Deoxyribonuclease I,
for example [23]). This residue may impact the clearance of
molecules because there are receptors involved in the
clearance of glycoproteins from the bloodstream that
recognize mannose 6-phosphate residues (reviewed in
[150]). There is also the possibility of monosaccharides
that may, or may not, be measured in the monosaccharide
analysis. An example of this would be monosaccharides
commonly found in plants [151].

Site-specific analysis

Different glycosylation sites on the same glycoprotein can
carry different types of oligosaccharides and differences in
the occupancy of certain glycosylation sites can affect the
efficacy of a molecule (t-PA is an example and this is

reviewed in [152]). Consequently, there are times when the
oligosaccharides at specific glycosylation sites need to be
characterized. This is usually accomplished by LC-MS
analysis of peptide maps where the glycosylation sites can
often be isolated on different peptides [100, 153].

Identification of oligosaccharide structures/structural
analysis/sequencing

Sometimes it is necessary to characterize the oligosaccha-
ride structures present on the glycoprotein. This character-
ization can range from simply determining whether the
oligosaccharides are oligomannose/complex and the rela-
tive size (the number of mannose residues or antennarity) to
determining the glycosidic linkage of each monosaccharide
on the oligosaccharide. We now understand that glycosidic
linkages are carefully controlled by the glycosyltransferases
that synthesize oligosaccharides and there is a great deal of
information on the types of oligosaccharides found in the
commonly used expression systems. It is therefore usually
not necessary to determine the glycosidic linkages of the
oligosaccharides, especially since they rarely have an
impact on the efficacy of glycoproteins.

This information was historically obtained by GC-MS
(gas chromatography mass spectrometry) or NMR (nuclear
magnetic resonance) [123, 153, 154]. Oligosaccharides are
now mostly sequenced by digesting with exoglycosidases
or by mass spectrometry with fragmentation. Exoglycosi-
dases are enzymes that release monosaccharides from an
oligosaccharide and some will only release a specific
monosaccharide or even a specific monosaccharide in one
type of glycosidic linkage. The removal of monosacchar-
ides can be monitored by shifts in the retention time of the
oligosaccharide after digestion [155] or by changes in the
mass by mass spectrometry [156–159]. Unfortunately,
glycosidase sequencing is complicated, because it is
possible to find commercial sources of neither all the
exoglycosidases necessary to completely sequence an
oligosaccharide structure nor the oligosaccharide standards
necessary to identify an oligosaccharide. Oligosaccharide
standards are necessary to help interpret shifts in oligosac-
charides after digestion with glycosidases.

Conclusions

Much was learned from the extensive characterization of
the early glycoprotein therapeutics and as more and more
therapeutics are developed we have added to this body of
knowledge. Data has been accumulated on the glycosylation
added to many different proteins by the most common
expression systems [4, 160]. This information is very useful
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in predicting how a molecule will be glycosylated by a
particular expression system, for choosing the best expres-
sion system for your molecule and for anticipating problems
that may arise because of the chosen expression system.

Over time, oligosaccharide profiling has replaced mono-
saccharide composition analysis as the method of choice for
characterizing therapeutic glycoproteins and especially for
release testing and comparability/consistency testing. How-
ever, most therapeutic glycoproteins will require more
exhaustive testing at times during their development and
possibly for product release as well. The most recent
advances in carbohydrate analysis have been the use of
fluorescent probes for HPLC analysis and the much more
common use of mass spectrometry, particularly MALDI-
TOF MS. Hopefully, in the near future, LC-MS (and LC-
MS-MS) methods for oligosaccharide analysis will become
more widely available making it easier to unequivocally
identify oligosaccharide structures.
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