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Abstract
Recently, reinvestigating Rastall idea T ν

μ;ν � a,μ through relativistic thermodynam-
ics proposed new non-conservation theory of gravity in which scalar parameter a,μ
depends on 4-vector entropy Sμ, comoving temperature T0 and density of charge of
whole the system (Fazlollahi in Eur Phys J C 83:923, 2023). Considering this model
deeply shows unlike other modified theories of gravity it cannot explain current phase
of the Universe in absence of the cosmological constant and or other dark energy mod-
els. Hence, in this paper, by implementing the Granda–Oliveros infrared cut-off the
late time evolution of the Universe is studied. As shown, for non-interaction scenario
model yields same results given by Granda–Oliveros holographic dark energy in stan-
dard Einstein field equations. As result, the non-conservation term gives no tangible
effects in this scenario. However, in interaction scenario one finds tangible effects of
non-conservation term in evolution of dark energy which supports observations with
some small errors in structure formation during matter dominated-era.

Keywords Non-conserved gravity · Covariant form of thermodynamics ·
Holographic dark energy
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1 Introduction

Independent and huge number of cosmological observations confirm that the current
Universe undergoes acceleration expansion [1–4]. This epoch of the Universe is the
one of the mysterious puzzles in modern cosmology. Nowadays, there is a general
consensus among cosmologists about of the existence extra and unknown field so-
called dark energy, which onsets trigger of current era. Exploring general relativity
reveals that such field carries negative pressure, i.e., p < 0 [5]. There is the wide
spectrum of models proposed to handle the dark energy. The cosmological constant is
one of pioneer models which satisfies observations [6]. However, this model suffers
from coincidence and fine-tuning problems [7]. Former problem traces back to current
values of the densities of dark energy andmatter inwhich they are in sameorder ofmag-
nitude, ρX/ρm ∼ O(1). This indicates we are in a special period of the cosmic history
that requires very special initial conditions in the early Universe. the corresponding
‘why now’ question constitutes the cosmological ‘coincidence problem’ while the last
problem is turning back to duality between magnitude of the cosmological constant
according to observations and zero-energy level of spacetime. Quantum mechanical
calculations reveals that the sum of the all vacuum modes below an ultraviolet cutoff
at the Planck scale given value of the vacuum energy density ρ� ∼ 10112 erg/cm3.
This exceeds the cosmologically observed value of ρ� ∼ 10−8 erg/cm3 by about 120
orders of magnitude.

To alleviates these problems, there is a dozen different approaches are suggested.
Using modified theories of gravity is one of these approaches in which the standard
Einstein-Hilbert action gets more terms built by Riemann tensor and its derivatives
[8–12], mixing matter and geometry as linear and or non-linear methods [13, 14] and
or introducing non-Einsteinian matter field [15, 16].

In another approach, there is a hypothesis known as the holographic principle
[17], which plays key role in quantum gravity and inspired by the investigation of
thermodynamics of black hole [18]. According to this principle all of the information
contained in a volume of space can be given as a hologram, which corresponds to a
theory locating on the boundary of that space. Thus, and in following of this principle
the short distance cut-off is related to a long-distance cut-off through l3ρ0 ≤ �m2

P when
ρ0 denotes the quantum zero-point energy density [19]. Hence, the largest (infrared
cut-off) length allowed one to have:

ρ0 � 3m2
Pc

2�−2. (1)

where c presents an arbitrary constant, and mP is the reduced Planck mass. This
holographic model has been widely used in cosmology, especially for description of
dark energy field and it is commonly known as holographic dark energy [20]. This
version of dark energy is well-fixed with observations. However, selecting valuable
cut-off length � is one challenges in thismodel of dark energy. For instance, as proposed
in [21, 22], one may scale cut-off length with Hubble parameter, i.e., � ∼ H−1. As
result, the fine-tuning problem is alleviated by scaling the density of dark energy using
the cosmological scale rather than the Planck length. However, such selection for cut-
off length shows that dark energy evolves like pressureless matter during expansion
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of the Universe, ωX � 0 and thus it cannot illustrate late time acceleration epoch
[23]. In another possible model, the infrared cut-off length may be scaled by future
event horizon which describes the thermal history of the Universe, with the sequence
of matter and dark energy eras [24]. Furthermore, it is shown that this model predicts
the observed current acceleration of the Universe. However, this kind of cut-off length
displays the causality problem [25]. In another attempt, Granda and Oliveros have
proposed other form of cut-off � in which in addition to the square of the Hubble
parameter, it also includes the time derivative of the Hubble parameter, namely [26]

� �
(
αH2 + β Ḣ

)−1/2
. (2)

in which α and β are two free parameters of model. This cut-off succeeds to avoid the
causality problem and also explain current Universe expansion. Recently, authors
through considering the length of particle horizon and its second time derivative
derived this cut-off, theoretically [27]. Moreover, such infrared cut-off can unify pri-
mary (inflation) and late time acceleration phases as single field [28].

In this paper and in following expanding applications of new modified theory of
gravity so-called ‘non-conserved theory’, it is worthwhile to analyze this version of
holographic dark energy in cosmology context.

The article is organized as follows: In Sect. 2 we revisited the non-conserved theory
of gravity, briefly. Section 3 is allocated to investigate Granda–Oliveros cut-off length
(2) and its application in evolution of the late time Universe for non-interaction and
interaction scenarios. The remarks given in Sect. 4.

2 Revisite non-conserved theory

The transformation of heat and temperature in relativity theory under the Lorentz
group is one of the unsolved issues and opening topics in this theory. For instance,
Einstein and Planck proposed [29, 30]

δQ � δQ0γ
−1, T � T0γ

−1, (3)

while Ott and Arzelies proposed other transformation form [31, 32]

δQ � δQ0γ , T � T0γ . (4)

where δQ and T denote heat and temperature, respectively, the variableswith subscript
0 represent those observed in the comoving frame, and γ is the Lorentz factor. In
addition to these options, Landsberg suggested that heat and temperature behave as
absolute parameters and thus comoving and independent observers measure same
heat and temperature [33, 34]. However, just two first options (3) and (4) can satisfy
a relativistic Carnot cycle [35]. The covariant form of relativity theory, in particular,
may be essential to formulate relativistic laws of thermodynamics. In this context, one
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of the pioneer attempts given by Israel and collaborators [36]:

∑
i

Sμ
i ,μ � −

∑
i

⎛
⎝∑

j

α j i J
μ
j i ,μ + βνiT μν

i ,μ

⎞
⎠ (5)

where number of 4-vector Jμ
j i � n ji uμ, representing the flux densities of conserved

charges j for component i-th and Sμ
i expresses the 4-flux of entropy of fluid i-th.

βν � uν/T0 presents the inverse temperature 4-vector proposed by Van Kampen [37],
and α j � ζ j/T0. The parameter ζ j denotes the relativistic injection energy or chemical
potential per particle of type j , related to its classical counterpart by:

ζ j � m j + ζ
(classic)
j . (6)

It is to be noted that the 4-vector Sμ for the flux of entropy behaves in similar
way to the 4-vector for the flux of particle number. So, like the particle number that
is scalar for comoving observer, it is shown that entropy in its comoving frame is a
scalar as well [38]. As result, this model is not in conflict with standard expression of
thermodynamical expression only when it is considered in comoving frame. Relation
(5) shows that not only Rastall’s idea is true in curved spacetime, but is valid even in
Minkowskian geometry when flux of energy–momentum tensor given as evolution in
entropy and temperature of whole system.

To expand this model to curved geometry, one just need to apply principle of the
general relativity [39],

∑
i

Sμ
i ;μ � −

∑
i

⎛
⎝∑

j

α j i J
μ
j i ;μ + βνiT μν

i ;μ

⎞
⎠ (7)

in which usual (scalar) derivative replaced by covariant derivative. Hence, after some
manipulations, the field equations derived such as

Gμν − κ ′ ∑
i

uνi

⎛
⎝T0Sμi +

∑
j

ζ ji J jμi

⎞
⎠ � κ ′ ∑

i

Tμνi (8)

where κ ′ is proportional constant. Taking covariant derivative of above field equations
and using Gμν;μ � 0 recasts Eqs. (8) to (7). Defining non-conserved term for each
component participated in our system as

Eμν � uν

⎛
⎝T0Sμ +

∑
j

ζ j J jμ

⎞
⎠ (9)
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let one to have compact form for field Eqs. (8), namely

Gμν − κ ′ ∑
i

Eμνi � κ ′ ∑
i

Tμνi (10)

which shows each fluid (component) plays explicit role in field equations. Summation
on all different components participated in system (summation on index i), yields,

Gμν − κ ′E [e]
μν � κ ′T [e]

μν . (11)

where we denote the effective terms E [e]
μν and T [e]

μν through

∑
i

Xμνi � X [e]
μν (12)

when X � E and or T . Since this field equations must shrink to standard Einstein field
equations when non-conserved term ignored, without lose generality one can assume
κ ′ � κ [39].

In the follows we assume that the Universe is homogenous and isotropic medium
and describe by Friedmann–Robertson–Walker metric

ds2 � −dt2 + a2
(

dr2

1 − kr2
+ r2dθ2 + r2sin2θdφ2

)
. (13)

where a � a(t) is the cosmic scale factor and k � 0, 1 and − 1 correspond to flat,
close, and open Universe, respectively. Observations confirm that the Universe is flat
and thus we assume k � 0. With aid of this assumption and using field Eqs. (13), the
Friedmann equations become

3H2 � κ
(
ρm + E [e]

t t + ρX

)
, (14)

2Ḣ + 3H2 � −κpX . (15)

in which we consider matter as dust field and subscripts m and X denotes matter and
dark energy fields, respectively.

With these Friedmann equations at hand, we will consider late-time Universe for
non-interaction and interaction scenarios in next two sections while dark energy den-
sity given Eq. (2),

ρX � αH2 + β Ḣ , (16)

At the end of this section, we encourage interested readers to see main paper of
non-conserved theory of gravity to review and check the effects of the cosmological
constant and also evolution of the Universe in inflation era [39].
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3 Late time cosmology

In this section we will consider Friedmann Eqs. (14) and (15) for dark energy density
given by Eq. (16) for two non-interaction and interaction scenarios.

Plugging Eq. (16) into first Friedmann Eq. (14) yields

3H2 � κ

(
ρm + E [e]

t t + αH2 +
β

2

dH2

dx

)
, (17)

where we use e-folding number x � ln(a).
To solve this differential equation to find explicit form of Hubble parameter one

should have exact form of non-conservation term E [e]
t t . Hence, considering Eq. (9)

reveals that it includes two parts, T0St and all interactions among particles. Keeping
the second law of thermodynamics shows that T0St must grow up with time, and thus
it can be given by eγ x in which γ > 0, while due to relation (6), the second part is
proportional to density of matter field, namely

∑
j

ζ j J j t ∝ ρm (18)

Consequently, and with these assumptions for expanding Universe, wemay suggest
that

E [e]
t t � E0eγ x . (19)

where E0 is proportional constant. This selection illustrates that non-conserved term
is depending on evolution of first part of Eq. (9) rather than its second one in late
time expansion; interaction among different particles is not tangible effects in current
Universe.

Consequently, using Eqs. (19) into (17), one obtains

(20)

H2 � κρm0

3
e−3x +

κE0
3

eγ x − ρm0 (3α − 2β) κ2

18 + κ (9α − 6β)
e−3x

+
E0 (αγ + 2β) κ2

18 − κ (3αγ + 6β)
eγ x + c0e

− 2(βκ−3)
ακ

x .

where c0 is the integration constant. Comparing Eq. (20) with Eq. (14) suggests the
density of dark energy as

ρX � −ρm0κ(3α − 2β)

6 + κ(3α − 2β)
e−3x +

E0κ(αγ + 2β)

6 − κ(αγ + 2β)
eγ x +

3c0
κ

e− 2(βκ−3)
ακ

x . (21)

It shows density of dark energy includes three parts: first part is function of matter
evolution while second part is depending on non-conservation term and third part can
be proposed as the interior interaction between matter and non-conservation term.
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Calculating continuity equation from Eqs. (14) and (15) can help us to find cor-
responding pressure for density (21). In this case, taking derivative with respect to
e-folding number from first Friedmann Eq. (14) and plugging its result into Eq. (15)
gives continuity equation as follows:

ρ′
m + E [e]′

t t + ρ′
X + 3

(
ρm + E [e]

t t + ρX + pX
)

� 0, (22)

where prime denotes derivative with respect to x .
To reconstruct standard density of matter, one may decouple above equation like

ρ′
m + 3ρm � Q, (23)

E [e]′
t t + ρ′

X + 3
(
E [e]
t t + ρX + pX

)
� −Q. (24)

where Q represents the mutual interaction between dark energy and matter field. With
some computations, one finds:

pX � −1

3

(
Q + E [e]′

t t + ρ′
X

)
− E [e]

t t + ρX . (25)

As shown, pressure of dark energy depends on interaction term Q. In this level of
our study, it is worthwhile to explore model in two different scenarios, non-interaction
and interaction models in two following subsections.

3.1 Non-interactionmodel

In the lack of enoughmicroscopic evidences around interaction term, one may attempt
to consider field Eqs. (14) and (15) when Q � 0, non-interaction model. Hence, when
density (21) is used, the pressure of dark energy given by

pX � −c0(6 + κ(3α − 2β))

ακ2 e− 2(βκ−3)
ακ

x − 2E0(3 + γ )

6 − κ(αγ + 2β)
eγ x . (26)

while using Eq. (23) yields ρm � ρm0e−3x .
In cosmology context, there are three essential parameters play key roles at late-

time. One of these parameters is the dimensionless one calculating through dividing
pressure of dark energy by its corresponded density, i.e., ωX � pX/ρX . This param-
eter so-called ‘equation of state’ illustrates general behavior of dark energy during
expansion of the Universe,

ωX � − c0(6+κ(3α−2β))

ακ2
e− 2(βκ−3)

ακ
x − 2E0(3+γ )

6−κ(αγ+2β)
eγ x

−ρm0κ(3α−2β)
6+κ(3α−2β)

e−3x + E0κ(αγ+2β)
6−κ(αγ+2β)

eγ x + 3c0
κ
e− 2(βκ−3)

ακ
x
. (27)
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Recent observations reveals that this parameter for current time, x � 0, is around
ωX0 ≈ −1 [40]. Moreover, defining fractional density

�m � κρm

3H2 , (28)

and Eq. (27) let us to constraint our model with current values. Hence, with aid of
Eq. (17), we find out

β � E0(ακ − 2)

2H2
0

+
3(2 + �m0(ακ − 2))

2κ
, (29)

c1 � ακH2
0 �

��
, (30)

where we define

(31)

� � αE2
0κ3 − E0κ2

(
αH2

0 (3 − γ − 6�m0) + 2E0
)

+ κH2
0

(
3 (�m0 − 1) (γ + 3�m0) H

2
0 − 2E0 (γ + 6�m0)

)

− 18�m0H
4
0 (�m0 − 1) ,

� � αE0κ2 +
(
α(γ + 3�m0)H

2
0 − 2E0

)
κ − 6�m0H

2
0 , (32)

� � αE0κ2 + (3α(�m0 − 1)H2
0 − 2E0)κ − 6�m0H

2
0 , (33)

In Fig. 1 the evolution of equation of state ωX versus redshift z for H0 � 67.4,
�m0 � 0.315, E0 � γ � 1 and different values of α is plotted. As shown dark energy
for non-interaction scenario behaves like dust matter in past Universe, coincides with
the cosmological constant at present, z � 0, and evolves like phantom field in future
Universe. Comparing this model with standard Granda–Oliveros dark energy shows
that the non-interaction term gives no tangible effects on the general behavior of dark
energy for non-interaction scenario (see and compare this study results with Refs. [26,
27]). Hence, the non-conservation term does not play role in non-interaction scenario.

The second parameter is debugged ‘deceleration parameter’ and defied as follows:

q � −1 − 1

2H2

dH2

dx
. (34)

which measures the cosmic acceleration rate of expanded Universe. This parameter
is plotted in Fig. 2 with same sets of free parameters. Since q → 0.5 for z 	 0,
there is no deviations in matter structure formation during matter-dominated era in
our model. Moreover, the model shows acceleration era for these sets of constants
onsets at zT ≈ 0.5 − 0.6 which is not in conflict with joint analysis of SNe + CMB
data and the �CDM theory, zT � 0.52 − 0.73 [41].
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Fig. 1 The equation of state of dark energy as function of redshift for E0 � γ � 1 and α � 0.075 (solid
curve), 0.07 (dashed curve), 0.065 (dash-dotted curve) and 0.06 (dotted curve). We set H0 � 67.4 and
�m0 � 0.315

As the third parameter, one may attempt to consider stability of model, classically.
In this case, the speed of sound squared

ν2c � dpX
dρX

� ∂pX
∂x

(
∂ρX

∂x

)−1

. (35)

should be positive. As discussed in Refs. [42, 43], the stability of the system involving
entropic quantities could affect the effective speed of sound squared. However, con-
sidering density (21) and pressure (26) reveals that both of these parameters are linear
function of entropic term when one finds, namely

ρX � ρg−o + ρen

pX � pg−o + pen

here subscript g − o and en denote Granda–Oliveros and entropy (non-interaction)
parts, respectively. Therefor pX � ωXρX implies that δpX � ωXδρX [43]. Also, this
linearity shows that due to entropy (non-conservation term) there is no deviation from
Eq. (35) in investigating the speed of sound squared and thus Eq. (35) is valid for our
model.

Plotting evolution of speed of sound square is given in Fig. 3. As shown dark energy
is the stable fluid in our model.

Till now, we have studied non-interaction scenario of Granda–Oliveros dark energy
in non-conserved theory of gravity. As discussed, due to effects of non-conservation
term on evolution of dark energy, it behaves as dust matter in past Universe and thus
there is no more matter regime during matter-dominated era. Consequently, we have
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Fig. 2 Deceleration parameter for non-interaction scenario when H0 � 67.4, �m0 � 0.315, E0 � γ � 1
and α � 0.075 (solid curve), 0.07 (dashed curve), 0.065 (dash-dotted curve) and 0.06 (dotted curve)

Fig. 3 The speed of sound square versus redshift for non-interaction scenario when E0 � γ � 1 and
α � 0.075 (solid curve), 0.07 (dashed curve), 0.065 (dash-dotted curve) and 0.06 (dotted curve). We set
H0 � 67.4 and �m0 � 0.315

no deviations in matter structure formation in our model. However, it is worthwhile
to explore interaction scenario to see effects of interaction term on this model.
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3.2 Interactionmodel

Among all plausible forms for interaction term, one may use Q � ζ
(
ρm + E [e]

t t

)
in

which ζ is an arbitrary constant. As result and by using Eqs. (19) and (23) the density
of matter given by (c1 is the integration constant)

ρm � c1e
(ζ−3)x +

ζE0
3 + γ − ζ

eγ x , (36)

With aid of this form of matter density and first Friedmann Eq. (17), the Hubble
parameter and thus density of dark energy in interaction scenario become (c2 is another
integration constant)

H2 � 2κc1ex(ζ−3)

6 + κ(α(3 − ζ ) − 2β)
− 2κE0(3 + γ )eγ x

(3 + γ − ζ )(κ(α(3 − ζ ) − 2β))
+ c2e

− 2(βκ−3)
κα

x ,

(37)

ρX � −κc1(α(3 − ζ ) − 2β)ex(ζ−3)

6 + κ(α(3 − ζ ) − 2β)
− κE0(αγ + 2β)eγ x

(3 + γ − ζ )(κ(αγ + 2β) − 6)
+
3c2
κ

e− 2(βκ−3)
κα

x .

(38)

where Eq. (16) is used.
Also using Eq. (24) and or Eq. (25) yields pressure pX as:

(39)

pX � − 2ζc1ex(ζ−3)

6 + κ (α (3 − ζ ) − 2β)
− 2E0 (3 + γ )2 eγ x

(3 + γ − ζ ) (κ (αγ + 2β) − 6)

− c2 (6 + κ (3α − 2β))

ακ2 e− 2(βκ−3)
κα

x ,

Thus, the equation of state for such model given by

ωX � − 2ζc1ex(ζ−3)

6+κ(α(3−ζ )−2β)
− 2E0(3+γ )2eγ x

(3+γ−ζ )(κ(αγ+2β)−6) − c2(6+κ(3α−2β))

ακ2
e− 2(βκ−3)

κα
x

− κc1(α(3−ζ )−2β)ex(ζ−3)

6+κ(α(3−ζ )−2β)
− κE0(αγ+2β)eγ x

(3+γ−ζ )(κ(αγ+2β)−6) +
3c2
κ
e− 2(βκ−3)

κα
x

. (40)

Constraining model by current values of parameters, one obtains

β � 3

κ
− (2 − ακ)(ρm0 + E0)

2H2
0

, (41)

c1 � ρm0 − ζE0
3 + γ − ζ

, (42)

c2 � αH2
0

(
ABα − 2H2

0 (ζC + E0γ − 3ρm0) − 2κC2
)

(Bα − 2C)(Aα − 2C)
, (43)
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when

A � γ H2
0 + κC, (44)

B � −(3 − ζ )H2
0 + κC, (45)

C � ρm0 + E0. (46)

are defined.
The equation of state (40), deceleration parameter (35) and the speed of sound

square (34) are plotted in Figs. 4, 5 and 6 when E0 � γ � 1. As shown model gives
quintessence dark energy field; it behaves like matter with positive pressure in matter-
dominated era, evolves like cosmological constant theory at present time and treats
as phantom fluid in near future. Using same values of α reveals that model is stable,
classically and acceleration phase onsets around zT ≈ 0.49 − 0.59, which is not in
conflict with observations. It should note that interaction parameter ζ must be negative
to have stable model.

In comparison with the standard Granda–Oliveros model when interaction Q �
ζρm is used (in the absence of non-conservation term), our theory yields valuable
model, supports observations while the standard Granda–Oliveros for different values
of α gives unstable model at present time and dark energy behaves like matter fluid
with the positive pressures for z 	 1. Futhremore, investigating the deceleration
parameter shows that acceleration era for best values of free parameter α onsets around
z ≈ 3.2–4.5 in interaction scenario of Granda–Oliveros theory which is in conflict
with observations (see Fig. 7) [41].

Fig. 4 Evolution of equation of state for interaction scenario as function of redshift z for ζ � −0.02 and
α � 0.075 (solid curve), 0.07 (dashed curve), 0.065 (dash-dotted curve) and 0.06 (dotted curve)
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Fig. 5 The diagram of deceleration parameter for interaction model when ζ � −0.02 and α � 0.075 (solid
curve), 0.07 (dashed curve), 0.065 (dash-dotted curve) and 0.06 (dotted curve)

Fig. 6 The speed of sound square for ζ � −0.02 and α � 0.075 (solid curve), 0.07 (dashed curve), 0.065
(dash-dotted curve) and 0.06 (dotted curve)

Although, ourmodel satisfies observations in interaction scenario, since dark energy
behaves as matter with positive pressure in past, there is more matter pressure in inter-
action scenario with respect to non-interaction one and or the cosmological constant
model during matter-dominated era. Hence, there is some deviations in matter struc-
ture formation (see for instance Ref. [27]). In this level of our consideration, it is
worthwhile to check whether this extra matter influences on matter formation or not.
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Fig. 7 The evolution of deceleration parameter (left panel) and equation of state of Granda–Oliveros Holo-
graphic dark energy in standard Einstein Field Equations (in absence of non-conservation effects) versus
redshift for ζ � −0.02 for different values of α

Fig. 8 Theυ2
c forGranda–OliverosHolographic dark energy in standardEinstein FieldEquations (in absence

of non-conservation effects) versus redshift for ζ � −0.02 for different values of α

Exploring Fig. 4 shows that dark energy for α � 0.075 gives most matter pressure
for z 	 1,

lim
z→∞ωX ≈ 0.202. (47)

while corresponded value for α < 0.075 is less than 0.08. As result, in follows we
just investigate matter formation for α � 0.075 (Fig. 8).
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In Fig. 9, we have compared the theoretical angular spectrum of the �CDM theory
with �CDM theory. In this context and in order to get more details, we calculated
CMB TT, EE and TE in Fig. 9. The largest errors are approximately 4% for CMB
TT, %10 for CMB EE and 30% for CMB TE when α � 0.075. In comparison with
Granda–Oliveros model studied in Ref. [27], our model alleviates these corresponded
errors that shows how non-conservation term alleviates these errors.1 It should be
noted to calculate CMB the effects of such dark energy (that behaves as the matter
with positive pressure) is added to matter field during matter-dominated era (see Ref.
[27] as instance).

The studying matter power spectrum also shows that extra regimes of matter pres-
sure due to dark energy evolution in high redshift gives no strong error; the largest
error occurs around K � 10−2 and is about 1% (Fig. 10).

4 Remarks

Understanding nature and origin of current acceleration phase is one of the opening
issues in modern cosmology. Among different approaches to investigate current time,
and following holographic principle, one may assume that energy density of dark
energy given by cut-off length, i.e., ρX ∼ �−2.

In this study, we apply Granda–Oliveros infrared cut-off length � �(
αH2 + β Ḣ

)−1/2
to investigate holographic dark energy in new modified theory of

gravity so-called ‘non-conserved theory’. To have better insight, we have explored
this holographic dark energy through two different scenarios (non-interaction and
interaction).

As first step we assume that dark energy and matter evolve independently (non-
interaction model). In this case and due to effects of non-conservation term the model
presents holographic dark energy which behaves as dust matter in high redshifts. Also,
such dark energy coincides with the cosmological constant and evolves like phantom
field in future. However, in this scenario non-conservation term does not play key role
and one finds general behavior found in Granda–Oliveros holographic dark energy in
standard field equations when non-conservation term is vanished.

As the second scenario we have investigatedmodel when dark energy interacts with
matter. In this context and as shown the non-conservation term shows its effects on
evolution of dark energy. the transition redshift zT and stability while in absence of
the non-conservation term there is some inconsistencies with observations in stability
of dark energy and zT (Figs. 7, 8).

1 To consider matter structure we used modified CAMB code [44].
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Fig. 9 The theoretical CMBTT (top panel), EE (middle panel) and TE (bottom panel) for our model (dashed
red curves) compared with the corresponding parameters in the �CDM theory (solid black curves) when
we set α � 0.075, E0 � γ � 1 and ζ � −0.02
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Fig. 10 Thematter power spectra for redshift z � 0 for our model (dashed red curve) compared with�CDM
theory (solid black curve) when we set α � 0.075
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