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Abstract
The non-trivial naked singularities that possess directional behavior in the charged and
uncharged Zipoy-Voorhees (ZV) spacetimes, known as γ −metrics are investigated
within the context of quantum mechanics. Classically singular spacetime is under-
stood as a geodesic incompleteness with respect to a particle probe, while quantum
singularity is understood as a non-unique evolution of test quantum wave packets. In
this study, quantum wave packets obeying Klein–Gordon equation are used to probe
timelike naked singularities. It is shown by rigorous mathematical calculations that
the outermost singularity developed in the charged and uncharged ZV spacetime on
the equatorial plane is quantummechanically singular for all values of the deformation
parameter γ . However, directional singularities that develop on the symmetry axis is
shown to be healed partially for specific range of the parameter γ , if the analysis is
restricted purposely to only specific mode (s-wave mode). Allowing arbitrary modes,
classical directional singularities remains quantum singular.

Keywords Zipoy-Voorhees metric · Directional singularities · Quantum
singularities · Klein-Gordon fields
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1 Introduction

The Kerr metric is accepted to be the most important solution to Einstein’s field
equations, which describes the field of a rotating black hole. It is generated from a
spinning spherical object and this unique feature makes Kerr metric a very convenient
choice for analyzing idealized astrophysical compact objects.

However, observations reveal that astrophysical compact objects are not perfectly
spherical. Our planet is a good example of this fact. In view of this, understanding
the observable universe in terms of the mass quadrupole moment of non-spherical
astrophysical compact objects requires understanding the static axially symmetric
solutions of Einstein’s equations that possess a mass quadrupole term. Among the
others, an intriguing solution of Einstein’s equations that describes the geometry of
non-spherical compact objects is the static axially-symmetric solution, which is known
as the γ− metric or Zipoy-Voorhees (ZV ) class of metrics [1–3]. This metric reduces
to static spherically symmetric Schwarzchild solution when γ = 1. For 0 < γ <

1, the central compact object is prolate, whereas for γ > 1, it is oblate. Hence,
γ measures the deviation from spherical symmetry. It has been known that when
0 < γ �= 1, the resulting solution is horizonless and displays naked singularities at
different locations. Some of these singularities show directional properties such that
the curvature invariant becomes unbounded at different points when it is approached
from different directions. To be more precise, when the singularity is approached
along the north pole (θ = 0) or south pole (θ = π), the curvature invariant becomes
bounded for γ ≥ 2. This directional behavior of the singularity has been analysed
classically in [4], by employing different coordinate systems. The main motivation of
authors was to understand this behavior, however, their attempt was unsuccessful. In
another study [5], it has been shown that the naked singularities of ZV metrics are
point-like for γ < 0, string-like for 0 < γ < 1 and ring-like when γ > 1.

At this stage it is crucial to clarify some points about the types of spacetime singular-
ities in general relativity. A classical singularity is indicated by incomplete geodesics
(i.e. there exist spacetime points not accessible by geodesics.) or incomplete paths of
bounded acceleration [6, 7]. This implies that the future time evolution of a test particle
cannot be predicted. Moreover, curvature invariants often become unbounded when
the singularity is approached. Another type is the quantum singularity. In this type, a
spacetime is quantum mechanically nonsingular if the time evolution of a test quan-
tum wave packet is uniquely determined by the initial wave packet. This is achieved
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in static spacetimes if the spatial portion of the Klein-Gordon operator is essentially
self adjoint. Otherwise the spacetime is regarded as quantum mechanically singular.

Recently, the charged version of ZV metric is obtained in [8]. The new metric
reduces to the spherically symmetric Reissner-Nordstrom solution when γ = 1. How-
ever, as in the case of uncharged ZV metric, the solution becomes singular whenever
0 < γ �= 1. The Weyl scalar �2 indicates that the new solution also possesses direc-
tional singularities whenever 0 < γ 2 < 3, except for γ �= 1. The interesting case is
encountered when the singularity is approached along the symmetry axis, namely, the
north pole or the south pole. In this particular case, the Weyl scalar �2 remains finite
as long as γ ≥ 2.

The main purpose of this paper is two fold. First, the naked singularities that form
in the charged and uncharged ZV solutions for all values of γ except zero and one will
be investigated. As a second scope, the directional singularities that form along the
symmetry axis will be analyzed separately. Our singularity analysis for both cases will
be based on the principles of quantummechanics. Our motivation for using a quantum
mechanical approach is to investigate the naked singularities with waves rather than
particles.

In this article, the method proposed byWald [9], which was developed by Horowitz
and Marolf (HM)[10], will be used for analyzing the naked singularities. This method
utilizes the unique time evolution ofwave packets for all times.Aunique time evolution
restricts the spatial part of the wave operator to be essentially self-adjoint. And hence,
a spacetime is regarded as nonsingular if the evolution of quantum states are uniquely
determined for all times with the assigned initial conditions.

Although the method of HM can only be used in static spacetimes with timelike
singularities, it has been found powerful and consistent, and thus, has been used in a
variety of spacetimes to see if there is any chance to regularize the singular spacetimes
with quantum waves rather than with particles [11, 13–16]. Studies so far reveal that
the understanding of spacetime singularities has not been completed yet. Timelike
singularities in static spacetimes addressed in this study constitute only one particular
type.We still lack a complete understanding of spacelike and null singularities in view
of quantum mechanics.

The paper is organized as follows. Section2 briefly describes the charged ZV metric
found recently in [8]. Definitions of quantum singularities and the foregoing analysis
are presented in Sect. 3. The paper is concluded with results and discussions in Sect. 4.

2 Brief review of the charged ZV−metric

Recently, the charged version of the ZV metric valid for all values of γ is obtained
in [8]. In obtaining the solution, the metric describing the collision of gravitational
waves coupled with electromagnetic waves [17, 18] is utilised. In this formalism, the
solutions to the field equations are found in prolate coordinates, which are useful
in the description of colliding gravitational waves. However, the resulting solution
is interpreted in a different coordinate system by transforming the solution into the
static, non-spherical form of ZV . With reference to the paper cited as [8], the metric
describing static, axially symmetric charged non-spherical compact objects is given by
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ds2 = �γ

K 2 dt
2 − K 2

�γ

[
�γ 2

�1−γ 2
(
dr2

�
+ r2dθ2

)
+ r2�sin2θdϕ2

]
, (1)

in which

�(r) = 1 − 2m

r
+ m2q2

r2
(2)

�(r , θ) = 1 − 2m

r
+ m2

r2

(
q2 + p2sin2θ

)
(3)

and

K = K (r) = (1 + p)

(
1 − m(1 − p)

r

)γ

− (1 − p)

(
1 − m(1 + p)

r

)γ

, (4)

where parameters p and q are real constants that satisfy p2 + q2 = 1. Here, q is
a charge related parameter defined by Q = mq, and the physical mass is related to
M = mγ . It is straightforward to check that solution (1) reduces to Schwarzchild
solution with γ = 1, q = 0 and p = 1 (followed by a trivial scaling of coordinates).
When γ = 1, p = 1 and q �= 0, solution (1) reduces to the Reissner-Nordstrom.

We propose two electromagnetic fields as possible candidates for the spacetime of
concern.

i) Pure magnetic source with the vector potential

Aμ = (0, 0, 0,C0cosθ), (5)

where C0 = const . = 2
√
2mγ pq is a magnetic charge. This corresponds

to the energy-momentum tensor, T ν
μ = I

4diag(−1,−1, 1, 1), in which I =
2C2

0
r4K 4 �

−(γ−1)2�γ 2−1 satisfying the Einstein-Maxwell equations Rν
μ = −T ν

μ

(8πG = 1 = c).
ii) Pure electric source with the static potential

Aμ = ( f (r), 0, 0, 0), (6)

where f (r) = C0
∫ r �γ−1dr

r2K 2 with the energy-momentum tensor T ν
μ = I

4diag(1, 1,

−1,−1), in which I = − 2C2
1

r4K 4 �
(γ−1)2�γ 2−1

The singularity structure of charged ZV− metric can be examined by calculating the
null tetrad (Weyl scalar), �2. With reference to paper [8], it is given by

�2(r , θ) = �1+γ−γ 2

4K 2 �γ 2−1
{ m

r4�

[
(r − mq2)(1 − γ 2 − 2γ ) + mγ q2(γ − 1)

]

+ 3(1 − γ 2)

r2
+ γ (γ − 1)(γ − γ 2 − 2)m2(r − mq2)2

r6�2
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+ (1 − γ 2)(γ 2 − 2)m2
[
m(sin2θ + q2cos2θ) − r

]2
r6�2

− (1 − γ 2)(1 + 2γ − 2γ 2)m2(mq2 − r)
[
r − m(sin2θ + q2cos2θ)

]
r6��

+ (1 − γ 2)(4m − 3r)

r3�
+ K ′′

K
+ K ′

K[
−3

K ′

K
+ 2

r

(
−γ 2 + mγ (2 − γ )(r − mq2)

r2�
+ (1 − γ 2)(r − m)

r�

)]

+ (1 − γ 2)p2m2

r4�2

(
cos2θ − p2m2

�r2
sin2θ

)}
. (7)

We note that in this expression the terms involving K , K ′ = dK
dr and K ′′ = d2K

dr2
are not given explicitly. This is due to the fact that since K (r) �= 0 (for p > 0), we do
not get any extra singularities, and K (r) indicates the existence of a Maxwell source.
A careful analysis reveals that possible singularities occur at r = 0, and the roots of
the functions can be found by setting �(r) = 0 and �(r , θ) = 0. We find that for
γ > 0, the outermost singularitiy is due to the root of �(r) = 0, which implies

r� = m(1 + p), (8)

as long as γ �= 1. The singularities due to the roots of �(r , θ) = 0 are valid only for
γ 2 < 3. To see this, we make a power counting of �(r , θ) in Eq.(7). Consequently,
we obtain

r� = m(1 + pcosθ) (9)

which shows that for θ = 0, it coincides with the root of �(r) = 0. Since 0 ≤ θ ≤ π ,
the singularity of �(r , θ) = 0 satisfies

m(1 − p) ≤ r� ≤ m(1 + p). (10)

In the equatorial plane (θ = π/2) we have r� = m which corresponds to a ring
singularity. The θ− dependence in the singularity structure is peculiar to all γ− met-
rics, which are called directional singularities. This implies that approaching to each
singularity from different directions will give rise to different powers of divergences.
In summary, the charged ZV -metrics for γ > 0, (with the conditions γ �= 1) admit
naked singularities without horizons. The metric displays multi-singular structure at
different radial hypersurfaces. The outermost singularity r� = m(1 + p) covers all
the others, which will be the target of our probe.

Since the aim of this study is to analyse timelike naked singularities, it is very
important to verify the character of the naked singularities developed in the ZV space-
times whether it is nulllike or timelike. Simply we can show that the surface described
by S(r) = r − r+ for r+ = m(1 + p) is timelike by calculating the normal vector to
this surface in the limit of r → r+:
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(∇S)2 = grr
(
dS

dr

)2

= −�γ 2−1

K 2 �1+γ−γ 2 |r→r+

= − 1

K 2

(
m2 p2sin2θ

r2+

)γ 2−1 (
(r − r+) (r − r−)

r2+

)1+γ−γ 2

< 0,

(11)

where r− = m(1 − p) and K = (2p)γ (1 + p)1−γ < ∞, in the limit of r → r+.
Since (∇S)2 < 0, normal vector to singular surface S is spacelike implies that the
singular surface S is timelike. This result is valid also for the uncharged case.

Our aim in this paper is to understand the non-trivial examples of naked singularities
developed in the charged and uncharged ZV metrics in view of quantum mechanics.
In doing so, quantum wave packet obeying the Klein-Gordon equation will be used to
probe the singularity.

3 Quantum probe of naked singularities

Understanding and resolving spacetime singularities in the solutions of Einstein’s
equations are of upmost importance as long as the deterministic nature of the the-
ory of classical relativity is concerned. The resolution of singularities becomes more
important in cases when the spacetime singularity is not hidden by horizon(s) and
becomes visible to distant observers - naked singularities. Classically, singularities
are known as a geodesic incompleteness (with respect to point particle probe). An
important indication of the existence of a singularity is the presence of unbounded
curvature invariants. As a consequence, all known laws of physics become invalid and
classical attempts to understand singularities become incapable for further analysis. In
such a regime where the curvature invariants become unbounded, it becomes essential
to take quantum effects into account. Thus, analysing the singularities in these regimes
requires the use of the tools of quantum theory of gravity. Unfortunately, a consistent
quantum theory of gravity has not been developed yet. In view of this fact, any method
that incorporates quantum mechanics in analysing the singularity can be regarded as
a right step.

One of the important contributions along this line is the physically sensible pre-
scription proposed by Wald [9]. In this prescription, a Klein-Gordon massless scalar
field propagating in an arbitrary static spacetime admitting a timelike singularity can
be used to probe the singularity. Thus, the classical particle probe is replaced by a quan-
tumwave packet (scalar wave obeying Klein-Gordon equation). Here, the evolution of
a quantumwave packet is translated into the problem of defining self-adjoint extension
of the spatial part of the wave operator. This idea is further developed by Horowitz
and Marolf [10], who proposed that a classically timelike singular static spacetime
is quantum mechanically nonsingular when the evolution of any state is uniquely
defined for all time. If the evolution is not uniquely defined, then there is some loss of
predictability and spacetime is said to be singular in the quantum mechanical sense.
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To illustrate this, we consider the propagation of a quantum wave packet satisfying
the massive Klein-Gordon wave equation (∇μ∇μ − m̃2)ψ = 0 in a nonglobally
hyperbolic static spacetime. This equation can be written by splitting temporal and
spatial parts as

∂2ψ

∂t2
= V Di (V Diψ) − V 2m̃2ψ (12)

where V 2 = −ξμξμ and Di is the spatial covariant derivative on a spatial hypersurface
�, which is orthogonal to the static Killing field ξμ. The spatial operator A is defined
on the Hilbert space H of square integrable functions on spatial slice � (L2(�)),

A = −V Di (V Di ) + V 2m̃2. (13)

It has been shown in [19] that, a consistent quantum field theory is possible for a
single relativistic particle in a static globally hyperbolic spacetime. This idea has been
extended by HM to cover static spacetimes having timelike singularities. In doing so,
the positive frequency solution of wave operator A with a mass satisfying 0 ≤ m̃ is
considered. The wave function for a free relativistic particle is given in [10] by

i
dψ

dt
= √

AEψ, (14)

whose solution is

ψ (t) = e−i t
√
AEψ (0) . (15)

Here AE denotes the self adjoint extension of the operator defined in Eq. (13). The
important point here is to show that operator A has a unique extension. If the extension
is unique, the future time evolution of a wave packet is uniquely defined for all times
and this is interpreted as quantum regular. But if the extension is not unique, one must
know which extension is used for a time evolution and this in turn will be regarded as
quantum singular.

The uniqueness of the extension for the spatial operator A can be checked by
considering the solutions of the equation

(
A∗ ± i

)
ψ = 0, (16)

and it can be shown that there are no square integrable solutions [20]. This implies
that the solution does not belong to Hilbert space and the self-adjoint extension of
operator A is unique. Thus, the spatial operator A is essentially self-adjoint.

The spatial part of massive Klein-Gordon equation for the metric given in Eq.(1) is
obtained as
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A = − K−4�2γ−γ 2+1�γ 2−1 ∂2

∂r2

− K−4�2γ−γ 2
�γ 2−1

r2sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
− K−4�2γ−1

r2 sin2 θ

∂2

∂ϕ2

− K−4�2γ−γ 2
�γ 2−1

(
2�

r
+ �′ (r)

)
∂

∂r
+ K−2�γ m̃2.

(17)

If we substitute Eq. (17) into Eq. (16), we obtain

[
−K−4�2γ−γ 2+1�γ 2−1 ∂2

∂r2

−K−4�2γ−γ 2
�γ 2−1

r2sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
− K−4�2γ−1

r2 sin2 θ

∂2

∂ϕ2

−K−4�2γ−γ 2
�γ 2−1

(
2�

r
+ �′ (r)

)
∂

∂r
+ K−2�γ m̃2 ± i

]
ψ = 0.

(18)

Assuming a separable solution in the form of ψ = f (r , θ) e±ikϕ , in which k is
related to the orbital quantum number running for all integers, Eq. (18) is transformed
into the following form

[
−K−4�2γ−γ 2+1�γ 2−1 ∂2 f

∂r2

−K−4�2γ−γ 2
�γ 2−1

r2sinθ

∂

∂θ

(
sinθ

∂ f

∂θ

)
± K−4�2γ−1 f k2

r2 sin2 θ

−K−4�2γ−γ 2
�γ 2−1

(
2�

r
+ �′ (r)

)
∂ f

∂r
+ f K−2�γ m̃2 ± i f

]
= 0.

(19)

Our aim is to probe the outermost singularity at r� = m(1+ p). When probing this
singularity, we will confine the direction of the probe to specific values of θ . Hence,
we set f (r , θ0 = constant) = R(r). First, we probe the outermost singularity along
the equatorial plane θ = π/2. In this particular case, Eq. (19) becomes

(�(r)�−1(r , π/2))1−γ 2
[
r2�(r)

R

d2R

dr2
+ r2

R

(
2�(r)

r
+ �′ (r)

)
dR

dr

− r2K 2(r)�γ 2−γ (r)�1−γ 2
(r , π/2)m̃2

∓ir2K 4(r)�γ 2−2γ (r)�1−γ 2
(r , π/2)

]
∓ k2 = 0.

(20)

In the next stage, the outermost singularity is probed with waves that propagate along
the symmetry axis, namely, θ = 0 or θ = π . In this stage, Eq. (19) becomes ill-defined
for all values of k rather than k = 0 which corresponds to the s-wave mode. Under
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this restricted condition (k = 0), Eq. (19) can be written as

[
r2�(r)

R

d2R

dr2
+ r2

R

(
2�(r)

r
+ �′ (r)

)
dR

dr

−r2K 2(r)�γ 2−γ (r)�1−γ 2
(r , 0)m̃2 ∓ ir2K 4(r)�γ 2−2γ (r)�1−γ 2

(r , 0)
]

= 0.

(21)

The square integrability of the solutions of Eq. (16) are checked for each sign
by calculating the squared norm, in which the function space on each t = constant
hypersurface�t is defined asH = {R :‖ R ‖< ∞} .Thegeneral (n+2)−dimensional
static spacetime is described by the line element in the form of

ds2 = −V 2dt2 + hi j dx
i dx j . (22)

The squared norm for this particular metric can be defined as [11]

‖R‖2 = q20
2

∫
�t

V−1RR∗dn+1x
√
h, (23)

in which q20 is a positive constant and hi j is the spatial part of the line element. Here, h
is the determinant of the spatial part. The spatial operator A has a unique self-adjoint
extension if neither of the solutions of Eq. (16) are square integrable over all space.

At this stage, it is important to emphasize the choice of the function space to
be used in the analysis. Our choice is the usual square integrable L2 Hilbert space
of quantum mechanics. Another alternative is the first Sobolev space H1, proposed
by Ishibashi and Hosoya [11]. However, Sobolev space is not the usual quantum -
mechanical Hilbert space. The main difference is in the definition of the norm. In the
Sobolev space, the norm including both the wave function and its derivative need to be
square integrable. If the function space is the natural linear function space of quantum
mechanics, which is the one used in this study, the norm calculation involves the wave
functiononly. This in turn brings a strong condition on the self-adjointness of the spatial
part of the Hamiltonian operator A. The use of Sobolev space, however, weakens this
strong condition with the additional term that involves derivative. As a result, while
the wave function is square integrable, its derivative may not be square integrable.
For example, the negative mass Schwarzchild solution and 5 − dimensional string
solution studied in [11] (which were studied in [10], and found as quantum singular)
are shown to be quantum regular. Similar results are also obtained in [12], for the
analysis of naked singularities in 2 + 1 − dimensional BT Z metrics coupled with
linear electrodynamics and dilaton fields.

In the following subsections, the quantum nature of the non-trivial naked singu-
larities developed in the charged and uncharged ZV - metrics will be investigated.
The outermost singularity, which is valid for all values of γ , except for zero and one,
will be investigated on the equatorial plane. This analysis will be followed by the
investigation of the quantum nature of the directional singularities developed at the
poles.
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3.1 Quantum singularity analysis of the outermost singularity

Our aim in this subsection is to investigate the outermost singularity located at r� =
m(1 + p) when θ = π/2, both for the charged and uncharged ZV metrics.

3.1.1 For the charged ZV solution:

When we substitute θ = π/2 into Eq.(3), Eq. (20) can be written as

R′′ +
(
r2�

)′

�r2
R′ − �γ 2−1σ 1−γ 2

[
± k2

�r2
+ K 2�−γ m̃2 ± i K 4�−2γ

]
R = 0,

(24)

where�(r , π/2) = σ(r) = 1− 2m
r + m2

r2
. The solution of Eq. (24) will be investigated

for two different limiting cases, r → ∞ and r → m(1 + p) (near the singularity).
In the case when r → ∞, the metric functions behave as

σ(r) = �(r) ≈ 1 − 2m

r
,

K ≈ 2p.
(25)

In this limit, Eq. (24) simplifies to

R′′ + 2

r
R′ +

(
(2p)2m̃2 ± (2p)4i

)
R = 0, (26)

whose solution is given by

R(r) = C1

r
sin κr + C2

r
cos κr . (27)

Here, κ = √
(2p)2m̃2 ± (2p)4i andC1,C2 are integration constants. Substituting Eq.

(27) into Eq. (23) leads to

‖R‖2 ∼
∫ ∞

const

(RR∗)dr(
1 − 2m

r

)2γ−1 . (28)

Note that for the practical purposes we choose C1 = C2 = 1. In order to evaluate
this integral, we first expand the denominator by using the binomial expansion for
large values of r , and taking into account the dominant terms only. Since sin(κr)
and cos(κr) are complex valued trigonometric functions, we transform RR∗ to the

following form with the help of
√
a ± bi = ±

(√
|z|+a
2 ± i

√
|z|−a
2

)
, where |z| =

√
a2 + b2 and b > 0,
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‖R‖2 ∼
∫ ∞

const

rcosh(2κ̄1r)

r − 2m(2γ − 1)
dr +

∫ ∞

const

(
r sin(2κ̄2r)

r − 2m(2γ − 1)

)
dr , (29)

in which κ̄1=±
√
2p

√
m̃2+(2p)4−2pm̃2 and κ̄2=±

√
2p

√
m̃2+(2p)4+2pm̃2.

The calculation of these integrals are shown in Appendix A.
It is worth to state that the calculations carried out for the large r limit in the

present study is just for the sake of completness of the requirement of the analysis for
all space ranging from outermost singularity to the infinity. Since the ZV metric is
asymptotically flat it is not necessary to investigate the behavior at large values of r . As
a result, determining the essential self adjointness of the operator A simply requires
assessing the square integrability of the solutions in the vicinity of the outermost
singularity. The following calculations illustrates this case in detail.

In the case when r → r� = m(1 + p), Eq. (24) transforms to

d2R

dr2
+ 1

r − r+
dR

dr
− p2

(1 + p)2[
±k2�γ 2−2

r2
+ K 2m̃2�γ 2−γ−1 ± i K 4�γ 2−2γ−1

]
R = 0. (30)

This equation will be splitted into three independent equations by considering the
rate of divergence in connection with the deformation parameter γ . Thus, we have

d2R

dr2
+ 1

r − r�

dR

dr
+ i Hγ (r)R = 0, (31)

in which

Hγ (r) =

⎧⎪⎪⎨
⎪⎪⎩

β1

(r−r�)2−γ 2
, 0 < γ < 1/2

β2

(r−r�)1+2γ−γ 2
, γ > 1/2

β3
(r−r�)7/4

, γ = 1/2

, (32)

where

β1 = ±i p2k2(2mp)γ
2−2

(1 + p)2r2γ
2−2

�

β2 = ±
(

2p

1 + p

)4γ p2(1 + p)2(2mp)γ
2−2γ−1

r2γ
2−4γ−2

�

β3 = p2r7/4�

(2mp)7/4

[
(1 + p)4

(
2p

1 + p

)4γ

∓ k2

m2(1 + p)2)

]
.

(33)
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The solution for each interval of γ is given by

R(r)=

⎧⎪⎪⎨
⎪⎪⎩
a1K0(η1(r − r�)γ

2/2)+(a2)0F1(; 1; η2(r−r�)γ
2
) , 0<γ <1/2

a3K0(η3(r − r�)
γ 2−2γ+1

2 ) + (a4)0F1(; 1; η4(r − r�)γ
2−2γ+1) , γ > 1/2

a5K0(η5(r − r�)1/8) + (a6)0F1(; 1; η6(r − r�)1/4) , γ = 1/2

(34)

inwhicha1 toa6 are integration constants, K0 is the first kindmodifiedBessel function,

0F1 is the confluent hypergeometric function, η1 = 2(−1)7/4
√

β1
γ 2 , η2 = −iβ1

γ 4 , η3 =
2(−1)3/4

√
β2

2γ−1−γ 2 , η4 = −iβ2
(2γ−1−γ 2)2

, η5 = 8
√

β3 and η6 = −16β3.
The square norm for each case can be written as

‖R‖2∼

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
2p
1+p

)4γ p2−2γ 2 (1+p)2γ
2−1

(2mp)2γ−γ 2 r2γ
2−4γ−2

�

∫ r�
const

RR∗dr
(r−r�)2γ−γ 2

, 0<γ <1/2
(

2p
1+p

)4γ p2−2γ 2 (1+p)2γ
2−1

(2mp)−2γ+γ 2 r2γ
2−4γ−2

�

∫ r�
const (r − r�)γ

2−2γ RR∗dr , γ > 1/2
(

2p
1+p

)2 p3/2(1+p)−1/2r7/2�

(2mp)3/4
∫ r�
const

RR∗dr
(r−r�)3/4

, γ = 1/2

(35)

Detailed calculations of Eq. (35) concerning Cauchy product are given in Appendix
B. The integral calculations for each range of the parameter γ revealed that the solu-
tions are square integrable and belong to the Hilbert space. As a consequence, the
outermost singularity becomes quantum mechanically singular for all values of γ .

3.1.2 The uncharged ZV solution:

If we choose q = 0 and consider the scaling factor to be t → 2t on the time coordinate,
Eq. (24) can be written as

R′′ +
(
r2�zv

)′

�zvr2
R′ − �

γ 2−1
zv σ

1−γ 2

zv

[ ±k2

�zvr2
+ �

−γ
zv m̃2 ± i�−2γ

zv

]
R = 0. (36)

Here,�zv = 1− 2m
r and σzv = 1− 2m

r + m2

r2
. The solution of Eq. (36) will be analysed

for r → ∞ and r → 2m (near singularity), respectively.
In the case when r → ∞, using the approximate metric functions given in Eq.

(25), Eq. (36) simplifies to

R′′ + 2

r
R′ +

(
m̃2 ± i

)
R = 0. (37)

The solutions of Eq. (37) can be written as

R(r) = C5

r
sin νr + C6

r
cos νr , (38)
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where ν = √
m̃2 ± i and C5, C6 are integration constants. Since the obtained solution

is similar to the solution found earlier in Eq. (27), our focus will be on the vicinity of
the singularity.

In the case when r → 2m, we introduce a new variable x defined by x ≡ r−2m →
0. Then, one can express the metric functions in terms of the new variable as

σzv(x) = x

x + 2m
+ m2

(x + 2m)2
,

�zv(x) = x

x + 2m
.

(39)

If we substitute metric functions presented above into the differential Eq. (36) and
consider the dominant terms by taking into account that the parameter γ change in
certain intervals, the differential Eq. (36) becomes

R′′ + 1

x
R′ + axμR = 0, (40)

in which

axμ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

±i(4m2)γ
( 2
m

)γ 2−1
xγ 2−2γ−1 , 1

2 < γ < ∞ and γ �= 1( 2
m

)γ 2−1
(

k2
2m

)
xγ 2−2 , 0 < γ < 1

2( 2
m

)γ 2−1
(
±i(4m2)γ ± k2

2m

)
x−7/2 , γ = 1

2

(41)

The general solution of Eq. (40) is found by

R(x) = C7 J0

(
2
√
asign(μ + 1)

μ + 2
x

μ+2
2

)
+ C8Y0

(
2
√
asign(μ + 1)

μ + 2
x

μ+2
2

)
.

(42)

Note that C7 and C8 are integration constants, J and Y are respectively the Bessel
functions of the first and second kinds, with the signum function sing(μ + 1). The
behaviour of the Bessel functions for real ν ≥ 0 as x → 0 can be stated as [21]

Jν(x) ∼ 1

�(ν + 1)

( x

2

)ν

Yν(x) ∼
{

2
π

[
ln

( x
2

) + γ̃
]

, ν = 0 and γ̃ ∼= 0.5772

−�(ν)
π

( 2
x

)ν
, ν �= 0

(43)

Hence, the solution becomes

R(x) ∼ C̄1 + C̄2ln(x) (44)
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with C̄1 = C7
�(1) + 2γ̃C8

π
+ 2C8

π
ln

(√
asing(μ+1)

μ+2

)
and C̄2 = C8

π
(μ + 2). Once Eq.(44)

is substituted into the squared norm (23), it becomes

‖R‖2 ∼ (m)2γ−γ 2+2 (2)γ
2+2γ

∫ 0

const .
xγ 2−2γ |C̄1 + C̄2ln(x)|2dx

∼ (m)2γ−γ 2+2
{
A

∫ 0

const .
xγ 2−2γ dx + B

∫ 0

const .
xγ 2−2γ ln(x)dx

+C
∫ 0

const .
xγ 2−2γ ln2(x)dx

}
(45)

where A = (2)γ
2+2γ C̄1

2
, B = (2)γ

2+2γ+1 C̄1C̄2 and C = (2)γ
2+2γ C̄2

2
. The spatial

part of the Hamiltonian operator A is not essentially self-adjoint due to the follow-
ing reasons. i) The results of the integrals are proportional to xalnb(x) terms. i i)
limx→0xalnb(x) is convergent for a > 0. i i i) The square norm convergent as γ �= 1.

The quantum singularity analysis of the outermost singularity developed both for
the charged and uncharged ZV solutions reveals that irrespective of the value of γ

except for γ = 0 and γ = 1, the classically singular character continues to remain
singular even if it is probed with quantum wave packets obeying the Klein-Gordon
equations.

3.2 Quantum singularity analysis of directional singularities

Directional singularities are known to be characteristic properties of the γ - metrics,
and this behavior is also valid for the charged version of the ZV - metrics. From
a classical point of view, the spacetime appears to be regular for the deformation
parameter γ ≥ 2, if we first let θ = 0 (north pole), or θ = π (south pole), and
then approach to the outermost singularity. However, the spacetime becomes singular
whenever the deviation parameter is in the interval of 0 < γ < 2, but not equal to 1.
On the other hand if we first let r� = m(1+ p) and then take the limits θ = 0 or θ = π ,
the spacetime is singular whenever γ > 0, but not equal to 1. In this subsection, our
aim is to investigate classical directional singularities within the context of quantum
mechanics. As in the previous subsections, directional singularities will be probed
with quantum wave packets obeying the Klein-Gordon equation.

3.2.1 For the charged ZV solution:

As we clarified earlier, the directional singularities on the symmetry axis will be
probed with s-waves only. In this particular case that corresponds to k = 0, Eq. (21)
is transformed to

R′′ +
(
r2�

)′

�r2
R′ − K 2

[
�−γ m̃2 ± i K 2�−2γ

]
R = 0. (46)
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We first consider the case when r → ∞. For this scenario, the approximate metric
functions defined in Eq. (25) are used in Eq. (46), which leads to

R′′ + 2

r
R′ +

(
(2p)2m̃2 ± (2p)4i

)
R = 0. (47)

Since Eq. (47) coincides with Eq. (26), which has previously been studied.
In the case when r → r� = m(1 + p), by considering the dominant terms with

respect to the value of γ , Eq. (46) becomes

d2R

dr2
+ 1

r − r�

dR

dr
+Uγ (r)R = 0, (48)

in which

Uγ (r) = ib2
(r − r�)2γ

, (49)

where b2 = ±(1 + p)4
(

2p
1+p

)4γ r4γ�

(2mp)2γ
.

The solution of Eq. (48) is given by

R(r) = d3K0(ν1(r − r�)1−γ ) + (d4)0F1(; 1; ν2(r − r�)2−2γ ) (50)

in which ν1 =
√
b2(−1)3/4

γ−1 and ν2 = −ib2
4(γ−1)2

. The square norm of this case can be
written as

‖R‖2 ∼
(

2p

1 + p

)4γ

(1 + p)4(2mp)2γ−1r4γ�

∫ r�

const

RR∗dr
(r − r�)2γ−1 (51)

in which d3 and d4 are taken to be one. The integrals are calculated by changing
the variable of integration u = r − r�, followed by considering that u is very small
in the vicinity of r → r�. The Cauchy product law is then used as in the previous
calculations and the square norm equation becomes

‖R‖2 ∼ᾱ2

∞∑
k=0

ck

∫ 0

const

(
ln2

ν1u1−γ

2

) (
ν1u1−γ

2

)k
du

u2γ−1

+ ᾱ2

∞∑
l=0

cl

∫ 0

const

(
ν2u

2−2γ
)l du

u2γ−1

− 2ᾱ2

∞∑
n=0

cn

∫ 0

const

(
ln

ν1u1−γ

2

) (
u2−2γ

)n du

u2γ−1

(52)
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where ᾱ2 =
(

2p
1+p

)4γ
(1+ p)4(2mp)2γ−1r4γ� . Since the power of u is important for the

analysis, we split the deformation parameter γ into two subcases; namely, 0 < γ < 1
and γ > 1. Note that, other parts containing the ln function are again convergent as
shown in the previous section.

First we consider the case of 0 < γ < 1. In this case, the power of u, which
is (1 − γ ) > 0 is always positive and since u is positive and very small, we can
define an inequality u2l(1−γ )−(2γ−1) ≤ u−(2γ−1). Since the integral

∫ 0
const u

1−2γ du =
u2−2γ

2−2γ

∣∣0
const

〈 ∞ is convergent,
∫ 0
const u

2 l(1−γ )−(2γ−1)du is also convergent as a require-
ment of the comparison test. Hence, the directional singularities along the axis become
quantum singular when the deformation parameter is in the interval of 0 < γ < 1.

Now, let us consider the casewhenγ > 1. In this case, (1−γ ) < 0 and the inequality
for the comparison test can be defined as u−(2γ−1) ≤ u2l(1−γ )−(2γ−1). A careful
analysis reveals that when γ > 1, the integral

∫ 0
const u

1−2γ du = u2−2γ

2−2γ |0const → ∞
fails to be square integrable. As a result of this analysis, the directional singularity,
when approached from the north pole (θ = 0), becomes quantummechanically regular
as long as γ > 1. If we compare this with the classical analysis (γ ≥ 2), there is a
partial healing on the singularities.

3.2.2 For the uncharged ZV solution:

Equation (21) when q = 0 is

R′′ +
(
r2�zv

)′

�zvr2
R′ −

[
�

−γ
zv m̃2 ± i�−2γ

zv

]
R = 0. (53)

In the case when r → ∞, Eq. (53) becomes

R′′ + 2

r
R′ +

(
m̃2 ± i

)
R = 0. (54)

This equation is exactly the same as Eq. (37).
Now, let us investigate the case when r → 2m ⇔ x ≡ r − 2m → 0. If we use the

metric function defined in Eq. (39) in Eq. (53), we have

R′′ + 1

x
R′ + bx−2γ R = 0, (55)

in which b = ±i(4m2)γ . The solution of Eq. (55) is given by

R(x) = q3 J0

(
2
√
bsign(1 − 2γ )

2 − 2γ
x1−γ

)
+ q4Y0

(
2
√
bsign(1 − 2γ )

2 − 2γ
x1−γ

)
,

(56)
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where q3 and q4 are integration constants.Whenwe use the asymptotic approximations
of the Bessel functions defined in Eq. (43), Eq. (56) reduces to

R(x) ∼ q̄3 + q̄4ln(x) (57)

with q̄3 = q3
�(1) + 2γ̃ q4

π
+ 2q4

π
ln

(√
bsing(1−2γ )

2−2γ

)
and q̄4 = q4

π
(2 − 2γ ). The squared

norm for solution (57) is given by

‖R‖2 ∼ (2m)2γ+1
∫ 0

const .
x1−2γ |q̄3 + q̄3ln(x)|2dx

∼ Ā
∫ 0

const .
x1−2γ dx + B̄

∫ 0

const .
x1−2γ ln(x)dx + C̄

∫ 0

const .
x1−2γ ln2(x)dx

(58)

where Ā = (2m)2γ+1 q̄32, B̄ = (2m)2γ+1 q̄3q̄4 and C̄ = (2m)2γ+1 q̄42. Since the
results of the last two integrals are proportional to xalnb(x) for b = 1, 2 terms,
the limx→0xalnb(x) is finite, and also because γ �= 1, the square norm converges.
Therefore, the spacetime is quantummechanically singular. However, the square inte-
grability analysis has revealed that whenever γ > 1, the squared norm diverges
according to the first integral. This implies that the solution for this particular choice
fails to be square integrable. On the other hand, if γ < 1, then the solution is square
integrable.

As a result of this analysis, classically singular sector in 1 < γ < 2 of the directional
singularity of the uncharged ZV metric becomes quantum mechanically regular.

4 Discussion

In this paper, we have investigated the formation of timelike naked singularities devel-
oped in the charged and uncharged ZV spacetimes. Our analysis is based on the
Horowitz andMarolf definition of quantum singularities adopted for static spacetimes
which utilizes quantum wave packets obeying the Klein-Gordon equation.

In doing so, we have focused on two particular types of classical singularity. One of
them is the singularity that is located on the equatorial plane at r� = m(1+ p), which
is abbreviated as the outermost singularity, valid for all values of the deformation
parameter γ except zero and one. The other one is the directional singularity, peculiar
to γ − metrics, which becomes regular if the singular point is approached along the
north or south pole. The regularity of this directional singularity crucially depends on
the deformation parameter γ ≥ 2.

In our analysis, we have used Klein-Gordon quantum wave packets for probing the
singularities. It has been shown by rigorous calculations that the outermost singularity
remains quantum mechanically singular for all values of γ , regardless of the non-
spherical compact object being charged or uncharged. However, precise and detailed
analysis of the poles associated with the directional singularities exhibits "partial
healing" such that the range of the regularity condition on the deformation parameter
is extended to γ > 1. To be more clear, the classically singular sector becomes
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quantum mechanically regular both for charged and uncharged ZV metrics when
1 < γ < 2. However, it is important to emphasize that the "partial healing" is possible
if the analysis is restricted to the s-wave mode only. In the generic case, since Eq. (19)
is ill-defined for k �= 0, the classical directional singularities along the symmetry axis
remains quantum mechanically singular.

As a final remark, as long as the real compact objects are concerned, understand-
ing the charged or uncharged ZV metrics that describe the exterior geometry of
non-spherical compact objects is very important. But, the most important thing is
to understand the singularity structure. Is the "partial healing" on the directional sin-
gularity peculiar to oblate objects for the s-wave mode only ? What will happen if
spinorial probes are used ? It would be interesting to further investigate the singularity
structure of the ZV spacetimes in view of these findings.

Author Contributions O.G. and M.H. wrote the article and M.M. did the calculations.

Data Availibility Statement No new data were created or analysed in this study.

Appendix A: Detailed calculation for norm squared at r → ∞ in the
charged ZV spacetime

Wecan use the comparison test to analyze the convergence character of the first integral
in Eq. (29). The series expansion of the hyperbolic function is as follows.

cosh (2κ̄1r) =
∞∑
n=0

(2κ̄1r)2n

(2n)! . (59)

The first integral becomes

∫ ∞

const

rcosh(2κ̄1r)

r − 2m(2γ − 1)
dr =

∫ ∞

const

(
r

r − 2m(2γ − 1)

) { ∞∑
n=0

(2κ̄1r)2n

(2n)!

}
dr

=
∞∑
n=0

(2κ̄1)2n

(2n)!
∫ ∞

const

(
rb

r − 2m(2γ − 1)

)
dr ,

(60)

where b = 2n + 1. The convergence character of the last integral can be analyzed by
using the comparison test. For this purpose, the following inequality is studied

0 ≤ t + 2m(2γ − 1)

t
≤ (t + 2m(2γ − 1))b

t
, (61)

where t = r − 2m(2γ − 1). The integral of t+2m(2γ−1)
t is calculated as

∫ ∞

c

(
t + 2m(2γ − 1)

t

)
dt = (t + 2m(2γ − 1) ln |t |) ∣∣∞

const → ∞. (62)
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According to the comparison test, the divergenceof the integral
∫ ∞
c

(
t+2m(2γ−1)

t

)
dt

implies the divergence of
∫ ∞
c

(t+2m(2γ−1))b

t dt . Finally, let us analyze the convergence
character of the series in front of the integral with the help of the ratio test. If we

construct the expression ρ = limn→∞| an+1
an

| = limn→∞ (2κ̄1)2

2n+1 = 0 for the conver-
gence analysis, we see that for 0 = ρ < 1, this limit converges and hence the series
converges according to the ratio test.

The second integral is evaluated by using the comparison test, especially developed
for the improper integrals. We replace sin (2κ̄2r) with its power series expansion,

sin (2κ̄2r) =
∞∑
n=0

(−1)n sign(κ̄2)
(2ω2r)2n+1

(2n + 1)! , (63)

whereω2 =
√
2p

√
m̃2 + (2p)4 + 2pm̃2 and sign is the signum function. The second

integral becomes

I =
∫ ∞

const

(
r

r − 2m(2γ − 1)

) { ∞∑
n=0

(−1)n sign(κ̄2)
(2ω2r)2n+1

(2n + 1)!

}
dr

=
∞∑
n=0

(−1)n sign(κ̄2)
(2ω2)

2n+1

(2n + 1)!
∫ ∞

const

(
ra

r − 2m(2γ − 1)

)
dr ,

(64)

in which a = 2n + 2. The result of the integral comparison test similar to the
calculations made above is divergent, and also, since ρ = limn→∞| an+1

an
| =

limn→∞ (2ω1)
2

(2n+3)(2n+2) = 0 < 1, it is convergent according to the ratio test.

Appendix B: Detailed calculation for norm squared at r → r1 = m(1+
p) in the charged ZV spacetime

In order to perform the integration operation, RR∗ content of each integral in Eq. (35)
is written by using the series expansion of each special function [21],

I0(z) =
∞∑
k=0

( z
2

)2k
(k!)2 ,

K0(z) = −ln
z

2
I0(z) +

∞∑
k=0

(z)2k

22k(k!)2ψ(k + 1),

0F1(; b; z) =
∞∑
k=0

(z)k

(b)kk! .

(65)

Integrations are performed by first changing the variable of integration according
to u = r − r�. Since the integrals are to be evaluated near the singularity (r → r�),
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the new variable u is very small. This leads us to take K0(z) ∼ −ln z
2 I0(z) as the

dominant term. In addition, the integrand involves the multiplication of power series.
The analytic calculation of these integrals becomes possible if we use Cauchy product
law of power series as explained below.

Definition 1 (The Cauchy Product of Power Series): Consider the power series∑∞
n=0 anz

n , and
∑∞

n=0 bnz
n . Consequently, the Cauchy Product of these series can be

defined as [22]

( ∞∑
n=0

anz
n

) ( ∞∑
n=0

bnz
n

)
=

∞∑
n=0

⎛
⎝

⎛
⎝ n∑

j=0

(
a jbn− j

)⎞
⎠ zn

⎞
⎠ =

∞∑
n=0

cnz
n (66)

where cn = ∑n
j=0 a jbn− j .

For the sake of simplicity, we take the integration constants a1 to a6 to be equal to
1. With the help of the Cauchy product law of power series, integrals can be calculated
analytically.

First we consider the integral in which the deformation parameter is 0 < γ < 1/2.
The corresponding square norm becomes

‖R‖2 ∼α1

∞∑
k=0

ck

∫ 0

const

(
ln2

η1uγ 2/2

2

) (
η1uγ 2/2

2

)k
du

u2γ−γ 2

+ α1

∞∑
l=0

cl

∫ 0

const

(
η2u

γ 2
)l du

u2γ−γ 2

− 2α1

∞∑
n=0

cn

∫ 0

const

(
ln

η1uγ 2/2

2

) (
uγ 2

)n du

u2γ−γ 2

(67)

in which α1 =
(

2p
1+p

)4γ p2−2γ 2 (1+p)2γ
2−1

(2mp)2γ−γ 2r2γ
2−4γ−2

+
, ck = ∑k

l=0
1

(l!(k−l)!)2 , cl =
∑l

t=0
1

(1)t t !(1)l−t (l−t)! and cn = ∑n
j=0

{( η1
2

) j 1
( j !)2

} {
(η2)

n− j

(1)n− j (n− j)!
}
.

Thefirst and third integrals are converging, since
∫ 0
c xkln(bx)dx= c1+k(1−(1+k)ln[bc])

(1+k)2

and
∫ 0
c xkln2(bx)dx = − c1+k (2+(1+k)ln[bc](−2+(1+k)ln[bc]))

(1+k)3
are finite. The convergence

of the second integral can be seen with the help of the comparison test. Since u is very
small and positive, we can define the following inequality,

uγ 2l−(2γ−γ 2) ≤ u−(2γ−γ 2). (68)

Furthermore, as
∫ 0
const u

−(2γ−γ 2)du = u(γ−1)2

(γ−1)2

∣∣0
const

〈 ∞, the integral∫ 0
const u

γ 2l−(2γ−γ 2)du is also converging. As a result, when 0 < γ < 1/2 the solution
is square integrable and the spacetime singularity remains quantum singular. Next, we
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consider the case when γ > 1/2 but not equal to 1. The square norm for this particular
case becomes

‖R‖2 ∼α2

∞∑
k=0

ck

∫ 0

const

(
ln2

η3uγ 2−2γ+1

2

) (
η3uγ 2−2γ+1

2

)k

uγ 2−2γ du

+ α2

∞∑
l=0

cl

∫ 0

const

(
η4u

γ 2−2γ+1
)l

uγ 2−2γ du

− 2α2

∞∑
n=0

cn

∫ 0

const

(
ln

η3uγ 2−2γ+1

2

) (
uγ 2−2γ+1

)n
uγ 2−2γ du

(69)

where α2 =
(

2p
1+p

)4γ p2−2γ 2 (1+p)2γ
2−1

(2mp)−2γ+γ 2r2γ
2−4γ−2

+
. The first and third integrals are very

similar to the previous case, and therefore, converging. The second integral can be

calculated via
∫ 0
const u

l(γ−1)2+(γ 2−2γ )du = u(l+1)(γ−1)2

(l+1)(γ−1)2
|0const and are found as square

integrable, which implies that the spacetime singularity remains quantum singular.
Finally, we consider the case when γ = 1/2. In this case, the square norm equation

becomes

‖R‖2 ∼α3

∞∑
k=0

ck

∫ 0

const

(
ln2

η5u1/8

2

) (
η5u1/8

2

)k
du

u3/4

+ α3

∞∑
l=0

cl

∫ 0

const

(
η6u

1/4
)l du

u3/4

− 2α3

∞∑
n=0

cn

∫ 0

const

(
ln

η5u1/8

2

) (
u1/4

)n du

u3/4

(70)

where α3 =
(

2p
1+p

)2 p3/2(1+p)−1/2r7/2+
(2mp)3/4

. As in the previous cases, the first and the third

integrals are square integrable and the second integral can be calculated with the help
of the comparison test. In doing so, we define the following inequality,

ul/4−3/4 ≤ u−3/4 (71)

and since
∫ 0
const u

−3/4du = 4u1/4
∣∣0
const

〈 ∞, square integrability is implied and there-
fore, the spacetime singularity remains quantum singular.
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