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Abstract
We obtain new exact solutions for the gravitational field equations in the context of
f (R, T ) gravity, thereby obtaining different classes of black holes surrounded by
fluids, taking into account some specific values of the parameter of the equations
of state, w. In order to obtain these solutions in the context of f (R, T ) gravity, we
consider viable particular choices of the f (R, T ). Considering an anisotropic energy-
momentum tensor, we write the field equations with the required symmetries for this
type of solution. Then, we analyze the conditions of energy in a general way and
also for particular values of the parameter w of the equation of state. In addition,
thermodynamic quantities, such as Hawking temperature and mass associated to the
horizons of solutions, are taken into account in our analysis.
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1 Introduction

The observations showing the accelerating expansion of the universe [1] are one of
the most important discoveries in cosmology in recent years. In order to explain such
accelerating expansion, several models have been studied in general relativity and
modified theories of gravity. In the context of general relativity, we can assume equa-
tions of state connecting the energy density and the pressure associated to the universe,
which demand a negative pressure for the equations of state. Assuming a relation in
the form p = wρ, where p is the pressure and ρ the energy density, the physical prop-
erties of the matter and energy of space-time depend on the values of the parameter
w.

Kiselev proposed a general relation connecting energy density and pressure [2],
where the components of the energy-momentum tensor can be associated to an
anisotropic fluid that by taking the isotropic average over the angles, one obtains
the barotropic equation of state. In this way, particular choices of the parameter of
equations of state can be assumed in this formulation and some of these values repro-
duce, in the cosmological context, the accelerating pattern [2]. Kiselev solution [2]
was also associated to a quintessence field, (See [3] for a discussion on the terminol-
ogy issues concerning this solution), and, in this context, several investigations have
been done on the shadow of black holes [4–8], quasinormal modes [9–19], thermody-
namics of black holes [20–34], and other questions related to black holes surrounded
by fluids in the framework of non-conservative gravity [35–40]. In which concerns
the singularities present in several classes of black holes, the weak cosmic censorship
conjecture demands that no naked singularities exist in the space-time, i.e, the singu-
larities arising from the solutions of Einstein field equations are hidden within event
horizons [41]. Although this conjecture is violated in solutions such as the extreme
Reissner-Nordström and extreme Kerr black hole, some studies [42] reveal that it can
be satisfied in Reissner-Nordström-AdS black hole surrounded by quintessence.

On the other hand, some extensions of the general relativity have gained interest
in recent days due to the possibility of their use for addressing open problems in both
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astrophysical [43–49] and cosmological context [50–52]. In particular, motivated by
the idea of considering different classes of coupling between matter and geometry in
a general formalism, and by advances in cosmology due to the f (R) theories, it was
proposed the f (R, T ) gravity theory [53]. It is well-known that theorieswith nontrivial
matter-geometry coupling have additional effects on the dynamics of the bodies in the
space-time. Indeed, motion of the massive particles in f (R, T ) is non-geodesic and
undergoes an extra force depending on the coupling of the matter and the geometry.
The possibility of reconstructing arbitrary Friedmann-Robertson-Walker cosmologies
by an appropriate choice of a function f (T ) has stimulated the study of the f (R, T )

in cosmological scenarios [54–56].
Such effects may become more prominent for high densities and pressures, in this

way, it is natural to test the effects of modification of gravity imposed by f (R, T )

theory in the scale of compact objects. The influence of the dependency on the Ricci
scalar R considering vacuum solutions has been studied in the literature in the context
of f (R) gravity. In the case of theories of gravity in which the Lagrangian density
depends on T , it is expected differences between solutions in these models and general
relativity in the presence of a no-zero energy-momentum tensor, i.e, it is expected
additional effects due to the matter-geometry coupling. In particular, the presence of
fluids surrounding spherical sources of matter can be an interesting system to study
the effects of this coupling between matter and geometry. In this paper, we study
nontrivial black hole solutions for the field equations in the context of f (R, T ) gravity
where the black hole is surrounded by the fluid discussed by Kiselev [2]. In addition,
it is considered particular cases associated to the solution obtained by taking into
account the appropriate values of the parameter of fluid equation of state. It is worth
emphasizing that we will consider viable particular choices of the f (R, T ) function
in such a way that the obtained results can be associated to an extension of the Kiselev
solution [2] for this modified theory of gravity.

The paper is organized in the followingway: In Sect. 2,we review the field equations
in the context of f (R, T ) gravity and particularize it for a specific choice of f (R, T )

function. Section3 is dedicated to the study of energy-momentum tensor associated
to the fluid surrounding the black hole. In Sect. 4, we discuss the f (R, T ) gravity
model in which the trace function is written in terms of an arbitrary exponent and we
obtain an exact solution corresponding to a black hole surrounded by fluids. We also
discuss general energy conditions, horizons, mass, and temperature for this solution.
The analysis of the cases corresponding to particular choices of the parameter of the
equation of state w and their relation with solutions in the context of general relativity
is considered in Sect. 5. Finally, in Sect. 6, we present our final remarks.

2 Field equations

In this section, we briefly review the field equations in the context of f (R, T ) gravity
[53]. In this formulation, it is assumed an action in the form

S = 1

16π

∫
f (R, T )

√−gd4x +
∫

Lm
√−gd4x, (1)
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with f (R, T ) being a function of the Ricci scalar, R, and of the trace T of the
energy-momentum tensor of the matter. Note that Lm in Eq. (1) represents the matter
Lagrangian density, this term is associated to a particular energy-momentum tensor.
By varying the action S with respect to the metric tensor, we obtain the integral

δS = 1

16π

∫ [
fR(R, T )Rμνδg

μν + fR(R, T )gμν�δgμν + (2)

− fR(R, T )∇μ∇νδg
μν + fT (R, T )

δ(gηξTηξ )

δgμν
δgμν+ (3)

−1

2
gμν f (R, T )δgμν + 16π√−g

δ(
√−gLm)

δgμν

]√−gd4x (4)

where fR(R, T ) = ∂ f (R, T )/∂R and fT (R, T ) = ∂ f (R, T )/∂T . By integrating the
second and third terms and considering the variation of T as

δ(gηξTηξ )

δgμν
= Tμν + 	μν, (5)

where

	μν ≡ gηξ δTηξ

δgμν
= −2Tμν + gμνLm − 2gηξ ∂2Lm

∂gμνgηξ
, (6)

emerges from the definition of the variation of the matter Lagrangian, we obtain

fR(R, T )Rμν − gμν

2
f (R, T ) + (gμν� − ∇μ∇ν) fR(R, T )

= 8πTμν − fT (R, T )Tμν − fT (R, T )	μν , (7)

which is the form of the field equation in f (R, T ) gravity that we are going to use in
this paper. In the special case in which f (R, T ) ≡ f (R), Eq. (7) reduces to the field
equations in the context of f (R) gravity. In this way, the novel feature introduced by
f (R, T ) gravity is the possibility of arbitrary coupling between matter and geometry.
An interesting choice of f (R, T ) functions is given by [53]

f (R, T ) = R + 2 f (T ), (8)

where f (T ) is an arbitrary function of the trace of the energy-momentum tensor. From
Eq. (7) and by considering the trace function Eq. (8), the field equations are given by

Rμν − gμν

2
R =8πTμν − 2 f ′(T )Tμν

− 2 f ′(T )	μν + f (T )gμν, (9)

where f ′(T ) = d f (T )/dT . Concerning the choice of the function f (T ), before we
write an explicit expression, it is instructive to discuss the form of the trace associated
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to a specific choice of the energy-momentum tensor of the matter. As we will see, the
condition of additivity and linearity imposed to the Kiselev solution naturally restricts
the form of this function.

3 Energy-momentum of the Kiselev black hole

Considering a spherically symmetric space-time, the line element associated to a static
geometry can be written as

ds2 = B(r)dr2 − A(r)dr2 − r2(dθ2 + sin θ2dφ2), (10)

where B(r) and A(r) are unknown functions of the coordinate r . The energy-
momentum tensor in Kiselev black holes is defined to have the components of the
spatial sector proportional to the time sector:

T t
t = T r

r = ρ(r), (11)

T θ
θ = T φ

φ = −1

2
ρ(3w + 1), (12)

andw is the parameter of equation of state. In addition, by taking the isotropic average
over the angles, in the place of equations (11) and (12), one obtain the barotropic
equation of state p = wρ. Kiselev black [2] holes have the components of energy-
momentum tensor effectively connected to an anisotropic fluid represented by

Tμ
ν = diag(ρ,−pr ,−pt ,−pt ), (13)

where pr = −ρ and pt = 1
2ρ(3w + 1), which can be extracted from the general form

of the anisotropic fluid [46]:

Tμν = −pt gμν + (pt + ρ)UμUν + (pr − pt )NμNν, (14)

where pt (r), ρ(r) and pr (r) are the tangential or transverse pressure, the energy
density and the radial pressure of the fluid, respectively. The quantities Uμ and Nμ

represent the four velocity and radial unit vector, respectively, are defined as

Uμ =
(

1√
B(r)

, 0, 0, 0

)
, (15)

Nμ =
(
0,

1√
A(r)

, 0, 0

)
, (16)

and obey the conditions UνU ν = 1, NνN ν = −1 and UνN ν = 0. The matter
Lagrangian density associated to the anisotropic fluid is given by Lm = (−1/3)(pr +
2pt ) [57]. This implies that Eq. (6) can be written as

	μν = −2Tμν − 1

3
(pr + 2pt )gμν. (17)
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In the next section, we use these results in the context of the Kiselev solutions of black
holes [2] that demands additivity and linearity between the metric components.

4 The f (T) = κTn model

In this section, we consider the case where the trace is written in terms of an arbitrary
exponent. Substituting the energy-momentum tensor (13) and f (T ) = κT n into the
field equation (9), leads to

Gt
t = H(ρ), (18)

Gr
r = H(ρ), (19)

Gθ
θ = F(ρ), (20)

where the functions are given by

H(ρ) =8πρ − 2n(w + 1)(κρ − 3κρw)n

3w − 1
+ (κρ − 3κρw)n, (21)

F(ρ) = − (12w + 4)πρ + n(w + 1)(κρ − 3κρw)n

3w − 1
+

+ (κρ − 3κρw)n, (22)

and were obtained from

Gμ
ν = Rμ

ν − 1

2
δμ

νR. (23)

Equations (18),(19) and (20) form the independent set of field equations for black
holes surrounded by a fluid whose components of the energy-momentum tensor are
given by Eqs.(11) and (12). As required in Kiselev approach [2], Eqs. (18) and (19)
yield the relation

Gt
t = Gr

r . (24)

The symmetry arising from Eq. (24) demands that

B(r)
d A(r)

dr
+ A(r)

dB(r)

dr
= 0, (25)

and, as a consequence A(r) = 1/B(r). Substituting this result in the original set of
field equations, we obtain

Gt
t = Gr

r = − 1

r

dB(r)

dr
− B(r)

r2
+ 1

r2
= H(ρ), (26)

Gθ
θ = Gφ

φ = − 1

2

d2B(r)

dr2
− 1

r

dB(r)

dr
= F(ρ). (27)
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Now, the conditions supposed in [2], including additivity and linearity, restricts the
form of functions H and F . If one assumes a relation H = kF , where k is an arbitrary
constant, then the exponent of the function f (T ) must be n = 1 Notice that this con-
dition can differ depending on the requirement of the solution analyzed. For instance,
cosmological bounds are set in [58], but considering n = 1/2, which would be respon-
sible for preserving the continuity equation for an unperturbed matter/spacetime.
Combining equations (26) and (27) with the aforementioned assumptions, the energy
density dependence is eliminated, and we obtain the following result

3κ + 8π − wκ

4(3πw + wκ + π)

(
1

2

d2B(r)

dr2
+ 1

r

dB(r)

dr

)

+ 1

r

dB(r)

dr
+ B(r)

r2
− 1

r2
= 0. (28)

Equation (28) can be rewritten in the following way

1

r2

(
d

dr
(r B(r)) − 1

)

= − 1

2r

(
3κ + 8π − wκ

4(3πw + wκ + π)

)
d

dr

(
d

dr
(r B(r)) − 1

)
,

(29)

which can be easily integrated in order to get:

d

dr
(r B(r)) − 1 = cr− 8(3πw+wκ+π)

3κ+8π−wκ , (30)

with c being an integration constant. By integrating once again, we get

B(r) = 1 + c1
r

+ Kr− 8(3πw+wκ+π)
3κ+8π−wκ , (31)

where c1 and K are constants. Thus, substituting (31) in the field equation, we obtain
the following expression for the energy density

ρ = Dr−6 (w+1)(4π+κ)
−wκ+8π+3κ , (32)

where

D ≡ 3
K (8π w + 3wκ − κ)

w2
κ
2 − 16π wκ − 6wκ

2 + 64π2 + 48π κ + 9κ
2 . (33)

By identifying c1 = −2M , where M is the total mass of the black hole surrounded
by the fluid, the solution obtained in this work reduces to the Schwarzschild solution
in the absence of fluid, given by the condition K = 0. Besides that, when κ = 0, this
solution reduces to the standard Kiselev black hole in general relativity

B(r)κ→0 = 1 + −2M

r
+ Kr−(3w+1). (34)
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4.1 Conservation conditions

In general, it is known that f (R, T )-type theories of gravity have extra geometric
terms that add additional accelerations to the trajectory of bodies. Such terms can be
associated with a non-vanishing covariant derivative of the energy-momentum tensor.
However, specific choices of the function f (R, T ) and the physical parameters of the
system can lead to particular cases where the energy-momentum tensor is conserved.
To see this, consider the application of the covariant derivative to equation (9). By
using the Bianchi identities the lhs is equal to zero. The resulting expression can be
written as

∇μTμν = − κ

2(4π + κ)

[−2∇μ(Lmgμν) + gμν∇μT
]
. (35)

The term on the right-hand side is originated from the modification in the conservation
equation imposed by the f (R, T ) theory. As a condition for Tμν to be conserved in
the present version, the rhs of Eq. (35) must be null, which provides the following
equation

− κ

2(4π + κ)
(1 − w)∇rρ(r) = 0. (36)

By using Eq. (32), the above expression can be written in the following form

9κK
(
w2 − 1

)
(κ(3w − 1) + 8πw)r

κ(5w+9)+8π(3w+4)
κ(w−3)−8π

(κ(w − 3) − 8π)3
= 0. (37)

We can see that doing κ = 0 the conservation relation in general relativity is restored.
This expression has many possible solutions depending on the choice of the values of
w and κ. In particular the solution w = −1 is independent of the parameter κ, it is
associated a black hole surrounded by a cosmological field and besides satisfies the
conservation condition obtained. In the next sections, we analyze in details specifics
choices of the parameter of the equation of state.

In general, the conservation of the energy-momentum tensor, which is given
by Eq. (37), and is obtained with the help of Bianchi’s identity, is not fulfilled.
This is a feature of f (R, T ) gravity and other non-conservative theories of grav-
ity. The non-conservation includes some particular cases studied in this paper w =
0, 1/3, −2/3, −4/3, however, for specific choices of the parameter κ some of these
cases can satisfy the conservation condition. For example, for the case w = −2/3,
Eq. (37) is satisfied if κ = −16π/9. In the present version of the f (R, T ) gravity, the
non-conservation, that is related to trace of the stress-energy tensor, could be induced
by exotic imperfect fluids or quantum effects [53]. The aim of this paper is to interpret
the consequences of such non-conservation on some properties of the Kiselev black
hole ansatz.
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4.2 Energy conditions

Regarding the energy conditions for the anisotropic fluid, there are some requirements
that the components of energy-momentummust satisfy in order to represent a realistic
matter distribution. It iswell-known that exoticmatter violate certain energy conditions
of the energy-momentum tensor. In the case of the strong energy condition (SEC), the
expression for anisotropic fluids is given by the pair of equations

SEC : ρ + pn ≥ 0, ρ +
∑
n

pn ≥ 0, (38)

where n = 1, 2, 3... By considering the energy density (32) and the components of
pressure defined in (13), we obtain the radial and tangential pressure in the form

pr = − ρ = −Dr−6 (w+1)(4π+κ)
−wκ+8π+3κ , (39)

pt =1

2
(3w + 1)Dr−6 (w+1)(4π+κ)

−wκ+8π+3κ . (40)

In this way, the SEC can be written as

ρ + pr =0, (41)

ρ + pt =3

2
(w + 1)Dr−6 (w+1)(4π+κ)

−wκ+8π+3κ , (42)

ρ + pr + 2pt =(3w + 1)Dr−6 (w+1)(4π+κ)
−wκ+8π+3κ . (43)

As a consequence of Eqs. (41),(42) and (43), the conditions in which the SEC is
satisfied are the following

K (8πw + 3wκ − κ)(3w + 1)

w2
κ
2 − 16πwκ − 6wκ

2 + 64π2 + 48πκ + 9κ2 ≥ 0, (44)

K (8πw + 3wκ − κ)(w + 1)

w2
κ
2 − 16πwκ − 6wκ

2 + 64π2 + 48πκ + 9κ2 ≥ 0. (45)

Possible solutions that satisfy the above equations connecting the parameters w, κ

and the SEC can be visualized in Figs. 1 and 2. In Fig. 1, we plot the left-hand side
(LHS) of Eq. (44) and we consider positive values of K . In the case of Fig. 2, we plot
the LHS of Eq. (45) and also consider positive values of K . In these plots, negative
values of the independent variable (vertical axis) correspond to the region where the
SEC is violated. Note that negative values of K cause a reflection on the values of the
independent variable. We can see that in both the plots, positive values of K tend to
produce results that do not violate the SEC.
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SEC

- 20

0

20

40

Fig. 1 Condition (44) is plotted as a function of w and κ considering positive values of K . Negative values
of the independent variable are associated to the regions where the SEC is violated

SEC

0

2.5

5.0

7.5

10.0

12.5

Fig. 2 Condition (45) is plotted as a function of w and κ considering positive values of K . Negative values
are associated to the regions where the SEC is violated

4.3 Horizons, mass and temperature

By denoting the place where the metric function B(r) is equal to zero as rh , the
horizons of a metric function are defined as B(rh) = 0. It follows from this definition
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Fig. 3 Plot of B(r) versus r , Eq. (31), in units of mass (M = 1), for three types of anisotropic fluid
(w = −2/3, w = 0 and w = 1/3), and for the cases κ = −10, κ = 0 (which recovers GR) and κ = 10.
In this plot K = 3/4

that the black hole mass parameter can be written in terms of rh , as follows

M(rh) = 1

2
rh

[
1 + Kr

− 8(3πw+wκ+π)
3κ+8π−wκ

h

]
, (46)

which represents a general relation connecting the mass, the parameters w and κ. In
Fig. 3 we show B(r) in terms of r for a fixed value of the mass M and some specific
values of the Kiselev parameter w (these specific cases are discussed in more detail
in the sections below). The figure shows how the behavior of the curve B(r) changes
as we vary the value of the parameter κ of the f (R, T ) gravity. As a consequence,
the points where B(r) is equal to zero, that is, the horizons rh , also change. For the
values of parameters used in the figure, we can observe that positive values ofκ lead to
horizons with smaller rh radii, and negative values of κ lead to even smaller horizons.

The surface gravity of the black hole surround by a fluid, given by κ = 1
2
dB(r)
dr

∣∣∣
r=rh

,

can be evaluated, with the following result

κ = 8π + 3κ − wκ − 3K (8πw − κ + 3wκ)r
− 8(3πw+wκ+π)

3κ+8π−wκ

h

2(8π + 3κ − wκ)rh
. (47)

As can be shown, for instance by considering Hawking radiation as a tunneling
effect [59], it is possible to relate the surface gravity of a black hole metric with the
black hole temperature (which is a formula that only relies on the metric functions
and is independent on the details of the field theory that originated the spacetime). In
this case, it can be described in term of the equation of state w, and of the parameter
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of the f (R, T ) gravity κ as TBH = �κ/(2π) as follows

TBH = �

4πrh
− 3K�(8πw − κ + 3wκ)r

− 8(3πw+wκ+π)
3κ+8π−wκ

h

4π(8π + 3κ − wκ)rh
. (48)

From this expression, we observe that Hawking temperature for a black hole sur-
rounded by fluid in f (R, T ) gravity has an additional structure that comes from the
dependence on the parameter κ. In the following, we analyze the influence of this
result by taking into account particular choices of the parameter w.

5 Particular cases

Let us study some cases corresponding to particular choices of the parameter of the
equation of statew and compare with the corresponding solutions in general relativity.
As we will see, the values of the w associated to the well-known particular solutions
will provide a family of solutions depending on the parameterκ of the f (R, T ) gravity.
We stress that particular choices of the parameter w regarding the solution obtained
in f (R, T ) do not necessarily have the same interpretation as the solutions obtained
in general relativity with the same value of w.

5.1 Black hole surrounded by a dust field

In this case we choice w = 0 [2, 60] such that Eq. (31) reduces to the form

B(r) = 1 − 2M

r
+ Kr− 8π

3κ+8π . (49)

The presence of the parameterκ imply that this solution in not equivalent to the metric
of the black hole surrounded by a dust field in the context of general relativity. In the
case of κ → 0, Eq. (49) reduces to the metric associated to a Schwarzschild black
hole with an effective mass Mef f = 2M − K . The energy density associated to Eq.
(49) is given by

ρ = −3Kκr− 6(4π+κ)
8π+3κ

(8π + 3κ)2
, (50)

which in turn differs from the Kiselev black hole [2],in general relativity. The SEC
conditions, represented by Equations (44) and (45), are equivalent in the case w = 0
and are given by expression

−Kκ

64π2 + 48πκ + 9κ2 ≥ 0. (51)

For K > 0, the solution should satisfy the inequality κ ≤ 0 with κ 	= −8π/3. In
Fig. 4, the region where the SEC is satisfied, according conditions imposed by Eq.51,
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Fig. 4 Condition (51) is plotted
as a function of κ considering
positive values of K . Negative
values of this expression are
associated to the regions where
the SEC is violated

Fig. 5 Equation (52) is plotted as a function of rh considering several values for κ with K = � = 1, and
w = 0. The curve with κ = 0 (black curve) corresponds to the GR case

is plotted. In this way, in general relativity (κ = 0) the SEC is satisfied. In turn, in
f (R, T ) gravity the SEC is satisfied or not, depending on values of κ.
The Hawking temperature can be obtained by doingw = 0 in Eq. (48), and is given

by

TBH = 8π + 3κ(1 + Kr
− 8π

8π+3κ
h )

4πrh(8π + 3κ)
. (52)

This equation gives us a family of curves depending on the values of rh and κ. In
Fig. 5, we draw a set of graphs of the Hawking temperature TBH , with respect to rh
for different values of κ. For positive values of κ, the temperature remains positive,
and increases when the value of rh decreases. In contrast, negative values of κ are
associated to negative temperatures for small values of rh .
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5.2 Black hole surrounded by the radiation field

We consider a black hole in which w = 1/3, according to Ref. [2, 60] this specific
value reproduces a black hole surrounded by the radiation field in the context of general
relativity. By using the value w = 1/3 in Eq. (31) the metric function can be written
as

B(r) = 1 − 2M

r
+ Kr− 3π

κ+3π −1, (53)

due to the presence of the parameter κ, the metric associated to this expression is
different from the metric of a black hole surrounded by the radiation field in general
relativity. In the limit of κ → 0, we obtain the metric function

B(r) = 1 − 2M

r
+ K

r2
, (54)

corresponding to the black hole surrounded by the radiation field obtained in [2]. The
metric function (54) is effectively the metric of Reissner-Nordström black hole with
an effective charge Q2

e f f = K . In this case, the energy density associated to solution
(53) is written as

ρ = 9Kπr−3 4π+κ

3π+κ

8(3π + κ)2
, (55)

that depends on the parameter of the κ of the f (R, T ) gravity, which makes this
result different from the one corresponding to the same system in general relativity,
as expected. Regarding the SEC condition, represented by Equations (44) and (45),
these relations, in the case w = 1/3, assume the form

3πK

4(3π + κ)2
≥ 0, (56)

πK

2(3π + κ)2
≥ 0. (57)

If one consider K ≥ 0, these expressions obtained imply that κ 	= −π/3.
In Fig. 6, the regions where the SEC is satisfied are plotted. Note that the SEC is

fulfilled everywhere except at κ = −3π for K > 0, where there is a divergence in the
equations for the SEC. For K < 0, the SEC is violated everywhere. By doing w = 0
in Eq. (48), we obtain the Hawking temperature for the black hole surrounded by the
radiation field, given by

TBH = 1

4πrh
− 3Kr

−2− 3π
3π+κ

h

4(3π + κ)
. (58)
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Fig. 6 Conditions given by Eqs.
(56) and (57) are plotted as a
function of κ considering
positive values of K . Negative
values of this expression are
associated to the regions where
the SEC is violated

Fig. 7 The Hawking temperature, given in Equation (58), is plotted as a function of rh , considering several
values for κ with K = � = 1, and w = 1/3. The curve with κ = 0 (black curve) corresponds to the GR
case

We draw a set of graphs of the Hawking temperature TBH with respect to rh for
different values of κ in Fig. 7. For all values of κ, the temperature remains positive in
a region of considered and tends to negative values in the region where rh is small.

5.3 Black hole surrounded by the quintessence field

It is assumed that the parameter of the equation of state is w = −2/3 [2, 60] in this
solution. Thus, the function B(r) reads as

B(r) = 1 − 2M

r
+ Kr

8(3π+2κ)
24π+11κ , (59)

we can see that the presence of term κ, imply in a family of solutions associated to
w = −2/3 in the context of f (R, T ) gravity. The SEC conditions, (44) and (45) for
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Fig. 8 Conditions (60) and (61)
originated in (44) and (45)
plotted as a function of κ

considering positive values of
K . Negative values of ordinate
axis are associated to the regions
where the SEC is violated. There
is one point where the SEC is
satisfied, corresponding to the
intersection of the curves

w = −2/3, take the following form

3K (16π + 9κ)

(24π + 11κ)2
≥ 0, (60)

K (−16π − 9κ)

(24π + 11κ)2
≥ 0, (61)

once again, this expression depends on the signal of the constant K . But in this case,
namely, w = −2/3, the condition in which the SEC is not violated is given by
the pair of equations that have different behavior in the domain under consideration.
Now, there is only a point where Equations (60) and (61) are satisfied, given by
κ = −16π/9. As we can see in Fig. 8, Eq. (60), represented by the continuous line
and Eq. (61), represented by the dashed line, have opposite behavior. In this figure, it
was considered positive values for K . By considering negative values, the shapes of
curves are reversed.

Assuming w = −2/3 in Eq. (48), the Hawking temperature for the black hole
surrounded by the quintessence field takes the form

TBH = 3K (9κ + 16π)r
8(2κ+3π)
11κ+24π
h + 11κ + 24π

4πrh(11κ + 24π)
, (62)

We can see in Fig. 9 the Hawking temperature TBH as a function of rh for different
values of κ. In this case, the shape of curves changes significantly for each value of κ.
Note that all the curves are associated to the positive values of temperature, except the
green curve, where the Hawking temperature assumes negative values in the domain
studied.

5.4 Black hole surrounded by the cosmological constant field

According to Ref. [2, 61], the valuew = −1 corresponds to the black hole surrounded
by the cosmological constant field. Then, Eq. (31), in the context of the f (R, T )
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Fig. 9 TheHawking temperature for the black hole surrounded by the quintessence field plotted as a function
of rh considering different values of κ with K = � = 1, and w = −2/3. The curve with κ = 0 (black
curve) corresponds to the GR case

gravity, considering the equation of state with w = −1, reduces to

B(r) = 1 − 2M

r
+ Kr2. (63)

This is the same function obtained in [2] in the context of general relativity. Thus, we
conclude that the case w = −1 in f (R, T ) gravity corresponds, exactly, to the one
obtained in the framework of general relativity. The energy density assumes the form

ρ = − 3K

8π + 4κ

, (64)

where κ 	= −2π in order to avoid the singularity at this point. Using w = −1 in
Equations (60) and (61), we conclude that Eq. (61) is zero and Eq. (60) can be written
as

K

4π + 2κ

≥ 0, (65)

with κ > −2π . In Fig. 10, we show the behavior of the LHS of Eq. (65) considering
K > 0.

5.5 Black hole surrounded by the phantom field

The black hole associated to the phantom field can be obtained in general relativity,
considering w = −4/3 [61]. Substituting this value in Eq. (31), we find the following
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Fig. 10 Condition (65) plotted
as a function of κ considering
positive values of K . Negative
values of vertical axis are
associated to the regions where
the SEC is violated. In this
graph, the SEC is not violated if
κ > −2π

metric function

B(r) = 1 − 2M

r
+ Kr

8(9π+4κ)
24π+13κ . (66)

The presence of the parameter κ, imply that the solutions associated to w = −4/3 in
the context of f (R, T ) gravity and the solutions with w = −4/3 in general relativity,
are not equivalent. The SEC conditions, (44) and (45) for w = −4/3 are given by
relations

9K (32π + 15κ)

(24π + 13κ)2
≥ 0, (67)

K (32π + 15κ)

(24π + 13κ)2
≥ 0, (68)

where the solution of the pair of equations above demands that

− 32π

15
≤ κ < −24π

13
, or κ > −24π

13
. (69)

In Fig. 11, Eqs. (68) and (69), represented by the continuous line and dashed lines,
respectively, have similar behavior. In this figure, it was considered positive values for
K . The shapes of the curve for negative values of K , are reversed as compared to the
one for positive values of K .

Assuming w = −4/3 in Eq. (48), the Hawking temperature for the black hole
surrounded by the quintessence field takes the form

TBH = 3K (15χ + 32π)r
8(4χ+9π)
13χ+24π + 13χ + 24π

4πr(13χ + 24π)
. (70)

The Hawking temperature, in this case, is shown in Fig. 12. The shape of curves do not
change significantly for each value of κ. We observe that all the curves are associated
to the positive values of temperature in the domain studied.
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Fig. 11 Conditions (60) and (61)
originated from (44) and (45)
plotted as a function of κ

considering positive values of
K . Negative values of ordinate
axis are associated to the regions
where the SEC is violated. There
is one point where the SEC is
satisfied, corresponding to the
intersection of the curves

Fig. 12 The Hawking temperature for the black hole surrounded by the quintessence field plotted as a
function of rh considering different values of κ with K = � = 1, and w = −4/3. The curve with κ = 0
(black curve) corresponds to the GR case

6 Final remarks

The results obtained in this paper provide, for the first time in the literature, a solution
of the gravitational field equation in f (R, T ) gravity corresponding to the fluid of
Kiselev’s. This solution has an interesting feature: by choosing particular values of
the parameter of the equations of state, namelyw, we are able to reproducewell-known
solutions of the Einstein field equation as particular cases. As we have seen in this
paper, this remarkable feature is present in the context of f (R, T ) gravity.

This fluid has been studied in the context of general relativity and modified theories
of gravity. In the present paper, we have considered the model f (T ) = κT n and the
conditions that it must satisfy in order to generate Kiselev black holes in the context
of this theory of gravity. Indeed, the additivity and linearity conditions suggests that
the accepted value of n should be 1. The general solution obtained has an additional
structure that comes from the dependence on the parameter κ of the f (R, T ) gravity.
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This property implies that several particular values of the parameter w in modified
gravity lead to solutionswhich differs from theKiselev black hole, in general relativity.

To carry out a systematic analysis of the solution obtained in f (R, T ) gravity,
we use particular values for w associated to the solutions corresponding to a black
holes surrounded by dust field (w = 0), radiation field (w = 1/3), quintessence field
(w = −2/3), cosmological constant field (w = −1), phantom field (w = −4/3)
and so on. Considering the particular solutions studied, only the case w = −1 is
equivalent to the solution obtained in general relativity. The other cases studied, have
an additional structure in the solutions provided by the modified gravity, which is
characterized by dependence on the parameter κ.

Due to the presence of the additional structure from f (R, T ) gravity, in the major-
ity of the solutions considered, the SEC condition can be satisfied, considering the
particular cases. We have analyzed in details the conditions imposed by SEC on the
parameter κ of the theory and on the constant K and conclude that the particular solu-
tions that depend on κ are more flexible regarding the energy conditions. We studied
the horizons associated to the solution obtained and determined the Hawking tem-
peratures. As we can see, in some particular cases studied, the Hawking temperature
can reach negative values for certain values of κ, which means that some restrictions
should be imposed to the values of κ in order to avoid this behavior.

Finally, we observe that the choice of models of f (R, T ) gravity with high order
terms in R or T can lead to difficulties in finding exact solutions due to the condition
H = kF , supposed in the solution obtained.
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