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Abstract
Wehere propose amechanism that predicts, at early times, both baryon asymmetry and
darkmatter origin and that recovers the spontaneous baryogenesis during the reheating.
Working with U (1)-invariant quark Q and lepton L effective fields, with an interact-
ing term that couples the evolution of Universe’s environment field ψ , we require a
spontaneous symmetry breaking and get a pseudo Nambu–Goldstone boson θ . The
pseudo Nambu–Goldstone boson speeds the Universe up during inflation, playing the
role of inflaton, enabling baryogenesis to occur. Thus, in a quasi-static approximation
over ψ , we impressively find both baryon and dark matter quasi-particle production
rates, unifying de facto the two scenarios. Moreover, we outline particle mixing and
demonstrate dark matter takes over baryons. Presupposing that θ field energy density
dominates as baryogenesis stops and employing recent limits on reheating tempera-
ture, we get numerical bounds over dark matter constituent, showing that the most
likely dark matter would be consistent with MeV-scale mass candidates. Finally, we
briefly underline our predictions are suitable to explain the the low-energy electron
recoil event excess between 1 and 7 keV found by the XENON1T collaboration.
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1 Introduction

Current comprehension of the standard Big Bang paradigm struggled over how to
fix considerable issues, above all, the cosmological constant problem [1, 2], a ad
hoc baryon production, named after baryogenesis [3], dark matter (DM) and dark
energy [5–7], quantum gravity [8], and so forth. Similarly, recent experimental ten-
sions suggest the Big Bang model could somehow be theoretically incomplete [9]. To
circumvent the problem of baryogenesis and DM production, we here conjecture a
mechanism that unifies both baryon and DM genesis under the same standards.

Within the spontaneous baryogenesis framework [14, 15], particle production
occurs during the reheating due to the coupling of Nambu–Goldstone fields with
fermions. The decay of the Nambu–Goldstone field leads to the production of these
fermions Further, the interactions of the fermionic fields create a thermal bath thereby
reheating the Universe. The Nambu–Goldstone fieldψ , described by a complex scalar
field with non-vanishing baryon number, and the fermionic quark Q and lepton L
effective fields possess a U (1) global invariance, i.e.,

ψ → eiαψ , Q → eiαQ , L → L, (1)

The field Q carries baryon number, whereas L does not. Both fields are not endowed
with strong interactions, thus cannot describe real quarks and leptons, respectively. In
the above approach, the Nambu–Goldstone field plays the role of the inflaton and the
corresponding baryon current is generated by the classical rolling down of the inflaton
field [17, 18]. Thus, as the field rolls in one direction, it preferentially creates baryons
over anti-baryons, while the opposite is true as it rolls in the opposite direction. The
decays during reheating are assumed to be baryon number conserving. Finally, no CP
violation is required.

We extend the above spontaneous baryogenesis picture by identifying the ψ field
with a Universe environment field. This choice is motivated by a recent effective
theory involving matter with pressure, which depends upon a scalar field whose time
derivative is thermodynamically related to theUniverse environment temperature [40].
Thus, we interpret the pseudo Nambu–Goldstone boson θ , resulting from the baryonic
symmetry breaking, as inflaton and show that two stages occur, having a first in which
we claim DM to be born, whereas a second providing a dominant baryogenesis over
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DM. Particularly, during reheatingwe recover, in a quasi-static approximation over the
ψ field, the abundance of baryons as expected today. We remarkably find the baryon
and DM quasi-particle production rates are intertwined between them, unifying de
facto the two approaches. Further, we describe particle mixing as naive recipe to stop
baryogenesis and DM production and qualitatively demonstrate why DM dominates
over baryons. Assuming that the θ field energy density dominates when the baryo-
genesis stops and employing recent limits on the reheating temperature, we extract
numerical results on the DMmass constituents, most likely congruent withMeV-scale
mass candidates.

The paper is structured as follows. In Sect. 2 we introduce our effective model
and in Sect. 3 we compute the rate of particle production for our cases and discuss
baryogenesis, baryon asymmetry, DM production and mass mixing. The predictions
of our model are also critically discussed. We highlight conclusions and perspectives
of this work in Sect. 5.

2 Baryogenesis

The basic demands of our model is to get leptons formed before baryons in order to
plausibly describe baryogenesis through the effective fields Q, L and ψ [10]. The
Lagrangian accounts for the evolution of Universe’s environment field ψ , associated
with the dynamics of the universe. This evolution is provided by a generalized kinetic
term of the form Lenv = K (X , ψ), where X ≡ gμν(∂μψ̄)(∂νψ)/2 is the kinetic
term of the field ψ . For simplicity, in the following we assume that the generalized
kinetic term coincides with the canonical one, i.e., K ≡ X . Then, we build the Dirac
Lagrangian for quarks and leptons, Q and L with masses mQ and mL , respectively,

LQL = Q̄iγ μ∂μQ − mQ Q̄Q + L̄iγ μ∂μL − mL L̄L. (2)

Next, we add the interaction between the fields Q, L andψ , including the hermitian
conjugate terms h.c.

Lint = [igγ μ(∂μψ)Q̄ + hψ Q̄L + h.c.], (3)

where h is a coupling constant and g is a set of constants.
The set of constants g may appear to break the Lorentz invariance since it provides

apparent unsaturated Lorentz indices into the action. However, Lorentz invariance is
savedwhether one assumes the constant to play the role of a set of free constants that act
as Stückelberg fields [19–21]. The idea of considering such a set of constants comes
from relativistic hydrodynamics. In particular, it consists of four Lorentz-invariant
quantities that contract with the fermionic fields. Indeed, non-dissipative fluids are
described by virtue of the pullback formalism [22–24] through Carter’s covariant
formulation [25]. In order to provide a relativistic effective field theory description of
the type of interaction under exam, we consider an observer attached to a particular
fluid element by introducing a matter space such that its worldline is identified with a
unique point in this space. The coordinates of each matter space serve as labels that
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distinguish fluid element worldlines and remain unchanged throughout the evolution.
The matter space coordinates can be considered as scalar fields on spacetime, with a
unique map relating them to the spacetime coordinates. Thus, the basic assumption
of our model is that we assume our free constant g to act as a relativistic fluid, being
described through additional constant Stückelberg fields, so more conveniently one
has to call it by gσ with σ = 0, 1, 2, 3, instead of simply g. In this way, the action is
contracted without violating the Lorentz invariance by contracting the Lorentz indexes
for the fermionfields, since the effective quarkQ, and theDirac gammamatrix have two
free indexes. However, since we are working in a pure homogeneous and isotropic
scenario, neglecting the presence of both perturbations and back-reactions, the set
of free constants becomes a fluid with comoving coordinates with an internal time
coordinate represented by ga ≡ (g, 0, 0, 0) only1 [19, 20, 26]. Clearly, this choice
restores the broken diffeomorphisms in four-dimensional spacetimes, permitting the
fluid physical properties to be relativistically invariant [19, 27–29].

We assumed the minimal choice in Eq. (3) by extending the gravitational baryoge-
nesis [30] through replacing the scalar curvature with fermionic fields. In particular, a
gravitational interaction between the derivative of a first field, namely the environment
variation ∂μψ , and another (external) field Q providing the particle contribution.2 In
this picture, this interaction causes the reheating and can provide hints toward the
dynamically break of the charge–parity–time reversal (CPT) symmetry in an expand-
ing universe.3

The ψ field vacuum expectation value (VEV) is 〈ψ〉 = ψ0eiθ , where the dimen-
sionless angular field θ is the pseudo Nambu–Goldstone boson. Here, to let θ play
the role of the inflaton, we further include in the Lagrangian a potential V (θ) that
agrees with the Planck collaboration results [11]. In particular, such a potential has
to be quadratic in θ for small oscillations around θ = 0. We select, among the best
candidate, the Starobinsky [12] and the T-model [13] potentials, respectively

V1(θ) =	4

[
1 − exp

(
−

√
2

3

ψ0θ

MPl

)]2

≈ 2

3

	4ψ2
0 θ2

M2
Pl

, (4a)

V2(θ) =	4 tanh2
(

ψ0θ√
6αMPl

)
≈ 	4ψ2

0 θ2

6αM2
Pl

, (4b)

where 	 is the amplitude and MPl is the Planck mass and −2 < log10 α < 4. These
choices are licit because, as wewill see, the linear term ∂θV (θ) ≡ V ′(θ) ∝ ψ2

0 θ enters
in the equation of motion (EoM) for the θ field. From Eqs. (4a)–(4b), we define the
bare mass of the potentials as m = μ	2/(

√
3MPl) with μ = {2, 1/√α}, respectively.

We now list below our assumptions aimed at simplifying our treatment.

– The condition h 
 1 ensures small enough mQ and mL so that the θ field decay
produces Q and L .

1 Other choices for the set gσ , different from the Stückelberg field, may also be considered, but lie beyond
the purposes of this work.
2 Here, for simplicity, we do not consider the ψ and L coupling to avoid unexpected lepton currents.
3 This represents, however, a far topic from this work that will be investigated in future efforts.
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– The SU(1) invariance is for rotations α = −θ .
– To avoid significant additional particle production, we assume ∂μψ0 � 0, which
is valid as the reheating approaches its end.

Thus, implementing the above assumptions, the overall Lagrangian is given by
Eqs. (2)–(3)

L =X − V (θ) + Q̄iγ μ∂μQ − mQ Q̄Q + L̄iγ μ∂μL − mL L̄L

+ [hψ0 Q̄L + h.c] + ∂μθ Jμ, (5)

leading to the Noether baryonic current:

Jμ ≡ Q̄γ μQ − gψ0γ
μ(Q + Q̄). (6)

Particle production occurs after the inflation, during the reheating. In this epoch, the
vacuum energy is converted into radiation energy. To accurately quantify this effect,
one has to calculate the production of particles and its back reaction on the inflaton
field as it rolls down the potential. It is therefore crucial to study the the equation of
motion (EoM) for the inflaton field. To this aim, since inflation already occurred, we
assume a spatially flat homogeneous and isotropic background, thus all the fields are
functions of the time variable only. Applying the Eulero-Lagrange equation we obtain
the EoMs of the fields Q and Q̄, respectively,

4Q̇ + i(γμmQ − 4θ̇ )Q = iψ0(γμhL − 4gθ̇ ), (7a)

4 ˙̄Q − i(γμmQ − 4θ̇ )Q̄ = −iψ0(γμhL̄ − 4gθ̇ ), (7b)

the EoM of the fields L and L̄ , respectively,

4L̇ + iγμmLL = iγμhψ0Q, (8a)

4 ˙̄L − iγμmL L̄ = −iγμhψ0 Q̄. (8b)

By employing Eqs. (7) and taking the VEV in the Heisenberg representation, we write
the EOM for the θ field

ψ2
0 (θ̈ + 3H θ̇ ) + V ′(θ) = −ihψ0〈Q̄L − L̄Q〉

+ ihgψ2
0 〈L − L̄〉 − igψ0mQ〈Q − Q̄〉. (9)

Solving up Eq. (9) requires (a) a semiclassical approach, treating θ andψ0 as classical
fields and quantizing Q and L , and (b) a perturbative approach
(t) = 
0(t)+h
1(t)
for h 
 1 [14, 15], where 
0 generically labels the free Q and L fields (for h � 0)
with the condition 
̇0 = 0 and a vacuum expectation value 〈
0〉 = 0.

We work up to the order h2 and assume as solution of Eqs. (9) a damped harmonic
oscillator θ(t) = θi (t) cos (�t)with renormalizedmass� and amplitude θi (t), varying
with time more slowly than the cosine term.

123



33 Page 6 of 18 O. Luongo et al.

The first term on the right hand of Eq. (9) has been already computed in Ref. [14]
and gives

〈Q̄L − L̄Q〉 = − ih

4π
ψ0�θ̇ + ih

2π2ψ0�
2 log

(
2ω

�

)
θ, (10)

where ω is the particle energy.
The expressions of the other two new terms are detailed in the following. First, by

solving Eqs.(7)–(8) for h = 0 and mQ = 0, we compute the free fields solutions

Q0(t) = A(t)eiθ(t) + gψ0, (11a)

L0(t) = B(t)e−iγ 0mLt/4, (11b)

where we imposed the ansatz A ≡ A(t) and B ≡ B(t), leading to Ȧ = Ḃ = 0 and
VEV 〈A〉 = 〈B〉 = 0. The solutions for Q̄0(t) and L̄0(t) are the h.c of Eqs. (11). It is
clear that at the zero-th order in h we have 〈Q − Q̄〉(0) = 〈L − L̄〉(0) = 0, thus it does
not contribute to Eq. (9).

Moving to the first order in h, i.e., recovering the linear terms in h of Eqs. (7)–(8),
the perturbative solutions of the fields Q and L are given by

Q(t) = Q0(t) + ihγ 0ψ0

∫
d4yGQ(x, y)L0(ty), (12a)

L(t) = L0(t) + ihγ 0ψ0

∫
d4yGL(x, y)Q0(ty), (12b)

where GQ(x, y) and GL(x, y) are the Green functions for the fields Q and L , respec-
tively, and satisfy the following relations

[
4∂t + iγ 0mQ − 4i θ̇

]
GQ(x, y) = δ(x − y),[

4∂t + iγ 0mL

]
GL(x, y) = δ(x − y),

where the square brackets of the first relation defines the operator OQ and the square
brackets of the second one defines the operator OL .

From Eq. (12a) and the analogous solution for Q̄, it follows that also at the first
order, we have 〈Q− Q̄〉(1) = 0. Then, by taking the VEV of Eq. (12b) and applying the
operatorOL to both sides of this equation,we obtain as a solution 〈L(t)〉 = b+k1e−iat ,
where we defined a ≡ γ 0mL/4 and b ≡ hgψ2

0 /mL . If we impose the condition
〈L(t)〉h=0 = 0, which follows from Eq. (11), we find k1 = 0 and thus 〈L − L̄〉(1) = 0.

Finally, we move on to the order h2. We replace, into Eq. (12a), the term L0(t)with
the solution Eq. (12b). Considering only the highest order term, we find

Q(t) = −h2ψ2
0

∫∫
d4y d4z GQ(x, y)GL (y, z)Q0(tz), (13)
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that has a VEV given by

〈Q(t)〉 = −h2gψ3
0

∫∫
d4y d4z GQ(x, y)GL(y, z). (14)

We apply the product of operators OLOQ to both sides of Eq. (14). Since the pseudo
Nambu-Goldstone boson acquires a mass that largely exceeds the fermionic masses,
we can safely assume that mQ, mL ≈ 0 and obtain

16〈Q̈(t)〉 − 16i θ̇〈Q̇(t)〉 − 16i θ̈〈Q(t)〉 = −h2gψ3
0 . (15)

The solution of Eq. (15) can be obtained by setting the initial conditions Y (0) ≈ 0
and Ẏ (0) ≈ 0 and using the damped harmonic oscillator ansatz. Further, considering
the case of small oscillations around the bottom of the potential, we expand up to the
first order in θ(t) to get

〈Q(t)〉 � − ih2gψ3
0

16

[
t2

2
+ i

θi (t) − θ(t) + θ̇ (t)t

�2

]
.

Because there is no evidence for an ongoing baryogenesis process, we suppose terms
proportional to t2 and θ̇ t to be negligible. Therefore we get

〈Q − Q̄〉(2) = − ih2gψ3
0

8�2 [θi (t) − θ(t)] . (16)

Following an analogous procedure, i.e., replacing into Eq. (12b), the term Q0(t) with
the solution Eq. (12a), considering only the highest order term, and applying the VEV,
we obtain

〈L − L̄〉(2) = 0. (17)

Finally, plugging Eqs. (10), (16) and (17) into Eq. (9), the EoMof the θ field become

θ̈ (t) + (3H + �)θ̇(t) + �2θ(t) + Cθi (t) = 0, (18)

where we defined

� ≡ h2

4π
�, C ≡ h2g2ψ2

0mQ

8�2 , (19)

and qualified the renormalized mass � by

m2 ≡ �2
[
1 + C + h2

2π2 log

(
2ω

�

)]
. (20)

It is important to stress that � represents the decay rate of the inflaton field and, thus,
the heuristic term �θ̇ describes the reheating. Since h 
 1, it has to be � 
 �. In
addition, being mQ negligible, the constant C is negligible too. Therefore, assuming
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H 
 � and applying the initial conditions θ(0) = θi , θ̇ (0) � 0, we get the damped
harmonic oscillator solution

θ(t) = θi e
−�t/2 cos (�t) , (21)

where θi is the value of the θ field at the beginning of the reheating epoch.

3 Particle production

We now proceed to calculate the number density of the particles produced during
reheating. To the lowest order in perturbation theory, the average number density n
of particle-antiparticle pairs produced by the decay of the classical scalar field ψ is
formalized by [14]

n = 1

V

∑
s1,s2

∫
d3 p1

(2π)32p01

d3 p2
(2π)32p02

|A|2, (22)

where A is the pair production amplitude and subscripts 1 and 2 refer to the final
particles produced. We need to swap it between baryons and DM for reaching baryon
and DM amount of particles. By virtue of our Lagrangian couplings, Eq. (5) furnishes
different kinds of interacting particles, comprising (I) QL̄ and Q̄L pairs, clearly related
to the observed baryonic asymmetry [16, 17], (II) gψ0Q and gψ0 Q̄ pairs related to the
production of non-baryonic particles. Since inflaton acts as source, we speculate they
contribute to DM birth, leading to DM quasi-particles4. The reason why it is referred
to as a source is that the corresponding Lagrangian couplings potentially generate
particle excitation in the field.

3.1 Baryonic matter production

Focusing on baryons, the average number density of QL̄ pairs is computed from
Eq. (22) by quantizing the fields Q and L . For the Q field we have

Q =
∑
s

∫
d3k

(2π)32k0
[uskbske−ik·x + vskd

s†
k eik·x ], (23)

where bsk and ds†k are annihilation and creation operators obeying the commutation

rules {bsk, bs
′†
k′ } = {dsk , ds

′†
k′ } = (2π)32k0δ3(k − k′)δss′ ; usk and vsk are the spinors of

particles and antiparticles with momentum k and spin s, respectively. The field L can
be written in a fashion similar to Eq. (23).

4 We here conjecture this mechanism can lead to a non-vanishing DM contribution. Clearly, what we here
baptize DM particles is better to say as DM quasi-particles. Henceforth, we only briefly name them DM
particles.
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The process pair production amplitude is

A = 〈Q(p1, s1), L̄(p2, s2)|ihψ0

∫
d4x Q̄(x)L(x)eiθ(t)|0〉,

and, together with Eqs. (22) and (23), gives

n(Q, L̄) = 1

V

∑
s1,s2

∫
d p̃1d p̃2 | 〈Q(p1, s1), L̄(p2, s2) | ihψ0

∫
d4xeiθ(t)

×
∑
s′1

∫
dk̃1

[
ū
s′1
k1
b
s′1†
k1

eik1·x + v̄
s′1
k1
d
s′1
k1
e−ik1·x

]

×
∑
s′2

∫
dk̃2

[
u
s′2
k2
b
s′2
k2
e−ik2·x + v

s′2
k2
d
s′2†
k2

eik2·x
]
|0〉 |2, (24)

where d p̃ ≡ d3 p/[(2π)32p0] and, in general, a state 〈A(p1, s1), B̄(p2, s2)| corre-
sponds to a final state with an A particle of momentum p1 and spin s1 and an anti-B
particle with momentum p2 and spin s2.

Equation (24) can be simplified noting that the only non-zero term is given by

〈Q(p1, s1), L̄(p2, s2)|bs
′
1†
k1

d
s′2†
k2

|0〉 = (2π)64p01 p
0
2δ

3(p1 − k1)δ3(p2 − k2)δs1s′1δs2s′2 .

The δ3 functions imply that k01 = p01 and k02 = p02. Next, we exploit the relation∫
d3x e−ip·x = (2π)3δ3(p) and get a Dirac delta inside the square modulus. The

delta squared is naively addressed as |δ3(p1 + p2)|2 ≡ δ3(p1 + p2)δ3(0). Since we
are working out a perturbative expansion within a finite volume, we can approximate
δ3(0) = V /(2π)3. Thus Eq. (24) becomes

n(Q, L̄) = h2ψ2
0

(2π)3

∑
s1,s2

∫
d3 p1
2p01

d3 p2
2p02

δ3(p1 + p2)

× |ūs1p1vs2p2
∫

dtei[(p01+p02)t+θ(t)]|2. (25)

The term δ3(p1+p2) kills the integral in d3 p2 and implies thatp1 = −p2. The assump-
tion of negligible fermionic masses, implies that p0 = √|p|2 + m2 � |p| and leads
to the identity p01 = p02 = ω. The sum over the spin states gives

∑
s1,s2 |ūs1p1vs2p2 |2 =

4(p01 p
0
2 + |p1||p2|) = 8ω2. Finally, we write d3 p1 = 4π |p1|2d|p1| = 4πω2dω and

obtain

n(Q, L̄) = h2ψ2
0

π2

∫
dωω2

∣∣∣ ∫ dtei[2ωt+θ(t)]
∣∣∣2. (26)

A similar expression for n(L, Q̄) can be obtained by replacing θ(t)with−θ(t). After-
wards, we define the baryon number density nb ≡ n(Q, L̄) and the antibaryon number
density nb̄ ≡ n(L, Q̄).
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Since θ is small, in Eq. (26) we can expand eiθ � 1 + iθ − θ2/2. The lowest
order term gives

∫
dte2iωt ∝ δ(2ω) = 0. Instead the iθ term, when squared, gives the

same contribution to particles and antiparticles. So, in order to obtain the lowest order
asymmetry, we should consider cross terms. We find

nB = nb − nb̄ = h2ψ2
0

π2

∫
dωω2

[
A(θ)A(θ2)

i
+ h.c.

]
(27)

where A( f ) = ∫ +∞
−∞ dt f (t)e2iωt . Finally, using the solution in Eq. (21), we find [15]

nb = 1

2
�ψ2

0 θ2i + h2

16π
�ψ2

0 θ3i , nb̄ = 1

2
�ψ2

0 θ2i − h2

16π
�ψ2

0 θ3i ,

leading to the final result

nB = h2

8π
�ψ2

0 θ3i . (28)

3.2 Darkmatter production

To obtain the DM number density, the amplitude to be accounted for in Eq. (22) is
now

ADM = 〈Q(p, s)|g2ψ2
0

∫
d4x θ̇ (t)Q̄(x)eiθ(t)|0〉.

So, after so quantizing Q and solving, analogously to the case of baryons, we get

n(gψ0, Q) = g2ψ2
0

(2π)3

∫
d3 p

2p0
δ3(p)

∑
s

uspū
s
p

∣∣∣ ∫ dt θ̇ (t)ei[p0t+θ(t)]
∣∣∣2. (29)

The δ3(p) implies that p0 = Ep = mQ , thus the sumover spin states gives
∑

s u
s
pū

s
p =

pμγ μ + mQ = p0(γ 0 + 1).
To solve the time integral, we expand e−iθ ≈ 1− iθ and consider only the zero-th

order termbecause at the first orderwe get terms∝ θ θ̇ , which can be neglected. Finally,
considering the solution in Eq. (21) with the working assumptions mQ, � 
 �, the
square modulus in Eq. (29) gives |∫ dt θ̇ (t)eimQt |2 ≈ θ2i . Finally, we write Eq. (29) as

n(gψ0, Q) � g2ψ2
0

16π3 θ2i

(
γ 0 + 1

)
. For n(gψ0, Q̄)we have the same result with (γ 0 −1)

instead of (γ 0+1), because
∑

s vsp v̄
s
p = pμγ μ −mQ , ending up with DM asymmetry

nDM = n(gψ0, Q) − n(gψ0, Q̄) � g2ψ2
0

8π3 θ2i . (30)

An earlier idea of unifying the creation of DM and baryons was proposed in [31,
32], albeit with a mechanism profoundly different from our scheme.
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3.3 Mass mixing

From the above results, there is evidence for the occurrence of two particle production
stages:

(1) At the beginning, the interaction term gψ0θ̇Q dominates in view of the large value
of ψ0 and h 
 1, producing de facto the DM;

(2) Afterwards, as θ̇ → 0, DM production becomes negligible, leaving the baryon
production dominant.

However, the Q and L fields are not mass eigenstates, hence, if Q and L do not
decay immediately into stable lighter mass particles with appropriate quark quantum
numbers, their mixing may occur. For this reason, Eqs. (28) and (30) have to account
for this phenomenon. The mass mixing in the initial stage can be evaluated from the
complete mass matrix

M =
⎛
⎝ mQ −hψ0 θ̇

−hψ0 mL 0
θ̇ 0 0

⎞
⎠ , (31)

which admits as eigenvalues

λ1 = a

3
− α(1 − i

√
3)

6 3
√
2

+ (1 + i
√
3)(3b − a2)

3 × 22/3α
, (32a)

λ2 = a

3
− α(1 + i

√
3)

6 3
√
2

+ (1 − i
√
3)(3b − a2)

3 × 22/3α
, (32b)

λ3 = a

3
+ α

3 3
√
2

−
3
√
2(3b − a2)

3α
, (32c)

where a ≡ mQ +mL , b ≡ mQmL + θ̇2−h2ψ2
0 , and c ≡ −θ̇2mL . Further, we defined

α3

27
≡ 2a3

27
− ab

3
− c +

√
4b3 − a2b2 − 4a3c

27
+ 2abc

3
+ c3.

The eigenvalues λi must be real. Taking in mind that the fermionic masses are negli-
gible and the θ field oscillations are small, we can apply the conditions c 
 a, b 
 1
and neglect their high powers. Next, resorting these conditions, we can arrange α in
such a way that we can expand it by using the approximation (1+ x)γ � 1+γ x , with

x 
 1. We find that α � (3
√
3
√
4b3 − a2b2 − 9ab)1/3 �

√
3

3√4

√
4b − a2, and get real

eigenvalues

λ1 � mQ + mL

3
− 1

2

√
�m2 + 4(h2ψ2

0 − θ̇2), (33a)

λ2 � mQ + mL

3
+ 1

2

√
�m2 + 4(h2ψ2

0 − θ̇2), (33b)

λ3 � mQ + mL

3
, (33c)
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where we defined�m ≡ mQ −mL . With the position βi = θ̇/λi , the mass eigenstates
are given by

�1 =N−1
1 [L + ε1(Q + β1gψ0)] , (34a)

�2 =N−1
2 (Q + ε2L + β2gψ0) , (34b)

�3 =N−1
3 (Q + ε3gψ0) , (34c)

which incorporate the normalizations

N1 =
√
1 + ε21(1 + β2

1 ),

N2 =
√
1 + β2

2 + ε22 ,

N3 =
√
1 + ε23 ,

and the definitions

ε1 = hψ0

mQ + θ̇β1 − λ1
,

ε2 = hψ0

mL − λ2
,

ε3 = β3.

Now, the baryon asymmetry is the sum of terms given by the product of a number
density of produced particle/antiparticle pairs times the quark content of the pair

nMB =
∑
i, j =i

n(�i , �̄ j )|〈Q | �i 〉|2 − n(� j , �̄i )|〈Q̄ | �̄i 〉|2

= 1

V

∑
si ,s j

∑
j =i
j>i

∫
d p̃i d p̃ j ξi j

[
|Ai j̄ |2 − |A jī |2

]
, (35)

where each n(�i , �̄ j ) and n(� j , �̄i ) have been computed as per Eqs. (22) with the
positions

ξ12 ≡ 1

N 2
2

− ε21

N 2
1

,

ξ13 ≡ 1

N 2
3

− ε21

N 2
1

,

ξ23 ≡ 1

N 2
3

− 1

N 2
2

.
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The terms Ai j̄ in Eq. (35) can be computed by expressing Q, L and gψ0 as linear
combinations of �1, �2 and �3. Thus, we get

|A12̄|2 − |A21̄|2 ≡ ζ12

[
|AQ̄L |2 − |AL̄Q |2

]
, (36a)

|A13̄|2 − |A31̄|2 ≡ ζ13

[
|AQ̄L |2 − |AL̄Q |2

]
, (36b)

|A23̄|2 − |A32̄|2 ≡ ζ23

[
|AQ̄L |2 − |AL̄Q |2

]
, (36c)

where

ζ12 ≡
[
ε23(β2 − ε3)

2 − ε21ε
2
2ε

2
3(β1 − ε3)

2
]

(β2 − β1ε1ε2 − ε3 + ε1ε2ε3)
4 N−2

1 N−2
2

,

ζ13 ≡
[
(β2 − ε3)

2(β2 − β1ε1ε2)
2 − ε21ε

2
2ε

2
3(β1 − β2)

2
]

(β2 − β1ε1ε2 − ε3 + ε1ε2ε3)
4 N−2

1 N−2
3

,

ζ23 ≡
[
ε21(β1 − ε3)

2(β2 − β1ε1ε2)
2 − ε21ε

2
3(β1 − β2)

2
]

(β2 − β1ε1ε2 − ε3 + ε1ε2ε3)
4 N−2

2 N−2
3

.

Putting together Eqs. (28) and (35)–(37), we obtain

nMB = h2

8π
�ψ2

0 θ3i fε, fε ≡
2∑

i=1

3∑
j =i
j>i

ξi jζi j . (37)

In the case of the DM, the developed machinery provides an asymmetry given by

nMDM =
∑
i

n(gψ0, �̄i )|〈gψ0 | �i 〉|2 − n(gψ0, �̄i )|〈gψ0 | �̄i 〉|2 = g2ψ2
0

8π3 θ2i χε,

(38)

where

χε ≡ ε21ε
2
2ε

2
3 + ε23 + (β2 − β1ε1ε2)

2

(β2 − β1ε1ε2 − ε3 + ε1ε2ε3)
2 .

In asymptotic regime θ̇ → 0, we get β1 = β2 = β3 = 0, ε1 = ε2 = ε, and ε3 = 0.
In this limit, the spontaneous baryogenesis is recovered [14, 15] and for �m = 0 we
have ε = 1, taming the asymmetry, i.e., nMB = 0 and, moreover, the DM production is
suppressed.

Confronting Eqs. (37) and (38), we notice nMB ∝ h2 whereas nMDM does not depend
upon h. Provided the interplay between predominant quantities, e.g.ψ0, and negligible
terms, say mQ , qualitatively, the dependence nMB ∝ h2, with the prescription h 
 1,
indicates DM might dominate over baryons. Finally mass mixing ensures that the
overall process is not instantaneous and smears baryogenesis out. This is a relief,
since DM contribution could, in principle, threaten to blow up.
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3.4 Predicting darkmatter candidates

Equations (37) and (38) have been computed in the regime H 
 �, which lasts for
about �t ≈ t ≈ �−1. However, particle production properly begins as H ≈ � � �,
i.e., when θ starts oscillating around the minimum of the potential. In this regime
of duration �t� ≈ t� ≈ �−1, the Universe’s expansion effects turn out to be non-
negligible. During the reheating, the Universe behaves as matter-dominated with a
scale factor a(t) ∝ t2/3. The θ field evolves as ∝ t−2/3, whereas baryon and DM
asymmetries at the beginning are given by

nMB?
nMB

= �t�
�t

(
t

t�

)2

≈ �

�
, (39a)

nMDM?

nMDM
= �t�

�t

(
t

t�

)4/3

≈
(

�

�

)1/3

, (39b)

implying that the particle production is larger at the beginning. For this reason, here-
after nMDM� and nMB� are considered as the total asymmetries. Dividing Eq. (39a) by
Eq. (39b), we infer the unknown mass of DM constituent

mX � π2h2mp�θi

g2

(
fε
χε

) (
�DM

�B

) (
�

�

)2/3

, (40)

where we compared the produced asymmetries with the cosmic densities, i.e., we
assumed n�

DM � ρcr�DM/mX and n�
B � ρcr�B/mp, with mp the proton mass and

ρcr the current critical density, namely ρcr ≡ 3H2
0 M

2
Pl/(8π).

Equation (40) can be further simplified considering that: (i) recent estimate imply
�DM/�B � 5, (ii)h 
 1 leads to� � m, (iii)Universe’s energydensity is dominated
by V (θ), having H(θi ) = √

4π/3mψ0θi/MPl, (iv) H(θi ) = �, with �(h,m) given

in Eq. (19), yelds to θi =
√

3
4π

MPl
mψ0

�(h,m). Plugging the above into Eq. (40), we
achieve

mX � 5
√
3π3/2h2mpMPlm2/3

2g2ψ0

fε
χε

�(h,m)1/3, (41)

where fε and χε are functions of (h, g, ψ0,mQ,mL , θ̇ ). The function θ̇ (t) can be
evaluated as temporal average over �t� ≈ �−1, which is the epoch during which the
particle production is more efficient. This average allows us to write θ̇ ≈ −0.5mθi .

We can now sort out the reheating temperature TR , requiring all relativistic species
energy density, ρrad = (π2/30)g�T 4

R , is equal to the one estimated for θ field, namely
ρθ = 3H2M2

Pl/(8π), at the time t = �−1. We compute

TR =
(

45

4π3g�

)1/4

M1/2
Pl �1/2, (42)

where g� ≈ 107 is the effective numbers of relativistic degrees from all parti-
cles in thermal equilibrium with photons. Further, from Eqs. (37) and (42), we

123



Unifying baryogenesis with dark matter production Page 15 of 18 33

can compute baryonic asymmetry parameter η = nMB?/s, where entropy density is
s = (2π2g�/45)T 3

R at reheating.

4 Numerical results

Thus our strategy consists in computing the set (h,mQ) with those values that are
consistent with current bounds on η and, consequently, solving numerically solving
our equations to get mX and TR . In so doing, we single out the following bounds
[11, 33] m ∈ [1010, 1013] GeV, ψ0 ∈ [10−6, 10−3]MPl, η = (8.7 ± 0.10) × 10−11,
mL ≈ 0, having �m ≈ mQ and mt < mQ 
 m, where mt = 173.2 GeV is the top
quark mass. The numerical bound on η defines regions in the space of parameters, as
prompted in Fig. 1. The contour plots (h,mQ, TR) (top panels) define the following
constraints:

1) for m = 1013 GeV and ψ0 = 10−3MPl, we have 10−5 
 h � 10−2 and

1010 GeV �mQ 
 1013 GeV,

1010 GeV 
 TR � 1013 GeV. (43)

2) for m = 1010 GeV and ψ0 = 10−6MPl, we have 10−6 � h � 10−4 and

106 GeV �mQ 
 1010 GeV,

107 GeV � TR � 1010 GeV. (44)

The above numerical results have been pushed up to mQ = m but, clearly, the ansatz
mQ 
 m has been consistently propagated to the constraints on h and TR . Noteworthy,
in the second case the ansatz mQ 
 m does not introduce absolute lower limits on h
and TR . This appears evident by looking at Fig. 1 (top, right panel).

The estimate of the DMmass constituent depends on the choice of the dimensional
constant g, as portrayed in Eq. (41). On the one hand, large values of this constant
bring down the DM mass estimate making it, in principle, consistent with ultralight
fields [35], among which axions [36]. Sterile neutrinos [37] as fermions, are a priori
excludable, though their mass range is easily attainable, again, for large values of g.

On the other hand, it cannot be g 
 1 due to the large scale energies involved
within the epoch in which our computations have been performed. The prize to pay
is that g turns out to be dimensional, i.e., the theory is not fully-renormalizable. This
fact, automatically rules out highly-heavy DM candidates, called variously but mostly
as WIMPZillas [38].

To limit our choice of g, we decided to rely on the most recent observational signa-
ture attributed toDMparticles. In this light, we targetMeV-scale forDMcandidates, as
recently proposed to explain the excess of low-energy electron recoil events between
1 and 7 keV measured by the XENON1T collaboration [39]. Thus, as portrayed in the
contour plots (h,mX , TR) of Fig. 1 (bottom panels), we obtain the following bounds:

– form = 1013 GeV and ψ0 = 10−3MPl, g ≈ 8×103 GeV1/2, 0.50 MeV � mX �
1.99 MeV;
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– for m = 1010 GeV and ψ0 = 10−6MPl, g ≈ 80 GeV1/2, 0.64 MeV � mX �
2.00 MeV.

5 Conclusions and perspectives

We here introduced a mechanism for unifying baryogenesis and DM production. We
preserved spontaneous baryogenesis during reheating, predicting the baryon asym-
metry. Further, we turned our attention on how DM could form and mix, proposing
DM quasi-particle owing to the couplings between pseudo Goldstone boson and quark
fields. In this respect, we set out with a U (1) Lagrangian, constructed by means of
effective quark Q and lepton L fields,with a spontaneous symmetry breaking potential,
and a further interacting term that couples the evolution of Universe’s environment,
say ψ0, with Q. Immediately after the transition, the symmetry breaking potential
disappeared and a pseudo Nambu–Goldstone boson, namely the inflaton field, domi-
nated at this stage. Within a quasi-static approximation on the environment field, we
highlighted how pairs of baryons and DMparticles can be produced, naively described
how baryogenesis stops through the mixing process and qualitatively demonstrated
why DM dominates over baryonic matter. As byproduct of our manipulations, we are
therefore not tied simply to baryogenesis but the overall process yields up two sorts
of massive terms, say baryons and DM. Mass mixing ensures how baryogenesis and
DM production stop. In particular, examining recent limits on m and ψ0 [33], and the
baryon asymmetry η [11], we obtained constraints on h and mQ and found that TR is
consistent with recent estimates [33, 34]. The estimate of the DMmass constituent, in
stead, depends upon a dimensional constant g, as portrayed in Eq. (41). Large values
of g make mX consistent with ultralight fields [35], among which axions [36]. Sterile
neutrinos [37] as fermions, are a priori excludable. The opposite case, i.e. g 
 1,
is not possible, due to the large scale energies assumed in our computations, hence
automatically ruling out highly-heavy DM candidates, called variously but mostly as
WIMPZillas [38]. We decided to target the MeV-scale for DM candidates, as recently
proposed to explain the excess of low-energy electron recoil events between 1 and
7 keV measured by the XENON1T collaboration [39]. Thus, we fixed the value of the
constant g and extracted numerical bounds on the mass range of the DM constituent,
i.e., 0.5MeV 
 mX � 2.00MeV. Remarkably,MeV-scalemass particles are suitable
DM candidate to successfully explain the currently observed baryonic asymmetry.

Looking ahead, in incomingworkswe attempt to include quantumchromodynamics
and to unify baryogenesis with antecedent inflationary phases [40].
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