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Abstract
We investigated the form and implications of the local first law of black hole thermo-
dynamics in relation to an observer located at a finite distance from the black hole
horizon. Our study is based on the quasilocal form of the first law for black hole
thermodynamics, given by δE = κ̄

8π δA, where δE and δA represent the changes in the
black hole mass and area, respectively, and κ̄ denotes the quasilocal surface gravity.
We show that even at a finite distance, the quasilocal law still holds. It shows how the
first law scales with the observer’s location.
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1 Introduction

Hawking’s semiclassical calculations [1] suggest that when a black hole is in a state of
stationary equilibrium (reached after gravitational collapse), it behaves like a perfect
black body by emitting thermal radiation, known as Hawking radiation, at a tem-
perature proportional to its surface gravity. According to the first law of black hole
mechanics, which relates changes in black hole’s mass, area, and angular momentum,
to its entropy (each black hole can be assigned an entropy). This entropy is propor-
tional to the area of the black hole’s event horizon. In other words, the surface area of
a black hole is a measure of its entropy.

Finding a comprehensive statistical mechanical explanation for the thermal proper-
ties of black holes based on quantum theory remains a significant task for all proposed
quantum theories of gravity.While attempts have been made to calculate the statistical
entropy using string theory [2] and loop quantum gravity [3], significant gaps in our
understanding of the underlying quantum theories still exist in both approaches.

An important challenge in addressing black holes in the framework of quantum
gravity arises from the fact that the conventional definitions which rely on the global
structure of spacetime. In the first law, while area, angular velocity, Coulomb potential,
etc. are defined on the horizon, mass, angular momentum, charge, etc. are defined at
asymptotic infinity. Furthermore, formation of the horizon itself requires knowledge
about the full future of the spacetime. This issue has been recently highlighted in
the context of two-dimensional models [4]. However, it is reasonable to expect that
the physical concept of a large black hole emitting only a small amount of radiation
and thus maintaining a state of near-equilibrium for an extended duration could be
appropriately characterized by semiclassical physics. Such a characterizationwould be
valuable for investigating the semiclassical regime of the underlying quantum theory in
amoremeaningful manner. Isolated horizonswere proposed to offer a characterization
of black holes in quasilocalmanner. They capture the essential local properties of black
hole event horizons while entirely dealing with quasilocal quantities only. Notably,
isolated horizons adhere to a quasilocal variation of the first law, which describes the
fundamental relationship between changes in the black hole’s energy, area, and other
physical quantities defined quasi-locally.

κI H

8π
δA = δEIH − �I H δLIH − �I H δQIH (1)

Where EIH, LIH and QIH are the energy, angular momentum, and charge defined on
the horizon and other quantities like κI H , �I H and �I H are already locally defined
surface gravity, angular velocity, and electrostatic potential on the isolated horizon.
The aforementioned equation arises from the necessity for time evolution to adhere
to the boundary conditions imposed by the isolated horizon (IH) and be Hamiltonian
in nature [5]. In an important work [6], the authors have pointed out that the first
law of IH establishes that the isolated horizon energy EIH must be a function of the
energy EIH(LIH,QIH, A) of the system. The integrability conditions related to the
previous phase space identity place limitations on the “intensive”properties. However,
these conditions do not establish a favored concept of energy for the horizon accord-
ing to the first law of IH. This limitation poses challenges for statistical mechanical
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explanations of quantum black holes. In their paper [6] they also demonstrate that
the aforementioned uncertainty is resolved when one comprehensively explores the
quasilocal perspective, which was originally employed to define the isolated horizons.
Interestingly, when examined by stationary observers positioned at an appropriate
distance from the horizon, stationary black holes (and in a broader sense, isolated
horizons) adhere to the quasilocal first law [6].

δE = κ̃

8π
δA (2)

Where κ̃ = d−1, with d2 << A, where d is the proper distance of the observer from
the black hole.

We observe that the laws of black holemechanics depend significantly on observers.
Thefirst lawof black holemechanics involves quantities such as area, electric potential,
angular velocity, etc. which are defined on the horizon, and also quantities such as
ADM mass, electric charge, angular momentum, etc. at asymptotic infinity in an
asymptotically flat spacetime. Thus, in order to write down the first law, we need to
know the global structure of the spacetime. In this paper, we are attempting to write
down a first law that is quasi-local. That is, the quantities needed to write down the first
law are defined either on the horizon or at a finite proper distance from the horizon,
and do not involve asymptotic structure of the spacetime. In an earlier work [6], the
authors have already found such a first law in a spacetime region close to the horizon.
From a practical standpoint, this issue appears to be more useful than a first law which
requires the full knowledge of the global structure. This is particularly relevant in
the case of astrophysical black holes as we ourselves are observers located at a finite
proper distance from the black holes. In this paper, our objective is to address the issue
of existence of this quasi-local version of the first law, and we find that the answer is
indeed affirmative. Considering an observer located at a finite proper distance from
the black hole, we can derive a first law, similar to Eq. 2. However, in this case, the
proper distance not being less than the area of the black hole surface, the quantity k̃
becomes a complicated function of proper distance (d).

The plan of the paper is outlined as follows:
In Sect. 2, we provide a concise reviewof the thought experiment that establishes the

quasilocal form of the first law. Additionally, we discuss the interpretation of effective
surface gravity and temperature for the nearest observer in this context.

In Sect. 3, we validate the conjecture’s usefulness for finite observers. We explicitly
analyze the scenario for RN black hole, Kerr black hole, and BTZ black hole, and
conclude with a discussion on the significance of this model. All different types of
energy notations used in this article are listed in Table 1.

Table 1 All different energy notations and their meaning

Symbol Meaning

EIH Black hole energy at the isolated horizon

E Quasilocal energy of the BH

E Particle’s energy at spatial infinity

El Particle’s energy measured by a local stationary observer
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2 Review of the quasilocal first law of black hole thermodynamics

2.1 A gedanken experiment

In this section, we will review a thought experiment conducted by Frodden et al. [6].
First, let’s consider a family of stationary observers located at a distance d from the

stationary black hole spacetime. In a generic stationary black hole spacetime, there
exist two Killing vector fields: tα and φα . These vector fields correspond to time
translation and axial symmetry of the spacetime respectively. The family of stationary
observers, denoted as [P] follows the orbits determined by the Killing vector fields
ξα . This means at each point along the orbital path, the tangent vectors to the path
align with ξα . In the case of a stationary spacetime, these vector fields are given by
the following expressions,

ξα = tα + �hφ
α (3)

The angular velocity at the horizon of the black hole is denoted by �h . The stationary
observers that are in co-rotation with the blackhole have an angular velocity equal to
�h , which is given by,

�h = a

r2+ + a2
(4)

Here, a represents the ratio of angular momentum (J ) to themass (M) of the stationary
black hole, expressed as J = aM . The symbol r+ corresponds to the event horizon
of the black hole.

The four-velocity of the observersP is given by the normalized tangent vector field
along their world line.

γ α = ξα

‖ξα‖ (5)

The selection of these particular observers (3) is crucial for the argument presented in
this study, as they possess the symmetries of the spacetime. The symmetries exhibited
by these observers play a fundamental role in compacting the first law.

Let us examine a scenario in which a charged particle with unit mass and charge e
approaches the black hole from infinity and becomes absorbed by it. To account for
general cases, we consider a background spacetime that is both charged and rotating.
If the particle is moving with four-velocity ηα , then its conserved energy and angular
momentum are given by the following expressions, respectively:

E = −ηαtα − eAαtα (6)

L = ηαφα + eAαφα (7)

Where Aα represents the electromagnetic four-potential resulting from the charge of
the black hole.
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The first law of black hole thermodynamics is an analogue of the first law of ther-
modynamics, applied specifically to black holes. It states that the change in energy of a
black hole is related to the change in its mass, angular momentum, and electric charge,
as well as the energy of the matter falling into the black hole and the energy carried
away by emitted radiation.Mathematically, the first law of black hole thermodynamics
can be expressed as [7]:

δM = κ

8π
δA + �hδ J + �δQ (8)

Where δM represents the change in the black hole mass, δA represents the change in
its horizon area, κ denotes the surface gravity of the black hole,�h denotes its angular
velocity, δ J represents the change in its angular momentum, � represents its electric
potential, and δQ represents the change in its electric charge.

Now, in the context of the black hole absorbing the charged particle, the changes
in the black hole’s parameters will be linked to the charge, angular momentum, and
energy of the particle. Specifically, we have the following relationships:

δ J = L; δQ = e; δM = E (9)

By employing equation (9), Eq. (8) can be reformulated as follows:

κ

8π
δA = E − �hL − e� (10)

Now the local energy of the particle as measured by the observer P is given by,

El = −ηαγα (11)

Using (3) and (5) we can rewrite equation (11) as follows,

El = −ηαtα + �hη
αφα

‖ξα‖ (12)

Now, we can utilize Eqs. (6) and (7) to express the local energy of the particle in terms
of its conserved energy and angular momentum as follows

El = E − �hL + eAαξα

‖ξα‖ (13)

The electric potential � at the horizon, as described in [8], can be expressed in terms
of the electromagnetic four-potential Aα and the Killing vector field ξα as follows:

� = −Aαξα (14)

By incorporating this definition of �, we obtain a comprehensive expression for El as
follows:
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El = E − �hL − e�

‖ξα‖ (15)

Finally, byutilizingEqs. (10) and (15),we can establish a relationship between the local
energy of the charged particle and the area of the black hole, up to a proportionality
factor. Subsequently, we have:

El = κ̃

8π
δA (16)

Where,

κ̃ = κ

‖ξα‖ (17)

It is important to note that from the perspective of the observer, the amount of energy
absorbed by the black hole is given by El , which must be equal to the increase of BH
energy. For an observer who follows the integral curves of the Killing vector field of
the spacetime, the form of Eq. (8) is simplified to,

δE = κ̃

8π
δA (18)

2.2 Quasilocalness

It is crucial to note that thus far, we have not imposed any restrictions on our stationary
observer. As long as they follow the integral curves of the Killing vector fields of the
stationary black hole, Eq. (18) remains well-defined. It is important to emphasize that
κ̃ is no longer the surface gravity; rather, it represents the ratio of the surface gravity
to the norm of the Killing vector field. At this point, an essential question arises: can
we consider expression (18) as the first law? To address this question in this section,
we impose a restriction on our observers, namely that their distance d from the black
hole is very small, satisfying d2 << A.

By performing a straightforward calculation (for explicit calculations, please refer
to the next section), using the Kerr-Newman spacetime, it can be shown that:

κ̃ ≈ 1

d
(19)

If we incorporate this expression of κ̃ into Eq. (18) then,

δE = 1

8πd
δA (20)

This expression can be interpreted as the quasilocal representation of the first law. The
term κ̃ is referred to as the quasilocal surface gravity, which remains independent of
the mass, charge, and angular momentum of the black hole. This quasilocal first law
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establishes a unique relationship between the variation in energy and the black hole
area for any stationary spacetime. It is noteworthy that the quasilocal version of the
first law is universal, meaning it does not depend on whether the black hole is charged
or neutral, rotating or static.

2.3 Local temperature

In this section, we will attempt to reinforce our argument that Eq. (18) is indeed a valid
equation of the local first law of black hole thermodynamics. To support our assertion,
we must demonstrate that κ̃

2π is equivalent to the local temperature. To begin, we will
define the local temperature using the methodology introduced by Frodden, Ghosh,
and Perez [9]. Subsequently, we will express the Hawking flux in terms of this newly
defined local temperature.

The local frequency ωloc of a particle with a wave four-vector kα , as measured by
observer P , can be expressed as:

ωloc = kαγ α = kαtα + �hkαφα

‖ξα‖ (21)

Where γ α represents the four-velocity of observers, as given by Eq. (5). Consider-
ing that the metric and electromagnetic fields are both time-independent and axially
symmetric, it implies that ξα , the Killing vector, Lie drags both the metric and elec-
tromagnetic field. As a consequence, two constants of motion arise:

ω = kαt
α + eAαt

α

j = kαφα + eAαφα (22)

Here,ω and j represent the frequency and angular momentum of the particlemeasured
at asymptotic infinity. By substituting the expressions of ω, j and Eq. (14), we can
rewrite ωloc as follows:

ωloc = ω − �h j − e�

‖ξα‖ (23)

In contrast to the conventional Hawking calculation, the presence of rotation and
charge in the Kerr–Newmann black hole leads to a shift in the frequency(ω) within
the expression of Hawking flux, resulting in (ω − �h j − e�) [1]. Then one gets the
number of particles emitted in the form,

< N >= 

e2πκ−1(ω−�h j−e�) − 1
(24)

Coefficient  is called the grey body factor.
By utilizing Eq. (23) the previous expression can be rewritten in terms of local

frequency as follows,
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< N >= 

e
2π‖ξα‖

κ
ωloc − 1

(25)

Which effectively captures the Planckian spectrum. With the help of Eq. (17) we can
express it as follows,

< Nloc >= loc

e
2π
κ̃

ωloc − 1
(26)

This equation suggests that local observers perceive the aforementioned spectrum,
and κ̃/2π can be understood as the local temperature. The local temperature exhibits
similarities with the black hole temperature associated with its Killing horizon, and it
is scaled by a redshift factor, denoted as ‖ξα‖. Here we have assumed that the nature
of the thermal spectrum will preserve its global structure.

3 Extension from quasilocal to finite observer

In the previous section, we derived the universal form of the first law for quasilocal
observers under the assumption that the distance d is very small. Now, we want to
explore the possibility of observers staying at a finite distance from the black hole. As
wementioned earlier, the derivation of Eq. (18) is independent of any specific choice of
observer position. Furthermore, we have observed that the quasilocal surface gravity
is inversely proportional to the distance d (as shown in Eq. 20). Now, the question
arises: can Eq. (19) be expressed in terms of a constant parameter for a finite distant
observer? In this section, we will extend our investigation to address this question
explicitly, focusing on the Reissner–Nordstrom, Kerr, and BTZ black holes.

3.1 Reissner–Nordstrom BH

In the in-going Eddington–Finkelstein coordinates, the Reissner–Nordstrom (RN)
solution is expressed as follows:

ds2 = − f (r)dv2 + 2dvdr + r2d�2 (27)

Where f (r) =
(
1 − 2M

r + Q2

r2

)
. This function has zeros at r = r±, where r = r+ =

M + √
M2 − Q2 and r = r− = M − √

M2 − Q2 are referred to as the outer and
inner horizons, respectively.

The Killing vector field of this spacetime is ξα = ∂α
v . Our observers P follow the

integral curves of ξα . The norm of ξα is

‖ξ‖ = √
f (r) =

√
(r − r+)(r − r−)

r2
(28)
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The surface gravity of this spacetime is given by,

κ = r+ − r−
2r2+

(29)

Now, we aim to measure the proper distance d from the black hole to the observer
along a curve C that is normal to both the event horizon and the orbits of the observers.
Let us consider the tangent vector field to C as K α = m(r)∂α

v + n(r)∂α
r , where m(r)

and n(r) are two arbitrary functions of r . It is important to note that as C is normal
to the horizon, K α does not have any θ or φ components (the horizon is foliated by
topological two spheres). Furthermore, K α is also normal to ξα , i.e., K αξα = 0. This
condition provides a relationship between m and n, specifically n(r) = f (r)m(r),
where f (r) is the function defined earlier. By using this relation, the tangent vector
field to C can be expressed as K α = m(r)[∂α

v + f (r)∂α
r ]. The value of m(r) can be

determined by the normalization condition, i.e., K αKα = 1. This givesm(r) = 1√
f (r)

.

Finally, the tangent vector field to the curve C can be written as:

K α = 1√
f (r)

(∂α
v + f (r)∂α

r ) (30)

Once we have defined our curve, it becomes straightforward to determine the proper
distance from the black hole to the observer along the curve C. This proper distance
is given by:

d =
∫ r

r+

√
gαβK αK βdλ (31)

Where λ is the parameter along the curve. Using the relation Kr = dr
dλ

= 1√
f (r)

, we
can rewrite the above equation as follows,

d =
∫ r

r+

√
gαβK αK β

dr ′
√

f (r ′)

= 1

2
(r+ + r−) ln (2r − r+ − r− + 2

√
(r − r+)(r − r−))

+ √
(r − r+)(r − r−) − 1

2
(r+ + r−) ln (r+ − r−)

(32)

Our goal is to express ‖ξ‖ in terms of d. To achieve this, we need to solve equa-
tion (32) for r and substitute r into Eq. (28). However, solving these complicated
nonlinear equations analytically can be challenging. Therefore, without loss of gen-
erality, we can make an approximation that when the observer is at a large distance,√
r − r+ ≈ √

r − r−. We only employ this approximation to simplify the square root
within the logarithmic term. By using this approximation, the expression for d can be
reformulated as:
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d = (r+ + r−)

2
(ln (4r − 3r+ − r−) − ln (r+ − r−)) + (r − r+) (33)

We observe that Eq. (33) is a transcendental equation that can be solved using the
LambertW(W) function [10]. Substituting the solution of Eq. (33) into Eq. (32), we
obtain the relation for r in terms of d as follows:

r(d) = (r+ + r−)

2
W

⎛
⎝e

2(r++r−) ln (r+−r−)+r+−r−+4d
2(r++r−)

2(r+ + r−)

⎞
⎠

+1

4
(3r+ + r−)

(34)

By substituting the value of r obtained from Eq. (34), and utilizing the aforementioned
approximation, Eq. (28) can be expressed as follows:

‖ξ‖ = 1−
r+

(r++r−)
2 W

(
e
2(r++r−) ln (r+−r−)+r+−r−+4d

2(r++r−)

2(r++r−)

)
+ 1

4 (3r+ + r−)

(35)

By utilizing Eqs. (18), (29), and (35), we can express the first law for a Reissner–
Nordstrom black hole in terms of energy, area, and the proper distance from the black
hole to the observer as follows:

δE = r+ − r−
16πr2+

×
δA⎛

⎜⎜⎜⎝1 − r+

(r++r−)

2 W
⎛
⎝ e

2(r++r−) ln (r+−r−)+r+−r−+4d
2(r++r−)

2(r++r−)

⎞
⎠+ 1

4 (3r++r−)

⎞
⎟⎟⎟⎠

= ζRN (d)

8π
δA

(36)

Where, ζRN (d) = r+−r−

2r2+

⎛
⎜⎜⎜⎜⎜⎜⎝
1− r+

(r++r−)
2 W

⎛
⎜⎜⎝ e

2(r++r−) ln (r+−r−)+r+−r−+4d
2(r++r−)

2(r++r−)

⎞
⎟⎟⎠+ 1

4 (3r++r−)

⎞
⎟⎟⎟⎟⎟⎟⎠

is a

function of proper distance d.
Equation (36) presents a straightforward first law of black hole mechanics for the

Reissner–Nordstrom spacetime. It reveals a clear relationship between the change in
the black hole’s energy and its area. This relationship highlights the dependence on the
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Fig. 1 Here, we have plotted the local temperature ratio Tloc
TH

as a function of the proper distance ratio d
r+

for the Reissner–Nordström (RN) black hole, where TH is the corresponding Hawking temperature. For
this plot, we have chosen the parameters M = 10000 and Q = 1, with G = c = kB = 1

observer through their proper distance from the black hole. In the quasilocal case, the
same principle holds true, and the proportionality factor between the change in energy
and the change in area is inversely proportional to the proper distance. However, in this
case, the proportionality factor is expressed through a more complex function of d.

As discussed in Sect. 2.3, we observed that the Hawking spectrum maintains its
form (equn 26) with a locally defined grey body factor and local energy. This allows
us to introduce the concept of a local temperature. So In a Reissner–Nordström (RN)
spacetime, if an observer is situated at a finite distance away from the black hole, they
will perceive the temperature as

Tloc = κ̃

2π
= ζRN (d)

2π
(37)

we can observe that the local temperature is solely dependent on the proper distance
between the observer and the black hole. In other words, the temperature experienced
by the observer is determined by how far they are from the black hole, without any
additional factors influencing it.

We have plotted Tloc as a function of proper distance (Fig. 1). From the plot, it is evi-
dent that as the proper distance increases, the local temperature gradually approaches
and merges with the Hawking temperature.
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3.2 Kerr BH

In this section, we will study the case of a rotating black hole. The Kerr metric in
standard Boyer–Lindquist coordinates is given by [11]

ds2 = −
(
1 − 2Mr

ρ2

)
dt2 − 4Mar sin2 θ

ρ2 dtdφ + �
ρ2 sin

2 θdφ2 + ρ2

�
dr2 + ρ2dθ2

(38)

Where,

ρ2 = r2 + a2 cos2 θ

� = r2 − 2Mr + a2

� = (r2 + a2)2 − a2� sin2 θ

(39)

The spacetime exhibits a coordinate singularity at � = 0, which corresponds to the
horizon of the Kerr black hole. The equation � = (r − r+)(r − r−) = 0 determines
the locations of the two horizons, where r = r+ = M + √

M2 − a2 corresponds to
the outer horizon and r = r− = M − √

M2 − a2 corresponds to the inner horizon.
Due to the stationary and axisymmetric nature of the spacetime, it possesses two

Killing vector fields, one corresponding to time translation and the other to rotational
symmetry. The Observer, P follows the integral curves of the Killing vector field of
the spacetime, which is given by,

ξα = tα + �hφ
α (40)

Where �h = a
r2++a2

.The norm of the ξα vector field can be calculated as follows,

‖ξ‖ =
√
1 − 2Mr

ρ2 + �h

(
− �

ρ2 sin2 θ�h + 4Mar sin2 θ

ρ2

)
(41)

The surface gravity of a black hole can be calculated as follows,

κ = r+ − M

r2+ + a2
(42)

To calculate the proper distance d along the radial path C, we can integrate the norm
of the tangent vector Jα = ∂α

r over the path. The proper distance d can be expressed
as:

d =
∫ r

r+

√
gαβ Jα Jβdλ (43)
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By normalizing the vector field Jα , we can rewrite the above equation as follows:

d =
∫ r

r+

ρ√
�
dr ′ (44)

By fixing the surface at θ = π
2 and using the approximation

√
r − r+ ≈ √

r − r−,
the proper distance can be expressed as:

d = (r+ + r−)

2
(ln (4r − 3r+ − r−) − ln (r+ − r−)) + (r − r+) (45)

Using the expression for r in terms of d obtained earlier, we can rewrite equation (41)
in terms of d. Substituting this expression, as well as the value of κ from equation
(42), into equation (18), we can obtain the explicit form of the first law for the Kerr
metric for a finite distance observer.

The explicit form of the first law for the Kerr metric, taking into account a finite
distance observer, can be written as follows:

δE = ζK ERR(d)

8π
δA (46)

Where, ζK ERR = r+−M
r2++a2

× 1(√(
1− 2Mr(d)

ρ2
+�h

(
− �

ρ2
sin2 θ�h+ 4Mar(d) sin2 θ

ρ2

))) and from

equation (34), r(d) = (r++r−)
2 W

(
e
2(r++r−) ln (r+−r−)+r+−r−+4d

2(r++r−)

2(r++r−)

)
+ 1

4 (3r+ + r−).

Followed by Eq. (26), it is straightforward to see that the factor ζK ERR(d)/2π
essentially plays the role of the local temperature. Then, equation (46) can be recast
as δE = Tloc

δA
4 . This certainly establishes the fact that, from the perspective of a local

observer at a finite distance, equation (46) for Kerr BH can be interpreted as the first
law of black hole thermodynamics.

We have made a plot of the local temperature, Tloc, as a function of proper dis-
tance (Fig. 2). It is evident from the plot that for a massive Kerr black hole, the local
temperature approaches and closely aligns with the Hawking temperature at larger
distances.

Indeed, the similarity in the structure of the first law for different types of black
holes, such as the Kerr and Reissner–Nordström black holes, indicates a universal
framework for expressing the first law of black hole thermodynamics. This framework
allows us to establish a consistent relationship between changes in black hole energy,
and horizon area. This universal framework provides a powerful tool for studying black
hole dynamics and understanding the interplay between gravity, thermodynamics, and
the properties of spacetime.
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Fig. 2 Here, we have plotted the local temperature ratio Tloc
TH

as a function of the proper distance ratio d
r+

for the KERR black hole, where TH is the corresponding Hawking temperature. For this plot, we have
chosen the parameters M = 105 and a = 0.5, with G = c = kB = 1

3.3 BTZ BH

In this section, we will extend our previous study to the 2+1 dimensional BTZ black
hole. While the BTZ black hole may not have as much astrophysical significance as
its higher-dimensional counterparts, it has played a crucial role in theoretical physics
for several reasons. Firstly, the BTZ black hole is an important object in the context of
the AdS/CFT correspondence [12–14]. It serves as a simpler yet non-trivial example
of a black hole in Anti-de Sitter (AdS) space, allowing researchers to explore various
aspects of this correspondence and gain insights into the connection between gravity
and quantum field theories. Secondly, the BTZ black hole has been used as a valuable
tool in investigating the information paradox [15]. As a toy model, it provides a
simplified setting for studying information loss and the potential resolutions of the
paradox.Researchers have employedBTZblack holes in various scenarios and thought
experiments, shedding light on the fundamental nature of black hole evaporation and
information preservation. Lastly, the BTZ black hole offers a mathematical simplicity
that facilitates its analysis compared to higher-dimensional black holes described by
general relativity. This advantage allows for more tractable calculations and a deeper
understanding of black hole thermodynamics and geometric properties. Overall, the
BTZblack hole serves as an important theoretical laboratory for exploring fundamental
concepts in gravity, gauge theories, and the interplay between quantummechanics and
gravity.
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The metric of the 2 + 1 dimensional BTZ black hole [16, 17] is given by,

ds2 = −N 2dt2 + 1

N 2 dr
2 + r2(dφ + N φdt)2 (47)

Where N 2 =
(
−M + r2

�2
+ J 2

4r2

)
and N φ = − J

2r2
. The parameter � = 1

�2
, rep-

resents the cosmological constant. The spacetime given by (47) exhibits coordinate
singularities at r = r±, which corresponds to the horizon of the BTZ black hole,

r± =
√√√√M�2

2

(
1 ±

[
1 − J 2

M2�2

] 1
2
)

(48)

The Killing vector field to this spacetime which vanishes at the horizon, is given by

ξα = ∂α
t − N φ

h ∂α
φ (49)

Where N φ
h = − J

2r2+
. The norm of this Killing vector field is given by,

||ξα|| =
√

−N 2 + (N φ)2r2 + (N φ
h )2r2 + 2NN φ

h r
2 (50)

The surface gravity for this BH is given by,

κ = r2+ − r2−
�2r+

(51)

Now we can calculate the proper distance(d) between the observer and the BH along
a curve whose tangent vector field is ∂α

r . Then,

d =
∫ r

r+

1√
N 2

dr ′

=
∫ r

r+

r ′�√
(r ′2 − r2+)(r ′2 − r2−)

dr ′

= � log

[
1 +

√
r2 − r2+
r2 − r2−

]
(52)

By rearranging this equation, we can solve for r and express it in terms of the proper
distance and the horizon radius. Subsequently, we obtain:

r =
√√√√r2+ − (e

d
� − 1)2r2−

1 − (e
d
� − 1)2

(53)
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The result is elegant, straightforward, and practical. Unlike before, we do not rely on
any approximations to express ‘r ’ as a function of the proper distance, and we also
avoid the use of complex functions such as Lambert W. This simplification allows us
to easily express equation (50) as a function of d, ensuring that the proportionality
factor in Eq. (16) is solely dependent on the proper distance. Consequently, we can
express equation (18) as follows:

δE = ζBT Z (d)

8π
δA (54)

Where ζBT Z (d) = κ
||ξα || , and ||ξα|| is a function of of d.

Here, Tloc = ζBT Z (d)
2π represents the local temperature observed by a nearby observer

at a finite distance from the BTZ black hole.

4 Discussion

In this paper, we made a thorough examination of the quasilocal first law. This law
states that, for an observer close to a black hole horizon, the first law of black hole
mechanics reduces to a form which involves variation of energy and area only. More
precisely, the changes in the black hole’s energy ormass are determined by the variation
of its area of the horizon times a local temperature, regardless of the other charges,
such as angular momentum, electric charge, etc. that the black hole might possess.

We have investigated some implications of this law for an observer located at a finite
proper distance from the black hole horizon. Our analysis is based on the specific cases
of Reissner–Nordström (RN), Kerr, and BTZ black holes. Our findings demonstrate
that the change in the black hole’s energy is directly proportional to the variation of
its area times a local temperature which solely depends on the proper distance from
the black hole’s event horizon.

To strengthen the claim of the local first law of black hole thermodynamics, we ini-
tially provide a brief discussion of the local temperature and subsequently demonstrate
how the first law arises for each black hole of our study along with the corresponding
local temperatures.

A careful observation of the local version of the black hole’s first law reveals that
it involves quantities that are defined on the horizon (area) and at the location of the
observer (energy and temperature).

We have two different coordinate systems, the Eddington–Finkelstein coordinate
system for RN black hole and the Boyer–Lindquist coordinate system for Kerr black
hole, in order to demonstrate that our result is not a coordinate artifact.

Moreover, the local first law demonstrates how the original first law of black hole
mechanics scales with observer’s location. More specifically, we get a law of scaling
such that the relation βH E = βlocal El remains scale invariant. Upon examining the
local energy, it is evident that other hairs, such as charge, angular momentum, etc., get
absorbed into local energy Elocal, resulting in a simplified first lawwhile preserving the
spectral distribution structure which exhibits a Planckian behavior. To our knowledge,
this scaling behaviour of the first law of black hole has not been pointed out in any
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earlier literature and is a new result.We plan to study this scaling property in our future
work.

Data availability This manuscript does not utilize any experimental data. The conclusions and findings
presented herein are based entirely on theoretical frameworks, analyses, and existing literature. As such,
no specific datasets were employed or generated during the course of this study.
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