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Abstract
When a test particle moves about an oblate spheroid, it is acted upon, among other
things, by two standard perturbing accelerations. One, of Newtonian origin, is due to
the quadrupole mass moment J2 of the orbited body. The other one, of orderO

(
1/c2

)
,

is caused by the static, post-Newtonian field arising solely from the mass of the central
object.Both of themconcur to induce indirect,mixed orbital effects of orderO (

J2/c2
)
.

They are of the same order of magnitude of the direct ones induced by the post-
Newtonian acceleration arising in presence of an oblate source, not treated here. We
calculate these less known features of motion in their full generality in terms of the
osculating Keplerian orbital elements. Subtleties pertaining the correct calculation of
their mixed net precessions per orbit to the full order ofO (

J2/c2
)
are elucidated. The

obtained results hold for arbitrary orbital geometries and for any orientation of the
body’s spin axis k̂ in space. The method presented is completely general, and can be
extended to any pair of post-Keplerian accelerations entering the equations of motion
of the satellite, irrespectively of their physical nature.

Keywords Classical general relativity · Fundamental problems and general
formalism · Experimental studies of gravity · Experimental tests of gravitational
theories · Satellite orbits

1 Introduction

To the first post-Newtonian (1pN) order, the quadrupole mass moment J2 of an oblate
spheroid that is rigidly rotating causes an acceleration of the order O (

J2/c2
)
, where

c is the speed of light in vacuum, which directly induces long-term orbital variations
affecting the motion of a test particle. They have been treated to various levels of
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completeness elsewhere [3, 10, 11, 25, 27, 28]; the most general calculation, valid for
any orbital geometry and arbitrary orientation of the primary’s spin axis can be found
in Iorio [15].

Nonetheless, further indirect orbital features ofmotion of orderO (
J2/c2

)
arise due

to the interplay of two well known post-Keplerian (pK) accelerations: the Newtonian
one induced by J2, causing the orbital plane of an Earth’s satellite to secularly precess
[4, 16, 23], and the 1pN “gravitoelectric" term due to the mass monopole of the
body [23, 25, 26], responsible of the formerly anomalous perihelion precession of
Mercury [19] of 42.98 arcseconds per century (arcsec cty−1) [20]. Its explanation by
Einstein [7]was the first empirical success of his newbornGeneral Theory ofRelativity
(GTR). For a recent review, see, e.g., Debono and Smoot [6], and references therein.
Calculations for the “mixed" effects resulting from the interplay of the aforementioned
pK accelerations, performed mainly recurring to some simplifying assumptions and
to various computational schemes, can be found in the literature [9–11, 28].

The task of the present work is to calculate them in their full generality, elucidating
certain subtleties occurring when one moves from the orbital shifts per revolution to
the averaged orbital precessions.

The paper is organized as follows. In Sect. 2, a general overview of the calculation
of the mixed effects due to a pair of arbitrary disturbing accelerations is first presented
(Sect. 2.1). Then, it is applied to the aforementioned pK perturbations, and explicit
expressions for the mixed net shifts per orbit of order O (

J2/c2
)
of all the Keplerian

orbital elements, valid for any orbital configurations and arbitrary orientations of the
body’s symmetry axis in space, are displayed (Sect. 2.2). Section3 is devoted to the
calculation of the total mixed averaged rates of change of order O (

J2/c2
)
of the

orbital elements by elucidating that it is not enough to simply take the ratios of the
averaged variations obtained in Sect. 2 to theKeplerian orbital period. Also in this case,
explicit expressions of general validity are obtained. In Sect. 4, the results obtained
in Sects. 2 to3 are specialized to two particular configurations: equatorial (Sect. 4.1)
and polar (Sect. 4.2) orbits. Section5 summarizes our results and offers concluding
remarks.

2 Themixed net shifts per orbit

2.1 General calculational overview

Let us assume that a perturbing acceleration

A = A(1) + A(2), (1)

made of the sum of two pK accelerations A(1) and A(2) of arbitrary origin, enters the
equations ofmotion of a test particle orbiting a central body in addition to the dominant
Newtonian monopole. The osculating Keplerian orbital elements {κ} of the satellite,
i.e. the semimajor axis a, the eccentricity e, the inclination I of the orbital plane to
the reference plane {x, y}, the longitude of the ascending node �, the argument of
pericenterω, and the mean anomaly at epoch η [17, 18], undergo long-term variations;
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for non-osculating orbital elements in pN dynamics, see Gurfil and Efroimsky [8].
These long-term variations of any one of the Keplerian orbital elements {κ} can be
calculated as averages over one orbital period Pb, that are caused not only by each of
the two pK accelerationsA(1) andA(2) individually as if the other were not present, but
also by the simultaneous action of both of them giving rise to indirect, mixed effects.
It means

�κ =
∫ f0+2π

f0

(
dκ

d f

)(1)

K
d f +

∫ f0+2π

f0

(
dκ

d f

)(2)

K
d f +

∫ f0+2π

f0

(
dκ

d f

)(1−2)

mix
d f ,(2)

where f is the true anomaly and f0 is the anomaly at some arbitrary moment of
time t0 assumed as initial instant. Here and in the following, the angular brackets
〈· · · 〉 denoting the average over Pb will be neglected in order to make the overall
notation less cumbersome. As it will become clearer below, it is worthwhile noticing
that the average is taken over the anomalistic period, i.e., the time elapsed between
two successive crossings of the moving pericenter due to the pK acceleration(s). In
our work we are interested in the mixed average term, that is

�κ
(1−2)
mix :=

∫ f0+2π

f0

(
dκ

d f

)(1−2)

mix
d f , (3)

where

(
dκ

d f

)(1−2)

mix
:=

∑

j=a, e, I ,�, ω

{
∂(dκ/d f )(1)

∂κ j

}

K

�κ
(2)
j ( f ) +

+
{(

dκ

d f

)(1) r2

μ e

[
− cos f A(2)

R +
(
1 + r

p

)
sin f A(2)

T

]}

K

+

+
∑

j=a, e, I ,�, ω

{
∂(dκ/d f )(2)

∂κ j

}

K

�κ
(1)
j ( f ) +

+
{(

dκ

d f

)(2) r2

μ e

[
− cos f A(1)

R +
(
1 + r

p

)
sin f A(1)

T

]}

K

. (4)

It should be noted that ∂ (dκ/d f ) /∂η = 0 for all the Keplerian orbital elements and
for any of the pK accelerations considered here; thus, the summations in Eq. (4) do
not run over η as well. In Eq. (4),

μ := G M (5)

is the primary’s gravitational parameter given by the product of theNewtonian constant
of gravitation G by its mass M ,

p := a
(
1 − e2

)
(6)
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is the orbit’s semilatus rectum, and AR, AT are the radial and transverse components
of the pK acceleration at hand, respectively. Furthermore, the subscript “K" means
that the quantities in curly brackets to which it is appended are to be evaluated onto
the Keplerian ellipse

r = p

1 + e cos f
, (7)

assumed as unperturbed, reference trajectory. Finally, the derivative dκ/d f of any one
of the orbital elements κ with respect to the true anomaly f is given by

dκ

d f
= dκ

dt

(
dt

d f

)

K
, (8)

where

(
dt

d f

)

K
:= r2√

μ p
(9)

is the Keplerian expression for the reciprocal of the time derivative of the true anomaly,
and dκ/dt is given by the right-hand-side of the corresponding Gaussian equation for
its variation. The equations for the variations of the Keplerian osculating elements in
the Euler-Gauss form [3, 18, 25, 26] are

da

dt
= 2

n(K)
b

√
1 − e2

[
e AR sin f +

( p

r

)
AT

]
, (10)

de

dt
=

√
1 − e2

n(K)
b a

{
AR sin f + AT

[
cos f + 1

e

(
1 − r

a

)]}
, (11)

dI

dt
= 1

n(K)
b a

√
1 − e2

AN

( r
a

)
cos u, (12)

d�

dt
= 1

n(K)
b a sin I

√
1 − e2

AN

( r
a

)
sin u, (13)

dω

dt
=

√
1 − e2

n(K)
b a e

[
−AR cos f + AT

(
1 + r

p

)
sin f

]
− cos I

d�

dt
, (14)

dη

dt
= − 2

n(K)
b a

AR

( r
a

)
−

(
1 − e2

)

nb(K) a e

[
−AR cos f + AT

(
1 + r

p

)
sin f

]
. (15)

In Eq. (10)–(15),

n(K)
b = 2π

P(K)
b

=
√

μ

a3
(16)
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is the Keplerian mean motion, which is proportional to the reciprocal of the Keplerian
orbital period P(K)

b ,

u := ω + f (17)

is the argument of latitude, and AN is the normal component of the pK acceleration
at hand. In Eq. (4), the instantaneous variations of the Keplerian orbital elements
�κ

(pK)

j ( f ) are present; they can be calculated for any of them as

�κ(pK) ( f ) =
∫ f

f0

(
dκ

d f ′

)(pK)

d f
′
, (18)

where the derivative, taken from Eqs. (10)–(15), has to be evaluated onto the Keplerian
ellipse of Eq. (7) for a given pK acceleration; in this case, the subscript “K" is omitted
to avoid making the notation too heavy.

Some explanatory remarks about the structure of Eq. (4) are, now, in order. The first
two terms of Eq. (2), and the second and the fourth terms in Eq. (4) come from

dκ

d f
= dκ

dt

dt

d f
= dκ

dt

(
dt

d f

)

K

1

1 − dω
d f − cos I d�

d f

�
(
dκ

d f

)

K

(
1 + dω

d f
+ cos I

d�

d f

)

=
(
dκ

d f

)

K

{
1 + r2

μ e

[
− cos f AR +

(
1 + r

p

)
sin f AT

]}
. (19)

In obtaining Eq. (19), the pK expression [1, 3, 23]

d f

dt
=

(
d f

dt

)

K
− dω

dt
− cos I

d�

dt
=

√
μ p

r2
− dω

dt
− cos I

d�

dt
, (20)

Equations (8), and (13)–(14) were used. Equation (20) accounts for the fact that, in
general, both the nodal and apsidal lines vary instantaneously during an orbital revo-
lution because of pK perturbing accelerations. It does matter since the fast variable of
integration is the true anomaly f ; as remarked before, the averaging time interval, is the
anomalistic period. Going into more detail, the superscripts “(1)" and “(2)" in Eq. (4)
mean that the associated quantities have to be calculated with the pK acceleration
A(1) and A(2), respectively. Thus, ∂ (dκ/d f )(1) /∂κ j and ∂ (dκ/d f )(2) /∂κ j are to be
meant as the partial derivatives of Eq. (8) with respect to κ j , j = a, e, I , �, ω calcu-
lated with the accelerationsA(1) andA(2), respectively, onto the Keplerian ellipse. The
first and the third terms of Eq. (4), arising from such partial derivatives, occur because,
actually, the orbital elements do not stay constant during an orbital revolution; instead,
they vary instantaneously because of the pK accelerations. Furthermore, the first term
of Eq. (19), calculated withA(1) andA(2) onto the Keplerian ellipse, respectively, yield
the first two terms of Eq. (2). The term in square brackets of Eq. (19), calculated with
A(2) onto the Keplerian ellipse and multiplied by dκ/d f , calculated with A(1) onto
the Keplerian ellipse, gives rise to the second mixed term of Eq. (4), while the term
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in square brackets of Eq. (19), calculated with A(1) onto the Keplerian ellipse and
multiplied by dκ/d f , calculated with A(2) onto the Keplerian ellipse, gives rise to the
fourth mixed term of Eq. (4).

It shouldbenoted that also effects of orderO (
A2

)
arise fromEq. (4) if it is calculated

with the same pK acceleration. They will not be treated here since they would be of
order O (

J 22
)
and O (

1/c4
)
, respectively.

2.2 Themixed averaged shifts per orbit of orderO (
J2/c2

)

Let us assume that [23]

A(1) ≡ A(J2) = 3 J2 R2 μ

2 r4

[(
5 ξ2 − 1

)
r̂ − 2 ξ k̂

]
, (21)

A(2) ≡ A(1pN) = μ

c2 r2

[(
4μ

r
− v2

)
r̂ + 4 vr v

]
, (22)

where R is the body’s equatorial radius, k̂ is the unit vector directed along its symmetry
axis,

ξ := k̂·r̂ (23)

is the cosine of the angle between the body’s spin axis and the satellite’s position
vector, and

vr := v·r̂ (24)

is the radial velocity of the test particle. It turns out that the R − T − N components
of the accelerations of Eqs. (21)–(22) are

A(J2)
R =

3 J2 R2μ (1 + e cos f )4
[
−1 + 3

(
k̂·l̂ cos u + k̂·m̂ sin u

)2]

2 a4
(
1 − e2

)4 , (25)

A(J2)
T = −

3 J2 R2μ (1 + e cos f )4
(
k̂·l̂ cos u + k̂·m̂ sin u

) (
−k̂·l̂ sin u + k̂·m̂ cos u

)

a4
(
1 − e2

)4 ,

(26)

A(J2)
N = −

3 J2 R2μ (1 + e cos f )4 k̂·ĥ
(
k̂·l̂ cos u + k̂·m̂ sin u

)

a4
(
1 − e2

)4 , (27)

and

A(1pN)

R = −μ2 (1 + e cos f )2
(−3 − e2 − 2 e cos f + 2 e2 cos 2 f

)

c2 a3
(
1 − e2

)3 , (28)
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A(1pN)

T = 4 eμ2 (1 + e cos f )3 sin f

c2 a3
(
1 − e2

)3 , (29)

A(1pN)

N = 0. (30)

In Eqs. (25)–(27),

l̂ = {cos�, sin�, 0} (31)

is the unit vector directed along the line of the nodes toward the ascending node,

m̂ = {− cos I sin�, cos I cos�, sin I } (32)

is the unit vector directed transversely to the line of the nodes in the orbital plane, and

ĥ = {sin I sin�, − sin I cos�, cos I } (33)

is the normal unit vector, directed along the orbital angular momentum, such that
l̂×m̂ = ĥ; see, e.g., Brumberg [3]; Soffel [25].

By inserting Eqs. (25)–(27) in Eqs. (10)–(14), one can use Eqs. (18) and (9) to
calculate the J2-driven instantaneous orbital shifts needed in Eq. (4). They turn out to
be

�a(J2) ( f ) = − J2 R2

16 a
(
1 − e2

)3 A(J2), (34)

�e(J2) ( f ) = J2 R2

32 a2
(
1 − e2

)2 E (J2), (35)

�I (J2) ( f ) = − J2 R2

4 a2
(
1 − e2

)2 I(J2), (36)

��(J2) ( f ) = − J2 R2 csc I

4 a2
(
1 − e2

)2 N (J2), (37)

�ω(J2) ( f ) = J2 R2

32 a2 e
(
1 − e2

)2 P(J2), (38)

where

A(J2) :=
6∑

j=1

A(J2)
j T̂ j , (39)

E (J2) :=
6∑

j=1

E (J2)
j T̂ j , (40)

123



136 Page 8 of 22 L. Iorio

I(J2) :=
6∑

j=1

I(J2)
j T̂ j , (41)

N (J2) :=
6∑

j=1

N (J2)
j T̂ j , (42)

P(J2) :=
6∑

j=1

P(J2)
j T̂ j . (43)

The coefficients T̂ j , j = 1, 2, . . . 6are displayed inAppendixA,whileA(J2)
1 , . . .P(J2)

6
are shown in AppendixA.1. Equation (18), calculated with Equations (28)–(30) in
Eqs. (10)–(14) and (9), yields for the 1pN instantaneous orbital shifts

�a(1pN) ( f ) = −2 eμ (cos f − cos f0)
[
7 + 3 e2 + 5 e (cos f + cos f0)

]

c2
(
1 − e2

)2 , (44)

� e(1pN) ( f ) = −μ (cos f − cos f0)
[
3 + 7 e2 + 5 e (cos f + cos f0)

]

c2 a
(
1 − e2

) , (45)

�I (1pN) ( f ) = 0, (46)

��(1pN) ( f ) = 0, (47)

�ω(1pN) ( f )

= −μ
{
3 e (− f + f0) + (

3 − e2 + 5 e cos f
)
sin f + (−3 + e2 − 5 e cos f0

)
sin f0

}

c2 a e
(
1 − e2

) .

(48)

The instantaneous shifts of η are not displayed since they are not required in Eq. (4).
Indeed, as pointed out in Sect. 2.1, the derivatives dκ/d f , calculated with either
Eqs. (25)–(27) or (28)–(30) in Eqs. (10)–(15), do not contain explicitly η.

Equation (4), applied to Eqs. (21)–(22) and calculatedwith Eqs. (34)–(38) and (44)–
(48), allows to obtain the total mixed shifts per orbit of order O (

J2/c2
)
. They are

�a
(
J2/c2

)

mix = 9π J2 R2 μ

4 c2 a2
(
1 − e2

)4 A
(
J2/c2

)

, (49)

� e
(
J2/c2

)

mix = − 3π J2 R2 μ

8 c2 a3
(
1 − e2

)3 E
(
J2/c2

)

, (50)

�I
(
J2/c2

)

mix = − 3π J2 R2 μ

c2 a3
(
1 − e2

)3 I
(
J2/c2

)

, (51)

��

(
J2/c2

)

mix = −3π J2 R2 μ csc I

c2 a3
(
1 − e2

)3 N
(
J2/c2

)

, (52)
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�ω

(
J2/c2

)

mix = − 3π J2 R2 μ csc I

16 c2 a3 e
(
1 − e2

)3 P
(
J2/c2

)

, (53)

�η

(
J2/c2

)

mix = − 3π J2 R2 μ

16 c2 a3 e
(
1 − e2

)7/2 H
(
J2/c2

)

, (54)

where

A
(
J2/c2

)

:=
6∑

j=1

A
(
J2/c2

)

j T̂ j , (55)

E
(
J2/c2

)

:=
6∑

j=1

E
(
J2/c2

)

j T̂ j , (56)

I
(
J2/c2

)

:=
6∑

j=1

I
(
J2/c2

)

j T̂ j , (57)

N
(
J2/c2

)

:=
6∑

j=1

N
(
J2/c2

)

j T̂ j , (58)

P
(
J2/c2

)

:=
6∑

j=1

P
(
J2/c2

)

j T̂ j , (59)

H
(
J2/c2

)

:=
6∑

j=1

H
(
J2/c2

)

j T̂ j . (60)

The explicit forms of the coefficientsA
(
J2/c2

)

1 , . . .H
(
J2/c2

)

6 entering Eqs. (55)–(60) are
displayed in AppendixA.2.

3 Themixed averaged precessions

In calculating themixed averaged orbital precessions κ̇

(
J2/c2

)

mix , caution is needed. Their
full expressions do not consist only of the ratios

�κ

(
J2/c−2

)

mix

P(K)
b

(61)

of the mixed net shifts per orbit of Eqs. (49)–(54) to the Keplerian orbital period.
Indeed, one has to include also the ratios of the direct averaged variations �κ(pK) of
the orbital elements due to a given pK acceleration A(pK) to the total pK period

P(pK)
b = P(K)

b + �P(pK)
b (62)
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including the corrections �P(pK)
b to P(K)

b due to A(1) and A(2), and expanding the
resulting expressions to the order required to have just the desired mixed effects. Also
in this case, the contributions of order O (

A2
)
are neglected.

By following the calculational approach of Iorio [12] for the anomalistic orbital
period, it turns out that the corrections to P(K)

b induced by Eqs. (21)–(22) are

�P(J2)
b = 3π J2 R2 (1 + e cos f0)3

2
√

μ a
(
1 − e2

)3
[−2 + 3

(
T̂2 + T̂3 cos 2u0

) + 6 T̂6 sin 2u0
]
,

(63)

�P(1pN)
b = 3π

√
μ a

c2
(
1 − e2

)2

[
6 + 7 e2 + 2 e4 + 2 e

(
7 + 3 e2

)
cos f0 + 5 e2 cos 2 f0

]
,

(64)

respectively.
The averaged orbital changes due to J2 are

�a(J2) = 0, (65)

� e(J2) = 0, (66)

�I (J2) = − 3π J2 R2 T̂4

a2
(
1 − e2

)2 , (67)

��(J2) = −3π J2 R2 csc I T̂5

a2
(
1 − e2

)2 , (68)

�ω(J2) = 3π J2 R2
(
2 − 3 T̂2 + 2 T̂5 cot I

)

2 a2
(
1 − e2

)2 , (69)

�η(J2) = 3π J2 R2
(
2 − 3 T̂2

)

2 a2
(
1 − e2

)3/2 . (70)

The 1pN averaged orbital shifts are

�a(1pN) = 0, (71)

� e(1pN) = 0, (72)

�I (1pN) = 0, (73)

��(1pN) = 0, (74)

�ω(1pN) = 6π μ

c2 a
(
1 − e2

) , (75)

�η(1pN) = 6π μ

c2 a

(
2 − 5√

1 − e2

)
. (76)
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Equations (65)–(69) and (71)–(75) are calculated by posing f = f0+2π in Eqs. (34)–
(38) and (44)–(48), respectively. Equations (70) and (76) can straightforwardly be
obtained from Eqs. (48) and (29), respectively, of Iorio [14] by multiplying the latter
ones by P(K)

b = 2π/n(K)
b .

By using Eq. (64) with Eqs. (65)–(70) and (63) with Eqs. (71)–(76), one finally gets

ȧ
(
J2/c−2)

mix = 0, (77)

ė
(
J2/c−2

)

mix = 0, (78)

İ
(
J2/c−2

)

mix = 9 n(K)
b J2 R2 μ T̂4

4 c2 a3
(
1 − e2

)4
[
6 + 7 e2 + 2 e4 + 2 e

(
7 + 3 e2

)
cos f0 + 5 e2 cos 2 f0

]
, (79)

�̇

(
J2/c−2

)

mix = 9 n(K)
b J2 R2 μ T̂5 csc I

4 c2 a3
(
1 − e2

)4
[
6 + 7 e2 + 2 e4 + 2 e

(
7 + 3 e2

)
cos f0 + 5 e2 cos 2 f0

]
,

(80)

ω̇

(
J2/c−2)

mix = 9 n(K)
b J2 R2 μ

8 c2 a3
(
1 − e2

)4
{[
6 + 7 e2 + 2 e4 + 2 e

(
7 + 3 e2

)
cos f0 + 5 e2 cos 2 f0

]

× (−2 + 3 T̂2 − 2 T̂5 cot I
) + 2 (1 + e cos f0)

3

[
2 − 3

(
T̂2+T̂3 cos 2u0

) − 6 T̂6 sin 2u0
]}

, (81)

η̇

(
J2/c−2

)

mix = − 9 n(K)
b J2 R2 μ

8 c2 a3
(
1 − e2

)7/2
{(
2 − 3 T̂2

) [
6 + 7 e2 + 2 e4 + 2 e

(
7 + 3 e2

)

cos f0 + 5 e2 cos 2 f0
] +

+2
(
5 − 2

√
1 − e2

)
(1 + e cos f0)

3 [
2 − 3

(
T̂2 + T̂3 cos 2u0

) − 6 T̂6 sin 2u0
]}

. (82)

In Eqs. (81)–(82), it is u0 := f0 + ω. Eqs. (77)–(82) add to the ratios of Eqs. (49)–
(54) to the Keplerian orbital period P(K)

b in order to give the total mixed orbital
precessions of order O (

J2/c2
)
; the resulting expressions are too cumbersome to be

shown here.
Equations (77)–(82) represent, together with the results of Sect. 2, the primary find-

ings of this investigation. Some special configurations will be investigated in some
more detail in the next Sect. 4.

4 Some special orbital configurations

Two peculiar orbital configurations are considered here: a) equatorial (Sect. 4.1) and
b) polar (Sect. 4.2) orbits.

By parameterizing k̂ in terms of the right ascension (RA) α and declination (DEC)
δ of the body’s north pole of rotation as

k̂ = {cosα cos δ, sin α cos δ, sin δ} , (83)
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one obtains

k̂·l̂ = cos δ cos (α − �) , (84)

k̂·m̂ = sin I sin δ + cos I cos δ sin (α − �) , (85)

k̂·ĥ = cos I sin δ − sin I cos δ sin (α − �) . (86)

These expressions will be used in what follows.

4.1 Equatorial orbit

Let us assume that the satellite’s orbital plane lies in the equatorial plane of the primary,
whatever the orientation of the latter in the adopted reference frame, i.e., for generic
values of α, δ: for such an orbital geometry, it is

k̂·l̂ = k̂·m̂ = 0, (87)

k̂·ĥ = 1. (88)

According to Eqs. (84)–(86), the conditions of Eqs. (87)–(88) are satisfied if

I = π

2
− δ, (89)

� = α + π

2
. (90)

Then, Eqs. (49)–(54) reduce to

�a
(
J2/c2

)

mix = 0, (91)

�e
(
J2/c2

)

mix = 0, (92)

�I
(
J2/c2

)

mix = 0, (93)

��

(
J2/c2

)

mix = 0, (94)

�ω

(
J2/c2

)

mix = 3π J2 R2 μ
(
44 + 17 e2 − 64 e cos f0

)

4 c2 a3
(
1 − e2

)3 , (95)

�η

(
J2/c2

)

mix = 3π J2 R2 μ

4 c2 a3
(
1 − e2

)7/2

(
−88 + 16

√
1 − e2 + e2

[
63 − 5 e2 + 24

√
1 − e2

]

+e
{
3 e2

[
7 + 4

√
1 − e2

]
+ 8

[
−17 + 6

√
1 − e2

]}
cos f0+

+8 e2
[
−5 + 3

√
1 − e2

]
cos 2 f0 + e3

[
−5 + 4

√
1 − e2

]
cos 3 f0

)
, (96)

while Eqs. (77)–(82) become

ȧ
(
J2/c2

)

mix = 0, (97)
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ė
(
J2/c2

)

mix = 0, (98)

İ
(
J2/c2

)

mix = 0, (99)

�̇

(
J2/c2

)

mix = 0, (100)

ω̇

(
J2/c2

)

mix

= −9 n(K)
b J2 R2 μ

[
8 + 8 e2 + 4 e4 + e (16 + 9 e2) cos f0 + 4 e2 cos 2 f0 − e3 cos 3 f0

]

8 c2 a3
(
1 − e2

)4 ,

(101)

η̇

(
J2/c2

)

mix = 9 n(K)
b J2 R2 μ

4 c2 a3
(
1 − e2

)7/2

[
6 + 7 e2 + 2 e4 + 2 e

(
7 + 3 e2

)
cos f0+

+2
(
5 − 2

√
1 − e2

)
(1 + e cos f0)

3 + 5 e2 cos 2 f0
]
. (102)

4.2 Polar orbit

Let us, now, assume that the body’s spin axis, irrespectively of its orientation, i.e., for
generic values of α, δ, lies somewhere in the satellite’s orbital plane between l̂ and m̂.
In such a scenario, it is

k̂·l̂ �= 0, (103)

k̂·m̂ �= 0, (104)

k̂·ĥ = 0. (105)

According to Eqs. (84)–(86), the conditions of Eqs. (103)–(105) are fulfilled if

I = π

2
, (106)

� = α; (107)

indeed, with Eqs. (106)–(107), one has just

k̂·l̂ = cos δ, (108)

k̂·m̂ = sin δ, (109)

k̂·ĥ = 0. (110)

Thus, Eqs. (49)–(54) reduce to

�a
(
J2/c2

)

mix = − 9π J2 R2 μ

4 c2 a2
(
1 − e2

)4
{
e3 sin ( f0 + 2δ − 2ω) + e2

(
12 + e2

)
sin (2δ − 2ω)

−2
[
4 + 6 e2 + 3 e

(
4 + e2

)
cos f0

]
sin (2 f0 − 2δ + 2ω) − 6 e2

sin (4 f0 − 2δ + 2ω)

−e3 sin (5 f0 − 2δ + 2ω)
}
, (111)
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�e
(
J2/c2

)

mix = 3π J2 R2 μ

8 c2 a3
(
1 − e2

)3 {4 [3 sin ( f0 − 2δ + 2ω) + 7 sin (3 f0 − 2δ + 2ω)]

+e
[−3 e sin ( f0 + 2δ − 2ω) − (

20 + 19 e2
)
sin (2δ − 2ω)

+ 60 sin (2 f0 − 2δ + 2ω) +
+18 sin (4 f0 − 2δ + 2ω) + 33 e sin ( f0 − 2δ + 2ω)

+ 17 e sin (3 f0 − 2δ + 2ω) +
+3 e sin (5 f0 − 2δ + 2ω)]} , (112)

�I
(
J2/c2

)

mix = 0, (113)

��

(
J2/c2

)

mix = 0, (114)

�ω

(
J2/c2

)

mix = − 3π J2 R2 μ

8 c2 a3 e
(
1 − e2

)3
((−12 + 45 e2

)
cos ( f0 − 2δ + 2ω)

+ (
28 + 19 e2

)
cos (3 f0 − 2δ + 2ω) +

+e
{
2

(−10 + 9 e2
)
cos (2δ − 2ω) + 60 cos (2 f0 − 2δ + 2ω) +

+18 cos (4 f0 − 2δ + 2ω) + 3 e cos (5 f0 − 2δ + 2ω) +
+44 + 17 e2 − e [64 cos f0 + 3 cos ( f0 + 2δ − 2ω)]

})
, (115)

�η

(
J2/c2

)

mix = − 3π J2 R2 μ

16 c2 a3 e
(
1 − e2

)7/2
[
−2 e

{
88 + 5 e4 − 16

√
1 − e2 − 3 e2

(
21 + 8

√
1 − e2

)
−

−e
[
3 e2

(
7 + 4

√
1 − e2

)
+ 8

(
−17 + 6

√
1 − e2

)]
cos f0+

+e2
[
8

(
5 − 3

√
1 − e2

)
cos 2 f0 + e

(
5 − 4

√
1 − e2

)
cos 3 f0

]}

+ cos 2δ
{
3 e2

(
2 − 7 e2

)
cos ( f0 − 2ω) −

−2 e
(−20 + 7 e2 + 13 e4

)
cos 2ω + 12 e

[
−14 − 11 e2 + 8

√
1 − e2 (1 + e cos f0)

3
]
cos 2u0

−18 e
(
2 + 3 e2

)
cos (4 f0 + 2ω) − 3

(−8 + 74 e2 + 9 e4
)
cos ( f0 + 2ω)

− (
4 + e2

) (
14 + 31 e2

)
cos (3 f0 + 2ω) − 3 e2

(
2 + 3 e2

)
cos (5 f0 + 2ω)

}

− sin 2δ
(
3 e2

[
2 + e2

(
−7 + 4

√
1 − e2

)]
sin ( f0 − 2ω)

+ 2 e
[
−20 + 13 e4 + e2

(
7 − 36

√
1 − e2

)]
sin 2ω

+12 e
[
14 − 8

√
1 − e2 + e2

(
11 − 12

√
1 − e2

)]
sin 2u0

+ 18 e
[
2 + e2

(
3 − 4

√
1 − e2

)]
sin (4 f0 + 2ω)

+
{
−24 + 3 e2

[
74 − 48

√
1 − e2 + e2

(
9 − 12

√
1 − e2

)]}
sin ( f0 + 2ω)

+
{
56 + e2

[
138 − 144

√
1 − e2 + e2

(
31 − 36

√
1 − e2

)]}
sin (3 f0 + 2ω)

+3 e2
[
2 + e2

(
3 − 4

√
1 − e2

)]
sin (5 f0 + 2ω)

)]
, (116)
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while Eqs. (77)–(82) can be written as

ȧ
(
J2/c2

)

mix = 0, (117)

ė
(
J2/c2

)

mix = 0, (118)

İ
(
J2/c2

)

mix = 0, (119)

�̇

(
J2/c2

)

mix = 0, (120)

ω̇

(
J2/c2

)

mix = 9 n(K)
b J2 R2 μ

8 c2 a3
(
1 − e2

)4
{
6 + 7 e2 + 2 e4 + 2 e

(
7 + 3 e2

)
cos f0 + 5 e2 cos 2 f0

−2 (1 + e cos f0)
3 [1 + 3 cos (2 f0 − 2δ + 2ω)]

}
, (121)

η̇

(
J2/c2

)

mix = − 9 n(K)
b J2 R2 μ

8 c2 a3
(
1 − e2

)7/2
{−6 − 7 e2 − 2 e4 − 2 e

(
7 + 3 e2

)
cos f0 − 5 e2 cos 2 f0

+2
(
−5 + 2

√
1 − e2

)
(1 + e cos f0)

3 [1 + 3 cos (2 f0 − 2δ + 2ω)]
}

. (122)

4.3 Numerical estimates

Here, some order-of-magnitude evaluations of the size of the effects derived in the
previous Sects. 4.1 to 4.2 for some natural and artificial bodies in our solar system are
given.

For the sake of definiteness, just the amplitude

dψ

dt
:= n(K)

b J2 R2 μ

c2 a3
(123)

is calculated.
For Mercury and the Sun, Eq. (123) yields 5 × 10−4 microarcseconds per century(

μas cty−1
)
, while for an Earth’s artificial satellite like, e.g., LAGEOS [21], one has

ψ̇ = 0.3 milliarcseconds per year
(
mas yr−1

)
. For Juno [2], currently orbiting Jupiter,

it is ψ̇ = 0.04microarcseconds per year
(
μas yr−1

)
.While these figures are only rough

indications, they should make it clear how small these effects are. Suffice it to say that,
according to the recent planetary ephemerides EPM2017 [22], the current (formal)
accuracy in constraining any possible anomalous perihelion precession of Mercury
may be calculated to be � 10μas cty−1 [13]. Furthermore, it is still debated if the
satellites of the LAGEOS family were actually able to measure the Lense-Thirring
signal of a few tens of mas yr−1 [5] to the per cent level [24].

It is unclear if such mixed effects, which do contribute to the overall orbital evo-
lution, could be actually measurable independently of other dynamical features of
motion. Indeed, they do not come from some new pK acceleration, still unmodelled
in the softwares used worldwide to process astronomical and geodetic observations of
interest. If so, it could be possible, at least in principle, to include it in the dynamical
models and estimate some dedicated solve-for parameters in the usual least-square
approach of real data reductions. On the other hand, the standard pK accelerations of
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Eqs. (21) and (22) giving rise to the features of motion which are the subject of this
paper are accurately modelled; thus, just very tiny signatures, due to the current level
of mismodeling in Eqs. (21)–(22), would impact the post-fit residuals produced in data
analyses. Given the already tiny magnitude of the nominal values of such effects, it is
even more unlikely than their resulting mismodelled signals may leave any detectable
trace.

5 Summary and conclusions

To the 1pN order, the net orbital effects per orbit experienced by a test particle moving
around an oblate body include not only those directly induced by the 1pN acceleration
of order O (

J2/c2
)
, but further ones as well, also of the same order, due to the simul-

taneous action of two standard pK accelerations: the Newtonian one caused by the
quadrupole mass moment J2 of the primary, and the 1pN gravitoelectric one causing
the formerly anomalous perihelion precession of Mercury in the field of the Sun. Such
indirect features of motion of order O (

J2/c2
)
arise because, during an orbital revo-

lution, the orbital elements do not remain constant, being instantaneously displaced
by each of the pK accelerations. Moreover, the orbital period over which the average
is performed is, actually, the time interval between two successive passages at the
pericenter which instantaneously moves because of the pK perturbations.

We presented a general approach to analytically calculate the mixed effects arising
from the interplay of two pK accelerations, irrespectively of their physical origin. As a
result, we, first, explicitly calculated the mixed net shifts per orbit of all the osculating
Keplerian orbital elements to the order of O (

J2/c2
)
. It turned out that all of them

undergo generally non-vanishing changes of this type.
Then, we worked out their mixed averaged rates elucidating that their total expres-

sions can only be obtained if also the ratios of the direct net shifts per orbit due to each
pK acceleration to the pK orbital period are taken in addition to the ratios of the mixed
ones to the Keplerian one. Also in this case, analytic expressions of general validity
were derived: no approximations pertaining both the satellite’s orbital geometry and
the spatial orientation of the body’s spin axis were adopted. It turned out that the
semimajor axis and the eccentricity stay constant in the aforementioned calculation.

Subsequently, we obtained simplified expressions for all the mixed effects under
consideration that are specialized to the equatorial and polar orbit scenarios. In the
former case, only the pericenter and themean anomaly at epoch undergo non-vanishing
mixed variations. In the latter, while the mixed net shifts per orbit of the inclination
and the node are zero, the precessional contributions due to the pK period are non-
vanishing only for the pericenter and the mean anomaly at epoch.

The nominal size of the effects studied in this work is very tiny for various
astronomical scenarios of potential interest in our solar system; as an example, the
perihelion of Mercury would be impacted at the level of � 10−4 μas cty−1, compared
to today’s (formal) accuracy in constraining any possible anomalous precession of just
� 10μas cty−1. Furthermore, since they arise from the interplay of standard acceler-
ations which are routinely modelled to a high level of accuracy in the softwares used
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in real data reductions, only mismodelled signatures, much smaller than the already
tiny nominal ones, should affect the post-fit residuals produced in data analyses.

Data availibility No new data were generated or analysed in support of this research.
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A Coefficients of some orbital variations

The coefficients T̂ j , j = 1, 2, . . . 6 entering Eqs. (39)–(43) and (55)–(60) in Sect. 2.2
are

T̂1 := 1, (A1)

T̂2 :=
[(

k̂·l̂
)2 +

(
k̂·m̂

)2]
, (A2)

T̂3 :=
[(

k̂·l̂
)2 −

(
k̂·m̂

)2]
, (A3)

T̂4 :=
[(

k̂·ĥ
) (

k̂·l̂
)]

, (A4)

T̂5 :=
[(

k̂·ĥ
) (

k̂·m̂
)]

, (A5)

T̂6 :=
[(

k̂·l̂
) (

k̂·m̂
)]

. (A6)

They depend on I and�, and on the polar angles in terms of which k̂ is parameterized;
see, e.g., Eqs. (83)–(86).

A.1 Coefficients of the instantaneous Newtonian shifts due to J2

Here, we deal with the instantaneous Newtonian shifts induced by J2 calculated in
Sect. 2.2. We display the explicit expressions of the coefficientsA(J2)

1 , . . .P(J2)
6 enter-

ing Eqs. (39)–(43), which are

A(J2)
1 := 4 e

[
−3

(
4 + e2

)
cos f + e (−6 cos 2 f − e cos 3 f )

]
− [ f → f0] , (A.1.1)

A(J2)
2 := 6 e

[
3

(
4 + e2

)
cos f + e (6 cos 2 f + e cos 3 f )

]
− [ f → f0] , (A.1.2)

A(J2)
3 := 3

(
e3 cos ( f − 2ω) + 6 e

{[
2 e +

(
4 + e2

)
cos f

]
cos 2u + e cos (4 f + 2ω)

}

+ e3 cos (5 f + 2ω) −
−16 sin f sin ( f + 2ω)) − [ f → f0] , (A.1.3)

A(J2)
4 := 0, (A.1.4)

A(J2)
5 := 0, (A.1.5)
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A(J2)
6 := 6

(
16 cos ( f + 2ω) sin f + e

{
−e2 sin ( f − 2ω) + 6

[
2 e +

(
4 + e2

)
cos f

]

sin 2u+
+6 e sin (4 f + 2ω) + e2 sin (5 f + 2ω)

})
− [ f → f0] , (A.1.6)

E(J2)
1 := 4

[
3

(
4 + e2

)
cos f + e (6 cos 2 f + e cos 3 f )

]
− [ f → f0] , (A.1.7)

E(J2)
2 := −6

[
3

(
4 + e2

)
cos f + e (6 cos 2 f + e cos 3 f )

]
− [ f → f0] , (A.1.8)

E(J2)
3 := −4 [3 cos ( f + 2ω) + 7 cos (3 f + 2ω)] + e {−e [3 cos ( f − 2ω)

+33 cos ( f + 2ω) + 17 cos (3 f + 2ω) + 3 cos (5 f + 2ω)] + 36 sin 2 f sin 2u

+120 sin f sin ( f + 2ω)} − [ f → f0] , (A.1.9)

E(J2)
4 := 0, (A.1.10)

E(J2)
5 := 0, (A.1.11)

E(J2)
6 := 6 e2 sin ( f − 2ω) − 8 [3 sin ( f + 2ω) + 7 sin (3 f + 2ω)]

− 2 e {24 [3 cos f cos 2u

+5 cos ( f + 2ω)] sin f + e [33 sin ( f + 2ω)

+17 sin (3 f + 2ω) + 3 sin (5 f + 2ω)]} − [ f → f0] , (A.1.12)

I(J2)
1 := 0, (A.1.13)

I(J2)
2 := 0, (A.1.14)

I(J2)
3 := 0, (A.1.15)

I(J2)
4 := 6 f + 6 e sin f + 3 sin 2u + 3 e sin ( f + 2ω) + e sin (3 f + 2ω) − [ f → f0] ,

(A.1.16)

I(J2)
5 := − {3 cos 2u + e [3 cos ( f + 2ω) + cos (3 f + 2ω)]} − [ f → f0] , (A.1.17)

I(J2)
6 := 0, (A.1.18)

N (J2)
1 := 0, (A.1.19)

N (J2)
2 := 0, (A.1.20)

N (J2)
3 := 0, (A.1.21)

N (J2)
4 := − {3 cos 2u + e [3 cos ( f + 2ω) + cos (3 f + 2ω)]} − [ f → f0] , (A.1.22)

N (J2)
5 := 6 f + 6 e sin f − 3 sin 2u − e [3 sin ( f + 2ω) + sin (3 f + 2ω)] − [ f → f0] ,

(A.1.23)

N (J2)
6 := 0, (A.1.24)

P(J2)
1 := 48 e f + 8

(
6 + 5 e2 + 6 e cos f + e2 cos 2 f

)
sin f − [ f → f0] , (A.1.25)

P(J2)
2 := 6

[
−12 e f − 2

(
6 + 5 e2 + 6 e cos f + e2 cos 2 f

)
sin f

]
− [ f → f0] , (A.1.26)

P(J2)
3 := 4 [3 sin ( f + 2ω) − 7 sin (3 f + 2ω)]

− e {36 [3 cos ( f + 2ω) + cos (3 f + 2ω)] sin f +
+e [3 sin ( f − 2ω) + 21 sin ( f + 2ω) + 11 sin (3 f + 2ω) + 3 sin (5 f + 2ω)]}

− [ f → f0] , (A.1.27)

P(J2)
4 := −8 e {3 cos 2u + e [3 cos ( f + 2ω) + cos (3 f + 2ω)]} cot I
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− [ f → f0] , (A.1.28)

P(J2)
5 := −8 e cot I {−6 f + 3 sin 2u + e [−6 sin f + 3 sin ( f + 2ω) + sin (3 f + 2ω)]}

− [ f → f0] , (A.1.29)

P(J2)
6 := −6 e2 cos ( f − 2ω) + 6(−4 + 7 e2) cos ( f + 2ω) + 56 cos (3 f + 2ω)

+ 2 e {11 e cos (3 f + 2ω) +
+3 e cos (5 f + 2ω) − 36 sin f [3 sin ( f + 2ω) + sin (3 f + 2ω)]} − [ f → f0] .

(A.1.30)

A.2 Coefficients of the total mixed shifts per orbit of order J2/c2

Here, the mixed averaged shifts per orbit of order O (
J2/c2

)
, calculated in Sect. 2.2,

are treated. The explicit expressions of the coefficients A
(
J2/c2

)

1 , . . .H
(
J2/c2

)

6 entering
Eqs. (55)–(60) are displayed below. They read

A
(
J2/c2

)

1 := 0, (A.2.1)

A
(
J2/c2

)

2 := 0, (A.2.2)

A
(
J2/c2

)

3 := 8 (1 + e cos f0)
3 cos 2ω sin 2 f0

+
{
4 e

(
3 + e2

)
cos f0 + 4

(
2 + 3 e2

)
cos 2 f0 + e

[
3

(
4 + e2

)
cos 3 f0

+e
(
12 + e2 + 6 cos 4 f0 + e cos 5 f0

)]}
sin 2ω, (A.2.3)

A
(
J2/c2

)

4 := 0, (A.2.4)

A
(
J2/c2

)

5 := 0, (A.2.5)

A
(
J2/c2

)

6 := −2
{
4 e

(
3 + e2

)
cos f0 + 4

(
2 + 3 e2

)
cos 2 f0

+e
[
3

(
4 + e2

)
cos 3 f0 + e

(
12 + e2 + 6 cos 4 f0 + e cos 5 f0

)]}
cos 2ω+

+ 16 (1 + e cos f0)
3 sin 2 f0 sin 2ω, (A.2.6)

E
(
J2/c2

)

1 := 0, (A.2.7)

E
(
J2/c2

)

2 := 0, (A.2.8)

E
(
J2/c2

)

3 := − {4 [3 sin ( f0 + 2ω) + 7 sin (3 f0 + 2ω)]

+ e
[
−3 e sin ( f0 − 2ω) +

(
20 + 19 e2

)
sin 2ω + 60 sin u0 + 18 sin (4 f0 + 2ω)

+33 e sin ( f0 + 2ω) + 17 e sin (3 f0 + 2ω) + 3 e sin (5 f0 + 2ω)]} , (A.2.9)

E
(
J2/c2

)

4 := 0, (A.2.10)

E
(
J2/c2

)

5 := 0, (A.2.11)

E
(
J2/c2

)

6 := 8 [3 cos ( f0 + 2ω) + 7 cos (3 f0 + 2ω)]

+ 2 e
[
3 e cos ( f0 − 2ω) +

(
20 + 19 e2

)
cos 2ω + 60 cos u0

+ 18 cos (4 f0 + 2ω)
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+33 e cos ( f0 + 2ω) + 17 e cos (3 f0 + 2ω) + 3 e cos (5 f0 + 2ω)] , (A.2.12)

I
(
J2/c2

)

1 := 0, (A.2.13)

I
(
J2/c2

)

2 := 0, (A.2.14)

I
(
J2/c2

)

3 := 0, (A.2.15)

I
(
J2/c2

)

4 := 5 e2 + 3 cos u0 + e [−16 cos f0 + 2 e cos 2ω

+3 cos ( f0 + 2ω) + cos (3 f0 + 2ω)] , (A.2.16)

I
(
J2/c2

)

5 := 3 sin u0 + e [2 e sin 2ω + 3 sin ( f0 + 2ω) + sin (3 f0 + 2ω)] , (A.2.17)

I
(
J2/c2

)

6 := 0, (A.2.18)

N
(
J2/c2

)

1 := 0, (A.2.19)

N
(
J2/c2

)

2 := 0, (A.2.20)

N
(
J2/c2

)

3 := 0, (A.2.21)

N
(
J2/c2

)

4 := 3 sin u0 + e [2 e sin 2ω + 3 sin ( f0 + 2ω) + sin (3 f0 + 2ω)] , (A.2.22)

N
(
J2/c2

)

5 := 5 e2 − 3 cos u0

− e [16 cos f0 + 2 e cos 2ω + 3 cos ( f0 + 2ω) + cos (3 f0 + 2ω)] , (A.2.23)

N
(
J2/c2

)

6 := 0, (A.2.24)

P
(
J2/c2

)

1 := −4 e
(
44 + 17 e2 − 64 e cos f0

)
sin I , (A.2.25)

P
(
J2/c2

)

2 := 6 e
(
44 + 17 e2 − 64 e cos f0

)
sin I , (A.2.26)

P
(
J2/c2

)

3 := 2 {4 [−3 cos ( f0 + 2ω) + 7 cos (3 f0 + 2ω)]

+ e
[
−3 e cos ( f0 − 2ω) + 2

(
−10 + 9 e2

)
cos 2ω + 60 cos u0+

+ 18 cos (4 f0 + 2ω) + 45 e cos ( f0 + 2ω) + 19 e cos (3 f0 + 2ω)

+3 e cos (5 f0 + 2ω)]} sin I , (A.2.27)

P
(
J2/c2

)

4 := −16 e cos I {3 sin u0 + e [2 e sin 2ω + 3 sin ( f0 + 2ω) + sin (3 f0 + 2ω)]} ,

(A.2.28)

P
(
J2/c2

)

5 := 16 e cos I
{
−5 e2 + 3 cos u0 + e [16 cos f0 + 2 e cos 2ω

+3 cos ( f0 + 2ω) + cos (3 f0 + 2ω)]} , (A.2.29)

P
(
J2/c2

)

6 := 4 sin I {4 [−3 sin ( f0 + 2ω) + 7 sin (3 f0 + 2ω)]

+ e
[
3 e sin ( f0 − 2ω) + 2

(
−10 + 9 e2

)
sin 2ω + 60 sin u0

+ 18 sin (4 f0 + 2ω) + 45 e sin ( f0 + 2ω) + 19 e sin (3 f0 + 2ω)

+3 e sin (5 f0 + 2ω)]} , (A.2.30)

H
(
J2/c2

)

1 := 4 e
{
88 + 5 e4 − 16

√
1 − e2 − 3 e2

(
21 + 8

√
1 − e2

)

− e
[
3 e2

(
7 + 4

√
1 − e2

)
+ 8

(
−17 + 6

√
1 − e2

)]
cos f0+

+e2
[
8

(
5 − 3

√
1 − e2

)
cos 2 f0 + e

(
5 − 4

√
1 − e2

)
cos 3 f0

]}
, (A.2.31)
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H
(
J2/c2

)

2 := 6 e
{
−88 − 5 e4 + 16

√
1 − e2 + 3 e2

(
21 + 8

√
1 − e2

)

+ e
[
3 e2

(
7 + 4

√
1 − e2

)
+ 8

(
−17 + 6

√
1 − e2

)]
cos f0+

+4 e2
√
1 − e2 (6 cos 2 f0 + e cos 3 f0) − 5 e2 (8 cos 2 f0 + e cos 3 f0)

}
, (A.2.32)

H
(
J2/c2

)

3 := 3 e2
(
2 − 7 e2

)
cos ( f0 − 2ω) + 96 e

√
1 − e2 (1 + e cos f0)

3 cos u0

+ 8 [3 cos ( f0 + 2ω) − 7 cos (3 f0 + 2ω)]

+ e
[
−2

(
−20 + 7 e2 + 13 e4

)
cos 2ω − 12

(
14 + 11 e2

)
cos u0

− 18
(
2 + 3 e2

)
cos (4 f0 + 2ω)

− 3 e
(
74 + 9 e2

)
cos ( f0 + 2ω) − e

(
138 + 31 e2

)
cos (3 f0 + 2ω)

−3 e
(
2 + 3 e2

)
cos (5 f0 + 2ω)

]
, (A.2.33)

H
(
J2/c2

)

4 := 0, (A.2.34)

H
(
J2/c2

)

5 := 0, (A.2.35)

H
(
J2/c2

)

6 := −2
[
3 e2

[
2 + e2

(
−7 + 4

√
1 − e2

)]
sin ( f0 − 2ω)

+ 2 e
[
−20 + 13 e4 + e2

(
7 − 36

√
1 − e2

)]
sin 2ω+

+ 8 [−3 sin ( f0 + 2ω) + 7 sin (3 f0 + 2ω)]

+ e
(
12

[
14 − 8

√
1 − e2 + e2

(
11 − 12

√
1 − e2

)]
sin u0

+ 18
[
2 + e2

(
3 − 4

√
1 − e2

)]
sin (4 f0 + 2ω)

+ e
{
3

[
74 − 48

√
1 − e2 + e2

(
9 − 12

√
1 − e2

)]
sin ( f0 + 2ω)

+
[
138 − 144

√
1 − e2 + e2

(
31 − 36

√
1 − e2

)]

sin (3 f0 + 2ω) + 3
[
2 + e2

(
3 − 4

√
1 − e2

)]
sin (5 f0 + 2ω)

})]
. (A.2.36)
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