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Abstract
Within the context of Rastall gravity, we investigate the hydrostatic equilibrium and
dynamical stability against radial pulsations of compact stars, where a free parameter
β measures the deviations from General Relativity (GR). We derive both the modified
Tolman–Oppenheimer–Volkoff (TOV) equations and the Sturm–Liouville differen-
tial equation governing the adiabatic radial oscillations. Such equations are solved
numerically in order to obtain the compact-star properties for two realistic equations
of state (EoSs). For hadronic matter, the fundamental mode frequency ω0 becomes
unstable almost at the critical central energy density corresponding to the maximum
gravitational mass. However, for quark matter, where larger values of |β| are required
to observe appreciable changes in the mass-radius diagram, there exist stable stars
after the maximum-mass configuration for negative values of β. Using an indepen-
dent analysis, our results reveal that the emergence of a cusp can be used as a criterion
to indicate the onset of instability when the binding energy is plotted as a function of
the proper mass. Specifically, we find that the central-density value where the binding
energy is a minimum corresponds precisely to ω2

0 = 0.
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1 Introduction

Mota Although it is very common to consider the conservation of energy-momentum
tensor in gravity theories, it has been argued that such conservation could be violated in
quantum systems [1, 2]. See e.g. Ref. [3] for a review about alternative gravity theories
inwhich the null covariant divergence of the energy-momentum tensor is not achieved.
In particular, by assuming that the covariant divergence of the energy-momentum
tensor is no longer zero, but proportional to the covariant derivative of the Ricci scalar,
Rastall modified the GR theory fifty years ago [4]. This assumption describes the non-
minimal coupling between matter and geometry, and its cosmological consequences
have been previously studied in the literature [5–14]. Manna and collaborators [15]
investigated the classical tests (such as precession of perihelion, deflection of light and
time delay) in Rastall theory. Furthermore, at cosmological level, we must emphasize
that generalized versions for original Rastall gravity have also been explored [16–20].
The propagation of axial gravitational waves in the spatially flat conformal FLRW
spacetime within the framework of generalized Rastall theory was discussed by Salti
[21].

On the other hand, in the strong-field regime, various authors have reported black
hole solutions in Rastall gravity [22–25], as well as their thermodynamic properties
[26]. It was shown that Kiselev-like black holes surrounded by regularmatter in Rastall
theory may be considered as Kiselev black holes surrounded by exotic matter in GR
[27]. The quasinormal oscillations corresponding to the black hole in presence of non-
linear electrodynamic sources revealed significant deviations from a general charged
black hole in Rastall gravity under certain conditions [28]. More recently, Shao et al.
[29] investigated the quasinormal modes and late-time tail of massless scalar pertur-
bations of a magnetized black hole, while the Hawking radiation of a Schwarzschild
black hole surrounded by a cloud of strings in Rastall theory was discussed in Ref.
[30]. Moreover, by means of Newman-Janis algorithm without complexification, an
exact solution of Kerr black hole surrounded by a cloud of strings in Rastall gravity
was obtained in Ref. [31].

Over the last years, there has been a growing interest in constructing compact stars
within the context of Rastall gravity. As a matter of fact, the equilibrium structure
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of neutron stars described by an isotropic perfect fluid was examined in Refs. [32–
34], and the tidal Love numbers of such stars were calculated in [35]. Anisotropic
compact stars under the same gravitational framework were also investigated in the
past [36–39], as well as taking into account electric charge [40–42] and rapid rotation
effects [43]. In addition, the gravitational collapse process of a homogeneous perfect
fluid and the dynamics of dissipative collapse of a self-gravitating source (using the
Müller–Israel–Stewart approach) were explored in Refs. [44, 45], respectively. Exotic
objects as wormholes in Rastall theory were also studied in [46, 47].

Theoretically, the radial stability of a compact star can be investigated by con-
sidering small perturbations from the hydrostatic equilibrium. In Einstein gravity,
Chandrasekhar was the first to derive the linearized equations describing the adiabatic
radial oscillations of isotropic compact stars [48, 49]. Specifically, the system of differ-
ential equations is treated as an eigenvalue problem and, subsequently, the emergence
of real (complex) discrete frequencies is attributed to a radial stability (instability) of
the star. For further reading on radial oscillations of compact stars in GR we also refer
the reader to Refs. [50–61]. Additionally, this subject has also been addressed in some
modified theories of gravity, see e.g. Refs. [62–65]. To the best of our knowledge,
the dynamical stability of compact stars (adopting a perturbative approach to the field
equations) has not yet been investigated in Rastall gravity, so the purpose of the present
work is to fill this gap. To do so, we will first derive the modified TOV equations and
they will be solved for two EoSs describing quark matter and hadronic matter. Our
second task will be to perturb all equations involved up to first order in the metric and
fluid variables in order to obtain the radial pulsation equations.

Before continuing with our study, it is important to comment on some criticisms
about Rastall gravity, which have been raised in the paper [66]. Visser claimed that
Rastall gravity is a trivial rearrangement of the matter sector in Einstein gravity; as
gravity there is absolutely nothing new. This argument is not true for one simple
reason: In any modified gravity theory it is possible to rearrange the field equations
and rewrite them in a traditional form as the Einstein equations. For example, the field
equations in the well-known f (R) gravity theories [67, 68]

fR Rμν − 1

2
gμν f − ∇μ∇ν fR + gμν� fR = 8πT ord

μν (1)

can be written as Gμν = 8πT tot
μν , where the total energy-momentum tensor T tot

μν =
T ord

μν + T cur
μν is composed of two fluids indeed [69, 70]: a standard matter fluid (i.e.,

ordinary matter described by T ord
μν ) and a curvature fluid (also called in the literature

as effective fluid), being the latter described by [70]

T cur
μν = 1

8π

[
(1 − fR)Rμν + 1

2
( f − R)gμν + ∇μ∇ν fR − gμν� fR

]
. (2)

One can observe that equation Gμν = 8πT tot
μν does not mean that GR is equivalent

to f (R) gravity theory. In fact, such equivalence only exists when f (R) = R. If
we followed Visser’s argument, we would have that the f (R) theories contribute
absolutely nothing new by simply rearranging the field equations, however, as we
already know, that is false! Therefore, Rastall gravity is not equivalent to Einstein

123



43 Page 4 of 26 J. M. Z. Pretel, C. E. Mota

gravity. It is important to mention that in addition to this argument, there are other
issues showing that these two theories are not equivalent. As a matter of fact, Darabi
and collaborators [71] have obtained different conclusions fromVisser’s ones, and they
have indeed argued that Rastall gravity is an “open” theory when compared to GR.
Specifically, the authors have stated that the ordinary definition of energy-momentum
tensor is valid in the Rastall theory, unlike the claims of Visser [66].

Within the gravitational framework of GR, the M(ρc) method is often compatible
with the analysis of the normal vibration modes, namely, the maximum-mass value
on the M(ρc) curve and the zero fundamental mode frequency are found at the same
central energydensity.Nevertheless, thesemethods are not compatible inmore realistic
or general situations; such as in anisotropic stars [72] unless the tangential pressure
is held fixed at the surface of the star [73], color superconducting quark stars [54],
hybrid stars composedby aquarkmatter core andhadronic external layers [55], neutron
stars with a dark-energy core [74], charged strange quark stars [75], and polytropic
configurations in modified gravity [64]. As we will see later, the gravitational mass of
a star in Rastall gravity does not only depend on the energy density, but there is also
an extra mass contribution due to the Rastall term, also treated as “effective fluid” in
modified gravity. In that regard, the standardM(ρc)method is expected to be invalid in
the Rastall scenario. An indicator that could also establish the onset of instability is the
formation of a cusp when the gravitational binding energy (as a function of the baryon
rest mass) is a minimum. As a matter of fact, this analysis was carried out in scalar-
tensor theories of gravity [76, 77], 4D Einstein-Gauss-Bonnet gravity [78], f (R, T )

theories with conserved energy-momentum tensor [64], and within the context of R-
squared gravity [79]. In this study, we will therefore consider independent approaches
(i.e., by analyzing the binding energy and calculating the fundamental vibration mode
frequencies) in order to obtain rigorous results on the radial stability of compact stars
in Rastall gravity.

The plan of this work is as follows: In Sect. 2 we briefly review Rastall gravity,
we explicitly express the field equations for a spherically symmetric system, derive
the corresponding modified TOV equations, and we present the equations of state.
Considering small adiabatic perturbations from the equilibrium state, in Sect. 3 we
address the dynamical stability andwe derive the radial oscillation equations. Section 4
presents a discussion of the numerical results for the equilibrium configurations as
well as an analysis about the frequencies of normal vibration modes. Finally, our
conclusions are presented in Sect. 5. We will use a geometric unit system and the sign
convention (−,+,+,+) throughout the text. However, our results will be given in
physical units for comparison reasons.

2 Stellar structure equations

We suppose that spacetime geometry of a spherically symmetric stellar configuration
is described by the well-know line element

ds2 = gμνdx
μdxν = −e2ψdt2 + e2λdr2 + r2d	2, (3)
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where gμν is the metric tensor, xμ = (t, r , θ, φ) are the Schwarzschild-like coordi-
nates, and the metric functions ψ and λ, in principle, depend on the coordinates t and
r . Moreover, d	2 = dθ2 + sin2 θdφ2 is the line element on the unit 2-sphere.

With respect to the matter-energy distribution, we assume that the compact star is
made of an isotropic perfect fluid, namely

Tμν = (ρ + p)uμuν + pgμν, (4)

with ρ being the energy density, p the pressure, and uμ is the four-velocity of the fluid,
given by

uμ = dxμ

dτ
= u0

(
1,

dxi

dt

)
, (5)

where τ is the proper time and uμuμ = −1. Following the same procedure carried
out by Chandrasekhar [48, 49] in GR theory, we consider a spherically symmetric
system with motions, if any, only in the radial directions, so that uμ = (u0, u1, 0, 0)
and T 2

2 = T 3
3 = p.

Under the assumption that the energy-momentum tensor is not conserved in curved
spacetime, Rastall proposed a generalization of Einstein’s conventional theory [4].
Indeed, within the framework of Rastall gravity, the modified field equations are given
by

Rμν − α

2
gμνR = 8πTμν, (6)

or alternatively

Gμν = 8π

[
Tμν − 1 − α

16π
Rgμν

]
, (7)

where Rμν is theRicci tensor, R denotes the scalar curvature,Gμν is the Einstein tensor
and α is the so-called Rastall parameter. Notice that the curvature itself contribute to
the total energy of the system, as postulated by Rastall. As is evident, the standard GR
theory is retrieved when α = 1.

By taking the trace of Eq. (7), we get R = 8πT /(1 − 2α) and hence the field
equations can be written as

Gμν = 8πTμν − 8πβTgμν, (8)

where we have defined β ≡ 1−α
2(1−2α)

.
Maintaining the validity of the gravitational Bianchi identity (i.e., ∇μGμν = 0),

the four-divergence of Eq. (8) leads to

∇μT
μν = β∇νT = 1 − α

16π
∇νR. (9)
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Rastall questioned the traditional assumption that the covariant derivative of the
energy-momentum tensor is zero in curved spacetime [4]. As we can see in Eq. (9), he
considered that the four-divergence of the energy-momentum tensor is proportional
to the variation of the Ricci scalar. It is therefore evident that the energy-momentum
tensor is a non-conserved quantity. Nevertheless, the assumption ∇μTμν �= 0 opens
the possibility of a gravitationally induced particle production as shown by Harko and
collaborators [2, 80]. In fact, there exists a considerable number of modified grav-
ity theories allowing departures from the usual conservative context. For a review of
non-conservative gravity theories, we refer the reader to Ref. [3].

For the index ν = 1, the non-conservative equation ∇μT
μ
1 = β∇1T becomes

∂t T
0
1 + ∂r T

1
1 + T 0

1 (ψ̇ + λ̇) +
[
T 1
1 − T 0

0

]
ψ ′ + 2

r

[
T 1
1 − p

]
= β∂r (−ρ + 3p),

(10)

where overdots and primes denote partial differentiationwith respect to t and r , respec-
tively. If β = 0, the conservation law of energy and momentum is restored and Rastall
gravity falls back to Einstein’s theory.

Furthermore, the non-null components of the field equations (8) are given by

1

r2
∂r (re

−2λ) − 1

r2
= 8πT 0

0 + 8πβ(ρ − 3p), (11)

e−2λ
(
2

r
ψ ′ + 1

r2

)
− 1

r2
= 8πT 1

1 + 8πβ(ρ − 3p), (12)

e−2λ
[
ψ ′′ + ψ ′2 − ψ ′λ′ + 1

r
(ψ ′ − λ′)

]

+ e−2ψ
[
λ̇ψ̇ − λ̈ − λ̇2

]
= 8π p + 8πβ(ρ − 3p), (13)

2

r
e−2λλ̇ = 8πT 1

0 , (14)

and, by means of Eqs. (11) and (12), we can obtain the following relation which will
be used later:

2

r
e−2λ(ψ ′ + λ′) = 8π(T 1

1 − T 0
0 ). (15)

2.1 Modified TOV equations

When the stellar fluid remains in a state of hydrostatic equilibrium, noneof the variables
depend on the time coordinate. This implies that uμ = (u0, 0, 0, 0), T 0

0 = −ρ0 and
T 1
1 = T 2

2 = T 3
3 = p0, where the lower index 0 indicates that the quantities are

evaluated in the equilibrium. As a consequence, Eqs. (11), (12), (10) and (15) assume
the form, respectively,

d

dr
(re−2λ0) = 1 − 8πr2ρ0 + 8πβr2(ρ0 − 3p0), (16)
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2

r
e−2λ0ψ ′

0 = 1 − e−2λ0

r2
+ 8π p0 + 8πβ(ρ0 − 3p0), (17)

dp0
dr

= −(ρ0 + p0)ψ
′
0 − β(ρ′

0 − 3p′
0), (18)

2

r
(ψ ′

0 + λ′
0) = 8π(ρ0 + p0)e

2λ0 . (19)

Integrating Eq. (16) we obtain the usual expression

e−2λ0 = 1 − 2m

r
, (20)

where m(r) stands for the gravitational mass within a sphere of radius r , given by

m(r) = 4π
∫ r

0
r̄2ρ0(r̄)dr̄ − 4πβ

∫ r

0
r̄2 [ρ0(r̄) − 3p0(r̄)] dr̄ , (21)

or alternatively, m = mρ +meff , where mρ is the standard mass widely known in GR
and meff is an extra effective mass due to the modification of the field equations. In
other words, the Rastall term contributes additional mass, and as we will see later in
our results, it ends up modifying the radial stability of a compact star. As expected,
when β = 0 we recover the typical expression obtained in Einstein gravity. At the
surface, where the pressure vanishes,m(rsur) ≡ M is the total mass of the star. Taking
into account Eq. (20), from Eq. (17) we obtain

dψ0

dr
=

[m
r2

+ 4πrp0 + 4πβr(ρ0 − 3p0)
](

1 − 2m

r

)−1

. (22)

Thus, in view of Eqs. (18), (21) and (22), the relativistic structure of a compact star
within the framework of Rastall gravity is described by the modified TOV equations:

dm

dr
= 4πr2ρ − 4πβr2(ρ − 3p), (23)

dp

dr
= − ρ + p

1 − 3β

[m
r2

+ 4πrp + 4πβr(ρ − 3p)
]

×
(
1 − 2m

r

)−1

− β

1 − 3β

dρ

dr
, (24)

dψ

dr
= −1 − 3β

ρ + p

dp

dr
− β

ρ + p

dρ

dr
, (25)

where we have removed the subscript zero because all quantities correspond to the
state of hydrostatic equilibrium. This set of differential equations plays a crucial role in
describing the hydrostatic equilibrium of compact stars in Rastall theory. They are also
knownas stellar structure equations and, as in anygravity theory, they allowus to obtain
themost basicmacroscopic properties of a star such as its radius and gravitationalmass.
Similar to the GR context, they are the base equations for further analysis of moment

123



43 Page 8 of 26 J. M. Z. Pretel, C. E. Mota

of inertia, oscillation spectrum and tidal properties. Recent studies on the relativistic
structure of compact objects in modified gravity can be found in Refs. [33–43, 70, 77,
79, 81–96]. This work aims to carry out a rigorous analysis about the radial stability
of compact stars in Rastall gravity through radial and adiabatic pulsations. In other
words, the static background, described by themodifiedTOVequations (23)–(25), will
be subjected to small deviations from equilibrium. We will return to this in Sect. 3.

As expected, when the free parameter β vanishes (this is, α = 1), one retrieves
the conventional TOV equations in the pure GR case [97, 98]. The variables to be
determined by this system of equations are m(r), ρ(r), p(r) and ψ(r), while the
metric function λ(r) can be determined from Eq. (20). Given an EoS in the form
p = p(ρ), Eqs. (23) and (24) can be integrated for a specific value of central energy
density and by guaranteeing regularity at the center of the star. Besides, since R = 0
outside the star, we can still use the Schwarzschild vacuum solution to describe the
exterior spacetime. Namely, this allows the interior solution to be matched to the
exterior Schwarzschild solution at the boundary r = rsur. Therefore, the system of
differential equations (23)–(25) can be solved by imposing the following boundary
conditions

ρ(0) = ρc, m(0) = 0, ψ(rsur) = 1

2
ln

[
1 − 2M

rsur

]
. (26)

The most basic macroscopic properties of a compact star such as mass and radius
will be calculated for a range of central-density values and by considering different
values of the Rastall parameter. Other observables such as the gravitational redshift
of light emitted at the surface of the equilibrium star can also be analyzed in terms of
the parameter β. This quantity is given by

zsur =
[
1 − 2M

rsur

]−1/2

− 1. (27)

2.2 Equations of state

In this subsection, we discuss the EoSs used in the present work to describe quark
matter and hadronic matter. The first is then used to investigate quark stars and the
second, hadronic stars. A didactic and more extensive explanation of the EoS can be
found in Ref. [99] and references therein. These EoSs will be the input to the modified
hydrostatic equilibrium and radial oscillation equations in Rastall gravity.

2.2.1 Quark matter

To investigate quark stars we use a simple relativistic model to describe quark matter,
the MIT bag model [100]. In general terms, such model describes the confinement
of quarks in a volume of space capable of containing hadronic fields. Inside the bag,
creating and maintaining this region in a vacuum requires constant positive potential
energy per unit volume, namely the bag constant (B). Inside this volume, the moving
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quarks have an associated kinetic energy and no colour currents survive on the surface.
We therefore assume the quarks in the interior of the bag as a Fermi gas whose energy
at the border of the bag is negligible when compared with the energies inside it.

The Lagrangian density that reproduces the dynamics of the quarks ψq contained
in a bag of volume V delimited by the surface S can be written as

LMIT =
∑
q

[
ψ̄q(iγ

μ∂μ − mq)ψq − B
]
�V − 1

2
ψ̄qψqδS, (28)

where q denotes the flavours of the quarks involved, of masses mq ; B is the bag
constant; �V is the Heaviside function and the term 1

2 ψ̄qψqδS , where δS is the Dirac
delta, ensures continuity on the surface S. For the case of the spherical bag of radius R,
the argument of the functions �V and δS is (R − r). The equations of motion are here
obtained by means of the Euler–Lagrange equations [101] applied to the Lagrangian
density in expression (28).

Taking into account all the above considerations, the EoS for the MIT bag model
takes the following form

E = 3

π2

∑
q

∫ KFq

0
k2(m2

q + k2)1/2dk + B, (29)

and

P = 1

π2

∑
q

∫ KFq

0

k4

(m2
q + k2)1/2

dk − B, (30)

which are the expressions for energy density and pressure, respectively. Besides, KFq
is the Fermi moment.

The baryonic number density (ρ) is given by the equation

ρ =
∑
q

1

3
ρq =

∑
q

1

3

(KFq )
3

π2 , (31)

where ρq is the density of the quark of flavour q. Equations (29)–(31) are sufficient to
describe quark matter. Whenever stellar matter is considered, chemical β equilibrium
and charge neutrality equations have to be imposed and hence, the inclusion of leptons
(generally electrons and muons) is necessary. The relations between the chemical
potentials of the different particles are given by the β-equilibrium conditions,

μs = μd = μu + μe, μe = μμ. (32)

Moreover, for charge neutrality we must impose

ρe + ρμ = 1

3
(2ρu − ρd − ρs). (33)
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The electron and muon densities read

ρl = K 3
Fl /3π

2, (34)

where KFl is the Fermi momentum for leptons. The energy density and pressure for
the leptons are given, respectively, by

El = 3

π2

∫ KFl

0
k2(m2

l + k2)1/2dk, (35)

P = 1

3π2

∫ KFl

0

k4

(m2
l + k2)1/2

dk, (36)

where the electron mass is taken as 0.511MeV and the muon mass is 105.66MeV.
We use a value for the bag constant equal to B1/4 = 148MeV, which satisfies the
stability window for this model according to the results shown in Ref. [102].

2.2.2 Hadronic matter

The relativistic model used here to describe the hadronic matter is a rather generalized
version of the quantum hadrodynamics (QHD) [103–105], which is based on a rela-
tivistic mean–field theory and describes the baryon interaction through the exchange
of scalar and vector mesons, known as nonlinear Walecka model (NLWM).

Since the introduction of the σ −ωmodel [106], several relativistic hadronicmodels
have been used with great success to describe infinite nuclear matter, finite nuclei and
stellar matter properties [107]. Despite the good description of the binding energy,
other important properties, such as incompressibility and effective mass of nucleons,
are not obtained with satisfactory values. This problem was circumvented by Boguta
and Bodmer in Ref. [105] introducing self-interaction terms, cubic and quartic, in the
scalar field. Likewise, to deal with asymmetric systems in numbers of protons and
neutrons, the vector-isovector meson ρ was introduced, and to adjust other properties
such as symmetry energy and the fact that protons and neutrons have slightly different
masses, othermesons and interactionswere being included, resulting in a huge number
of generalizations and proposed parameterizations.

The complete Lagrangian density for the NLWM that describes baryons interacting
among each other by exchanging scalar-isoscalar (σ ), vector-isoscalar (ω), vector-
isovector (ρ) and scalar-isovector (δ) mesons is given by [99, 107, 108]

LNLWM = ψ(iγ μ∂μ − M)ψ + gσ σψψ − gωψγ μωμψ

− gρ

2
ψγ μ �ρμ · �τψ + gδψ �δ · �τψ

+ 1

2
(∂μσ∂μσ − m2

σ σ 2) − A

3
σ 3 − B

4
σ 4 − 1

4
FμνFμν

+ 1

2
m2

ωωμωμ + C

4
(g2ωωμωμ)2 − 1

4
�Bμν �Bμν
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+ 1

2
m2

ρ �ρμ · �ρμ + 1

2
(∂μ�δ∂μ

�δ − m2
δ
�δ2)

+ gσ g
2
ωσωμωμ

(
α1 + 1

2
α1

′gσ σ

)
+ gσ g

2
ρσ �ρμ · �ρμ

(
α2 + 1

2
α2

′gσ σ

)

+ 1

2
α3

′g2ωg2ρωμωμ �ρμ · �ρμ. (37)

In this Lagrangian density, mi represents the meson masses, with i = σ, ω, ρ, δ,
and gi stands for the coupling constant of the interaction of the i meson field with
the baryonic field ψ . The antisymmetric field tensors Fμν and �Bμν are given by
Fμν = ∂νωμ − ∂μων and �Bμν = ∂ν �ρμ − ∂μ �ρν − gρ( �ρμ × �ρν). The coefficients γμ

and �τ are the Dirac gamma matrices and Pauli matrices for the isospin, respectively.
Finally, M is the nucleon mass.

The equations ofmotion that describe the entire dynamics of the systemare obtained
via Euler–Lagrange equations [101] and rotational and translational invariance are
assumed. The result is coupled nonlinear equations whose solution is an extremely
complicated task, even numerically. One approximation that can be made is the rela-
tivisticmeanfield (RMF) approximation,where themesonfields are treated as classical
fields, and the substitution below is performed, namely

σ → 〈σ 〉 ≡ σ0, (38)

ωμ → 〈ω0〉 ≡ ω0, (39)

�ρμ → 〈�ρ0〉 ≡ ρ̄0(3), (40)

�δ → 〈�δ〉 ≡ δ(3), (41)

and the equations of motion are given in the following expressions:

m2
σ σ0 = gσ ρs − Aσ 2

0 − Bσ 3
0 + gσ g

2
ωω2

0(α1 + α1
′gσ σ ) + gσ g

2
ρρ̄2

0(3)(α2 + α2
′gσ σ ), (42)

m2
ωω0 = gωρ − Cgω(gωω0)

3 − gσ g
2
ωσ0ω0(2α1 + α1

′gσ σ0) − α3
′g2ωg2ρρ̄2

0(3)ω0, (43)

m2
ρρ̄0(3) = gρ

2
ρ3 − gσ g

2
ρσ0ρ̄0(3)(2α2 + α2

′gσ σ0) − α3
′g2ωg2ρρ̄0(3)ω

2
0, (44)

m2
δ δ(3) = gδρs3, (45)

and

[iγ μ∂μ − γ 0Vτ − (M + Sτ )]ψ = 0. (46)

The scalar and vector densities are given by

ρs = 〈
ψψ

〉 = ρs p + ρsn, (47)

ρs3 = 〈
ψτ3ψ

〉 = ρs p − ρsn, (48)

ρ =
〈
ψγ 0ψ

〉
= ρp + ρn, (49)

ρ3 =
〈
ψγ 0τ3ψ

〉
= ρp − ρn = (2yp − 1)ρ, (50)
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with

ρs p,n = γ M∗
p,n

2π2

∫ kF p,n

0

k2dk√
k2 + M∗2

p,n

, (51)

ρp,n = γ

2π2

∫ kF p,n

0
k2dk = γ

6π2 k
3
F p,n, (52)

Vτ = gωω0 + gρ

2
ρ̄0(3)τ3, Sτ = −gσ σ0 − gδδ(3)τ3, (53)

with τ3 = 1 and τ3 = −1 for protons and neutrons, respectively. Here, γ is the spin
degeneracy. Besides, the proton and neutron effective masses are given by

M∗
p = M − gσ σ0 − gδδ(3), M∗

n = M − gσ σ0 + gδδ(3). (54)

After some analytical procedures, the expressions for energy density and pressure
are obtained [99, 107]

E = 1

2
m2

σ σ 2
0 + A

3
σ 3
0 + B

4
σ 4
0 − 1

2
m2

ωω2
0 − C

4
(g2ωω2

0)
2

− 1

2
m2

ρρ̄2
0(3) + gωω0ρ + gρ

2
ρ̄0(3)ρ3

+ 1

2
m2

δδ
2
(3) − gσ g

2
ωσω2

0

(
α1 + 1

2
α1

′gσ σ0

)
− gσ g

2
ρσ ρ̄2

0(3)

(
α2 + 1

2
α2

′gσ σ0

)

− 1

2
α3

′g2ωg2ρω2
0ρ̄

2
0(3) + E p

kin + En
kin, (55)

with

E p,n
kin = γ

2π2

∫ kF p,n

0
k2(k2 + M∗2

p,n)
1/2dk, (56)

and pressure:

P = −1

2
m2

σ σ 2
0 − A

3
σ 3
0 − B

4
σ 4
0 + 1

2
m2

ωω2
0 + C

4
(g2ωω2

0)
2

+ 1

2
m2

ρρ̄2
0(3) + 1

2
α3

′g2ωg2ρω2
0ρ̄

2
0(3) − 1

2
m2

δδ
2
(3)

+ gσ g
2
ωσ0ω

2
0

(
α1 + 1

2
α1

′gσ σ0

)

+ gσ g
2
ρσ ρ̄2

0(3)

(
α2 + 1

2
α2

′gσ σ

)
+ pp

kin + pnkin, (57)

where

P p,n
kin = γ

6π2

∫ kF p,n

0

k4dk

(k2 + M∗2
p,n)

1/2 . (58)
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At this stage, charge neutrality and chemical equilibrium conditions need to be
implemented, which depend on the inclusion of leptons. These conditions read

μp = μn − μe, μe = μμ, ρp = ρe + ρμ, (59)

where, the leptonic expressions for energy density, pressure and density are the same
given in Sect. 2.2.1.

Of the many possible parameterizations of the QHD model, we chose the IU-FSU
parameterization proposed by Piekarewicz and authors in [109]. In addition to satis-
fying the constraints investigated in [107, 110], the IU-FSU model also satisfactorily
reproduces the recent astrophysical constraint from the observation of GW170817
[111].

Finally, to describe the star outer crust, we use the full BPS EoS [112].

3 Dynamical stability

The solution of themodifiedTOVequations (23)–(25) provides a family of equilibrium
configurations, but such an equilibrium state may be stable or unstable with respect
to a radial perturbation. As mentioned in the introduction, a technique widely used
in the literature to identify the onset of instability is the M(ρc) method, that is, the
first maximum in the mass-central density curve marks the boundary between stable
and unstable stars. However, this method is very simple and provides a necessary
but not sufficient condition for stability analysis along the sequence of equilibrium
configurations [113, 114]. Amore rigorous analysis of the radial stability of a compact
star involves calculating the eigenfrequencies of the normal radial modes of pulsation
(which may grow or be damped exponentially). In that regard, here we are going
to derive for the first time the differential equations that govern the adiabatic radial
oscillations within the context of Rastall gravity. With this in mind, we will deal with
radialmotions so that the stellar systemmaintains its spherical symmetry. Furthermore,
in the adiabatic approximation, the heat transfer can be ignored during the dynamics
of small perturbations.

We regard small deviations from the hydrostatic equilibrium where a fluid element
located at r in the unperturbed configuration (characterized by zero velocities) is
displaced to r + ξ(t, r) in the perturbed system, and hence we can define v = ∂ξ/∂t .
Moreover, the variable h (representing any metric or fluid quantity) can be written as
h(t, r) = h0(r) + δh(t, r), where h0 is the background solution, δh is the Eulerian
perturbation and |δh/h0| � 1. Henceforth we will only maintain first-order terms
in all perturbations. This means that we can write the four-velocity (5) as uμ =
(e−ψ, e−ψ0v, 0, 0), and the energy-momentum tensor (4) takes the form [64]

T ν
μ =

⎛
⎜⎜⎝

−ρ −(ρ0 + p0)v 0 0
(ρ0 + p0)ve2λ0−2ψ0 p 0 0

0 0 p 0
0 0 0 p

⎞
⎟⎟⎠ . (60)
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Although the procedure to derive the radial oscillation equations is a bit cumber-
some, here we are going to summarize the main steps to obtain them. The approach
is analogous to that carried out by Chandrasekhar in conventional GR [48]. Taking
into account the static background equations (16)–(19), the perturbation of the field
equations (11), (12) and (14) together with the non-conservative Eq. (10) leads to

δλ = −ξ(ψ ′
0 + λ′

0), (61)

(ρ0 + p0)
∂

∂r
(δψ) =

[
(1 − 3β)δ p + βδρ − (ρ0 + p0)

(
1

r
+ 2ψ ′

0

)
ξ

]
(ψ ′

0 + λ′
0),

(62)

δρ = − 3β

1 − β
(δ p + ξ p′

0) − ξρ′
0 −

[
ρ0 + p0
1 − β

]
eψ0

r2
∂

∂r

(
r2ξe−ψ0

)
, (63)

(ρ0 + p0)e
2λ0−2ψ0

∂v

∂t
+ ∂

∂r
(δ p) + (ρ0 + p0)

∂

∂r
(δψ) + ψ ′

0(δρ + δ p)

= β
∂

∂r
(3δ p − δρ). (64)

Now let us assume that all perturbations have a harmonic time dependence, namely,
ξ(t, r) = χ(r)eiωt and δh(t, r) = δh(r)eiωt , where ω is the eigenfrequency of the
radial vibrations to be determined. This assumption allows us to cancel the exponen-
tial factors in each linearized equation and hence we can obtain time-independent
equations. This means that all equations are now in terms of the amplitudes δh(r) and
quantities of the static background, and thus we can also take out the subscript zero.
In view of Eq. (62), the linearized non-conservation equation (64) becomes

ω2(ρ + p)e2λ−2ψχ = (1 − 3β)
d(δ p)

dr
+ β

d(δρ)

dr
+ [

(2 − 3β)ψ ′ + (1 − 3β)λ′] δ p + [
(1 + β)ψ ′ + βλ′] δρ

− (ρ + p)

(
1

r
+ 2ψ ′

)
(ψ ′ + λ′)χ. (65)

If the pressure is a function only of the energy density (this is, p = p(ρ)), we can
write δ p = (dp/dρ)δρ. As a consequence, by means of Eq. (63), we obtain

δ p = −χ p′ − 1

1 − β

[
3β�p

dp

dρ
+ � p

eψ

r2
d

dr
(r2χe−ψ)

]
, (66)

where �p = δ p + χ p′ is the Lagrangian perturbation of the pressure, and � is the
adiabatic index at constant entropy:

� =
(
1 + ρ

p

)
dp

dρ
. (67)

123



Compact stars in Rastall gravity: hydrostatic equilibrium and radial… Page 15 of 26 43

Note that Eq. (66) can be rewritten in a more compact form for the Lagrangian
perturbation �p, namely

�p = −� p

J
eψ

r2
d

dr
(r2χe−ψ), (68)

where J has been defined as

J ≡ 1 − β + 3β
dp

dρ
. (69)

Furthermore, Eq. (63) can be rewritten as

δρ = − 3β

1 − β
δ p − Q

1 − β
, (70)

with Q being given by

Q ≡ d

dr
[(ρ + p)χ ] + 2

r
(ρ + p)χ

= χρ′ − βχ(ρ′ − 3p′) −
(

ρ + p

� p

)
J�p. (71)

After substituting Eqs. (66) and (70) into (65), and by using Eqs. (13) and (18), we
have

ω2(ρ + p)e2λ−2ψχ = 1 − 4β

1 − β

{
(�p)′ + (2ψ ′ + λ′)�p + (ρ + p)

[
8π p

+ 8πβ(ρ − 3p)
]
e2λχ − χ(ρ + p)ψ ′2 + 4

r
χ p′

+ β
d

dr
[χ(ρ′ − 3p′)] + 2βχ(ρ′ − 3p′)

(
2

r
+ ψ ′ + λ′

2

) }

− β

1 − β

[
3(ρ + p)

(
1

r
+ 2ψ ′

)
(ψ ′ + λ′)χ + Q′ + (5ψ ′ + λ′)Q

]
,

(72)

and through Eq. (71), the last expression becomes

G(�p)′ = χ

{
1 − β

1 − 4β
(ρ + p)

[
ω2e−2ψ − 8π p − 8πβ(ρ − 3p)

]
e2λ

− 1 − 7β

1 − 4β

4

r
p′ + 1 + 5β

1 − 4β
(ρ + p)ψ ′2

− β

1 − 4β

[
4

r
ρ′ − β(ρ′ − 3p′)

(
16

r
+ 3ψ ′ + 3λ′

)

−3p′(ψ ′ + λ′) − 3(ρ + p)

(
λ′ + 2

r

)
ψ ′

]}
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− �p

{
2ψ ′ + λ′ + β

1 − 4β

[
(5ψ ′ + λ′)ρ + p

� p
J + d

dr

(
ρ + p

� p
J

)]}

+ 3β

1 − 4β

[
β(ρ′ − 3p′) + p′]χ ′, (73)

where we have defined

G ≡ 1 + β

1 − 4β

(
ρ + p

� p
J

)
. (74)

Finally, it is convenient to introduce a new variable given by ζ ≡ χ/r . Thus,
from Eqs. (68) and (73) we obtain two first-order differential equations governing the
adiabatic radial pulsations for a compact star in Rastall gravity:

dζ

dr
= −1

r

[
3ζ + J

� p
�p

]
+ ψ ′ζ, (75)

G d(�p)

dr
= ζ

{
1 − β

1 − 4β
(ρ + p)

[
ω2e−2ψ − 8π p − 8πβ(ρ − 3p)

]
re2λ

− 4

(
1 − 7β

1 − 4β

)
p′ + 1 + 5β

1 − 4β
(ρ + p)rψ ′2

+ βr

1 − 4β

[
β(ρ′ − 3p′)

(
19

r
+ 3ψ ′ + 3λ′

)
+ 3p′

(
1

r
+ ψ ′ + λ′

)

−4

r
ρ′ + 3(ρ + p)

(
λ′ + 2

r

)
ψ ′

] }

− �p

{
2ψ ′ + λ′ + β

1 − 4β

[
(5ψ ′ + λ′)ρ + p

� p
J + d

dr

(
ρ + p

� p
J

)]}

+ 3βr

1 − 4β

[
β(ρ′ − 3p′) + p′] ζ ′, (76)

and such equations reduce to the corresponding radial oscillation equations in standard
GR when β = 0, see for instance Refs. [52, 54–56]. Note that Eq. (75) has a trivial
coordinate singularity at the center and hence the coefficient of 1/r term must vanish
at r = 0. Furthermore, the condition p(rsur) = 0 leads to imposing another boundary
condition for the Lagrangian perturbation of pressure at the surface. Consequently, the
system of equations (75) and (76) will be solved by means of the following boundary
conditions

�p = −3
� pζ

J as r → 0, (77)

�p = 0 as r → rsur. (78)
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4 Numerical results

In this section, we present and discuss our numerical results. The essential ingredi-
ents of nuclear physics for astrophysical calculations are the appropriate EoSs. Such
equations of state will be the input to the modified hydrostatic equilibrium and radial
oscillation equations in Rastall gravity. For quark matter (2.2.1) we used the MIT bag
model [100], in which the energy density and pressure are described by the expres-
sions (29) and (30). Besides that, for hadronic matter (2.2.2) describing neutron stars,
we used the IU-FSU parameterization [109] of the Walecka model with nonlinear
terms [103–105], where energy density and pressure are given by Eqs. (55) and (57),
respectively.

4.1 Hydrostatic equilibrium

Our first task is to obtain the metric variables and the thermodynamic quantities as
functions of the radial coordinate. To do so, the stellar structure equations (23)–(25)
with boundary conditions (26) will be numerically integrated from the origin up to the
surface for a given equation of state p(ρ). As usual, the radius of the star is determined
when the pressure vanishes (i.e., p(rsur) = 0), and the total gravitational mass is given
by M ≡ m(rsur). In the left panel of Fig. 1, we plot the total mass versus radius for
quark (blue lines) and hadronic (red lines) matter. Here we have considered values of β
for which appreciable changes can be observed in themass-radius diagram. The radius
of neutron stars undergoes considerable deviations from GR in the low-mass region.
This can be better observed whenwe plot the radius as a function of the central density,
see the right panel of the same figure. Positive (negative) values of β result in larger
(smaller) radii with respect to their pure general relativistic counterpart. Nonetheless,
it should be noted that the changes in the maximum-mass values are insignificant.

On the other hand, noticeable changes in the most basic properties of a quark star
are observed if we use larger values of |β| than in the case of hadronic matter. The
main consequence of the Rastall term on quark stars is a significant increase (decrease)
in the maximum mass for negative (positive) values of β. Furthermore, according to
the right plot of Fig. 1, we observe that a negative value of β increases the radius of
a quark star, for a fixed central density. Remarkably, this behavior is contrary to the
case of neutron stars.

Our numerical results provide a realistic description of compact stars in Rastall
gravity in the sense that they satisfy the observational measurements. Specifically,
for both equations of state, the set of values adopted for β satisfies the mass-radius
constraint from the GW170817 event (see the filled cyan region). Moreover, the range
β ∈ [−0.10,−0.05] consistently describes the millisecond pulsar J1614−2230 for
the quark matter EoS. For the pulsar PSR J0030+0451, which was observed using the
Neutron Star Interior Composition Explorer (NICER), we notice that positive values
of β are more suitable for its description using a hadronic matter EoS.

Another interesting quantity that in principle can be observed is the gravitational
redshift given by Eq. (27). Figure2 shows the redshift of light emitted at the surface of
each star as a function of gravitational mass for the same set of values of β as in Fig. 1.
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Fig. 1 Left panel:Mass-radius diagram for quarks stars (blue lines) and neutron stars (red lines) as predicted
by Rastall gravity for different values of β. The magenta horizontal band represents the observational
measurement for the millisecond pulsar J1614−2230 reported in Ref. [115]. The NICER measurements
for PSR J0030+0451 are shown by black dots with their respective error bars [116, 117], and the cyan
area stands for the mass-radius constraint from the GW170817 event. Right panel: Radius versus central
density relation. In the case of neutron stars, the more substantial deviations for rsur from GR (β = 0) take
place in the low-mass region, whereas for large masses (close to the maximum mass) the changes are very
slight due to the Rastall parameter. Meanwhile, for quark matter, the radius undergoes little pronounced
modifications and the maximum-mass values reveal relevant changes when |β| takes larger values than in
the case of hadronic matter (color figure online)

It can be seen that the maximum value of zsur increases substantially with decreasing
β, while the changes are smaller for hadronic matter.

Following Refs. [76–79], the gravitational binding energy EB can be plotted as
a function of the proper mass Mpr in order to analyze the stellar stability of the
equilibriumconfigurations. The propermass (also known as baryonmass) of a compact
star is defined as

Mpr = 4πmB

∫ rsur

0
eλ(r)r2nB(r)dr , (79)

withnB(r)being thebaryonnumber density function andmB is the neutronmasswhich
is chosen to agree with different stellar evolution models requiring the conservation
of baryon number [79]. The difference between the total mass distribution of standard
matter Mρ ≡ mρ(rsur) and the proper mass gives us the binding energy, namely
EB = Mρ − Mpr [64]. For quark matter EoS, the binding energy versus proper mass
relation is shown in Fig. 3, where we can appreciate the emergence of a cusp for the
different values of β.

As alreadymentioned in the introduction, a turning point from stability to instability
occurs when dM/dρc = 0 according to the M(ρc) method. In other words, the stable
branch of the quark stars shown in the left plot of Fig. 1 must be located below the
critical central density corresponding to themaximum-mass configuration (see the full
orange circles in the upper panel of Fig. 4). However, due to its simplicity, this criterion
does not provide consistent results with the binding energy calculation. In particular,
we find that the maximum-mass points and the minimum-binding-energy points do
not coincide. This is because the Rastall term generates an extra mass contribution in
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Fig. 2 Gravitational redshift of light emitted at the stellar surface as a function of the total gravitational
mass for the same values of β as considered in Fig. 1. The redshift exhibits significant changes only in the
high-mass region for quark stars (color figure online)

Eq. (21). A more rigorous approach to investigate the radial stability of compact stars
is by calculating the frequencies of the radial vibration modes which will be discussed
below.

4.2 Radial pulsations

Once the static background quantities (as well as the introduced variables J and
G) are determined by integrating the modified TOV equations, our second task is to
solve the radial pulsation equations in order to investigate the dynamical stability of the
stellar configurations presented in Fig. 1. The system of differential equations (75) and
(76), subject to the boundary conditions (77) and (78), constitutes a Sturm–Liouville
eigenvalue problem for the squared frequencies. The corresponding solutions ζ(r) and
�p(r) are the eigenfunctions associated to each eigenvalue ω2. In other words, there
is an infinite number of solutions, but only specific values ofω2 which properly satisfy
the boundary conditions are allowed.

As in the pure general relativistic case [52, 54–56], here we use the shootingmethod
to solve first-order differential equations (75) and (76), namely, we perform the inte-
gration for a set of test values ω2 obeying the condition (77). Moreover, we assume
that the normalized eigenfunctions correspond to ζ(0) = 1 at the stellar center, and
we integrate up to the surface. The guessed values of ω2 that satisfy the boundary
condition (78) will be the correct frequencies of the different radial vibration modes.
In particular, for a specific value of the parameter β and considering a quark star with
central density ρc = 1.5×1015 g/cm3, the first six normal pulsationsmodes are shown
in Fig. 5. Such configuration has a frequency spectrum ω2

0 < ω2
1 < · · · < ω2

n < · · · ,
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Fig. 3 Binding energy EB as a function of the proper mass Mpr of quark stars in Rastall gravity. Observe
the formation of a cusp when the binding energy becomesminimal (see also Fig. 4 to visualize these minima
as a function of the central energy density)

where n represents the number of nodes between the center and the stellar surface.
The first eigenvalue corresponding to n = 0 is the fundamental or nodeless mode (see
the black dotted line in Fig. 5) because it has the lowest frequency, while the higher
frequencies are called overtones or excited modes. So, the first excited mode n = 1
(red curve) has a node, the second excited mode n = 2 (blue curve) has two, and
so forth. If any of these eigenvalues is negative (i.e., ω2 < 0) for a particular stellar
configuration, the frequency is purely imaginary and hence any radial perturbation
of the star will generate a dynamical instability. On the other hand, the case ω2 > 0
describes an oscillatory behavior and thereby corresponds to a stable star.

Let us now focus on ω2
0 since it is the lowest eigenvalue of all the allowed pulsation

modes. For a range of central densities, in Fig. 6 we plot the squared frequency of the
fundamental mode as a function of the central density (left panel) and gravitational
mass (right plot) for quark matter. Similar to the pure GR case, ω2

0 is always a decreas-
ing function of the central density for quark stars. For a fixed central density, a positive
(negative) value of β leads to an increase (decrease) in ω2

0. According to the right plot,
it can be observed that themaximummass does not correspond toω2

0 = 0when β �= 0.
In other words, the existence of stable quark stars is possible after the maximum-mass
configuration for negative values of β, while the onset of instability is indicated before
reaching the maximum mass for positive values of β. Therefore, the classical M(ρc)

method widely used to analyze the stellar stability in GR is not compatible with the
calculation of vibration mode frequencies in Rastall gravity. Nevertheless, we remark
that the cusp formed by plotting the binding energy as a function of proper mass can
be used as an indicator for the onset of radial instability of relativistic stars in Rastall
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Fig. 4 Upper panel: Mass-central density relation. Lower panel: Variation of the gravitational binding
energy with respect to ρc for different values of β using the quark matter EoS. The full orange and green
circles indicate the maximum-mass points and the minimum-binding-energy points, respectively. See also
the left plot of Fig. 6, where the same values of central density corresponding to the minimum of EB have
been located in the inset (color figure online)

Fig. 5 Eigenfunctions ζn(r) in the left panel and �pn(r) in the right panel for the first six normal vibration
modes as a function of the radial coordinate. The two plots correspond to a quark star in Rastall gravity with
central density ρc = 1.5 × 1015 g/cm3 and β = 0.05. In can be observed that the solution corresponding
to the nth oscillation mode has n nodes inside the star, where n = 0 describes the fundamental mode. Note
also that the perturbations ζn(r) have been normalized at the origin, i.e. ζ(0) = 1, and the Lagrangian
perturbation of the pressure �pn(r) satisfies the boundary condition (78) at the surface
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Fig. 6 Left panel: Squared frequency of the fundamental vibration mode as a function of the central
density predicted by Rastall gravity for quark matter, where the different lines indicate different values
of the parameter β. The inset magnifies the behavior of ω2

0 in the surroundings of its vanishing value,
where the green points correspond precisely to the minimum-binding-energy points in Fig. 4. Right panel:
Squared frequency of the fundamental oscillation mode versus gravitational mass. Note that, when β �= 0,
the maximum-mass values do not correspond to ω2

0 = 0. This means that the conventional condition
dM/dρc = 0 to indicate the onset of instability is no longer valid in Rastall gravity. Stars cease to be
stable before the maximum-mass configuration for positive values of β, while stable stars still exist after
the maximum-mass point for negative values of β. However, the minimum binding energy is compatible
with the zero frequency of the fundamental pulsation mode (color figure online)

gravity. Specifically, we observe that the central density where the binding energy is
minimal corresponds exactly to ρc where ω2

0 = 0 for all considered values of β.
Unlike quark stars, the squared frequency of the fundamental mode for hadronic

matter grows until it reaches a maximum value and then decreases with increasing
central density, see Fig. 7. The increase in parameter β leads to a significant decrease
in ω2

0 at sufficiently low central densities, while the changes are irrelevant in the high-
central-density region. Notice that this behavior is contrary to the case of quark stars.
Nonetheless, since the values of |β| are smaller than those considered in the quark
case, it is not possible to appreciate substantial variations in themaximum-mass values.
In this direction, we could conclude that the maximum-mass configuration indicates
(approximately) the transition between stable and unstable neutron stars in Rastall
gravity.

5 Conclusions

Within the context of Rastall gravity, we have derived themodified TOV equations and
we investigated the hydrostatic equilibriumof compact stars by adopting two equations
of state. In the case of neutron stars, the radius undergoes a substantial modification
due to the Rastall parameter β in the low-mass region, namely, positive values of β

increase the radius and vice-versa. However, for quark stars it was necessary to use
larger values of β in order to observe appreciable changes in the mass-radius diagram.
The radius of these stars increases (decreases) for negative (positive) values of β,
contrary to the results obtained using the hadronic matter EoS. The maximum mass
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Fig. 7 Squared frequency of the fundamental pulsation mode against the central density (left panel) and
gravitational mass (right panel) for hadronic matter in Rastall gravity. It can be observed that the largest
impact of β on the eigenvalue ω2

0 occurs in the low-central-density region, while it is practically unchanged

in the high-mass region and, as a consequence, the maximum-mass value almost corresponds to ω2
0 = 0.

Notice that the behavior here is different from the case of quark stars as shown in Fig. 6

for quark stars can be significantly increased by considering negative values of β.
Furthermore, the gravitational redshift of light emitted at the stellar surface exhibits
considerable changes only in the high-mass region for quark stars.

Following a perturbative procedure, similar to that carried out by Chandrasekhar in
Einstein’s theory, we have derived for the first time the differential equations govern-
ing the adiabatic radial pulsations in Rastall gravity in order to examine the dynamical
stability. In the GR limit (i.e., when β → 0) we recover the corresponding Chan-
drasekhar equations. Under suitable boundary conditions, the system of equations has
been treated as an eigenvalue problem, and vibration frequencies have been deter-
mined for a wide range of central densities for both quark and neutron stars. Our
numerical results revealed that the standard M(ρc) criterion for stellar stability is no
longer valid in Rastall gravity because the maximum-mass point does not correspond
toω2

0 = 0. Indeed, we found that there exist stable quark stars after themaximum-mass
configuration for negative values of β.

As an independent approach,we have also analyzed the gravitational binding energy
as a function of proper mass for a whole family of quark stars using several values of β.
Our findings showed that the critical central density corresponding to the maximum-
mass configuration deviates from ρc corresponding to the minimum-binding energy.
However, the concept of binding energy has been shown to be useful in constructing
stable compact stars since the squared frequency of the fundamental oscillation mode
vanishes at the central-density value corresponding to the minimum-binding-energy
configuration. Therefore, the cusp formed when the binding energy is minimal can be
used as a turning point from stability to instability of compact stars in Rastall gravity.
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