
General Relativity and Gravitation (2022) 54:161
https://doi.org/10.1007/s10714-022-03047-7

RESEARCH

Black holes in 4D AdS Einstein Gauss Bonnet gravity with
power: Yang Mills field

Anindya Biswas1

Received: 1 October 2022 / Accepted: 2 December 2022 / Published online: 15 December 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
In this paper we construct an exact spherically symmetric black hole solution with a
power Yang–Mills (YM) source in the context of 4D Einstein Gauss–Bonnet gravity
(4D EGB). We choose our source as (F (a)

μν Fμν(a))q , where q is an arbitrary positive
real number. Thereafter we study the horizon structure, thermodynamic issues like
thermal stability and black hole phase transition. Our purpose here is to analyse the
black hole space-time under the net effect coming from the Gauss–Bonnet coupling
parameter α and the nonlinear parameter q. We then evaluate all important thermody-
namic quantities to establish the Smarr formula and the first law of thermodynamics in
extended phase space. The behaviour of heat capacity as a function of horizon radius
is thoroughly studied to understand the thermal stability of the black hole solution.
An interesting phenomena of existence/absence of thermal phase transition occur due
to the nonlinearity of YM source. For some values of the parameters, we find that the
solution exhibits a first-order phase transition, like a van der Waals fluid. In addition,
we also verify Maxwell’s equal area law numerically by crucial analysis of Gibbs free
energy as a function of temperature. Moreover, the critical exponents are derived and
showed the universality class of the scaling behaviour of thermodynamic quantities
near criticality.

Keywords Black hole Thermodynamics · Einstein Gauss-Bonnet Gravity · Yang
Mills Fields
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1 Introduction

Understanding towards the formulation of quantum gravity has been initiated suc-
cessfully by the work of Hawking and Bekenstein [1–3] in the branch of black hole
physics. It was argued then the space-time geometry of black holes are related through
the thermodynamic parameters like temperature and entropy following the discovery
of black hole radiation [2]. Later on an important development has happened due to
Hawking and Page in the study of thermodynamic phase transition of Anti-de Sitter
(AdS) black hole [4]. However, this particular phase transition has a wonderful con-
nection with the confinement/deconfinement transition of the Yang–Mills theory in
the context of AdS/CFT correspondence [5–7]. A close resemblance was observed
in [8, 9], between a first order phase transition of charged AdS black hole with the
liquid–gas phase transition of Van der Waals (VdW) fluid. This analogy of first order
phase transition has taken considerable interest when the cosmological constant �

(� ∼ − 1
l2

in 4 dimensions, where l is the AdS length scale) is interpreted as the
thermodynamic pressure and at the same time the mass of the black hole is identified
with the enthalpy [10–12] of the black hole system. Therefore treating the cosmologi-
cal constant as pressure P and its conjugate thermodynamic volume V completes the
similarity between AdS black holes and Van der Waals fluid in extended black hole
thermodynamics.1

In order to explain some astrophysical observations in the regime of strong grav-
ity around black holes (see [14, 15] for recent reviews) Einstein’s General Relativity
which is successful in the weak field limits needs to be modified. A natural candidate
of the modified theory of gravity can be obtained by adding the higher order derivative
terms with the existing Einstein Hilbert (EH) action. In the low energy limit, string
theories provide an effective model of gravity in higher dimensions with the action
augmented by the higher order curvature terms [16–20]. In this regards Lovelock the-
ories are considered as the natural generalization of the Einstein General Relativity in
higher derivative gravities [21, 22]. Gauss Bonnet (GB) gravity is the special case of
Lovelock gravity of second order curvature correction terms added to the first order EH
Lagrangian, contribute to the equation of motion for space-time dimensions D > 4.
Recently the focus has been shifted from D > 4 to the D = 4 space time dimensions
in the domain of GB gravity. It is known that in the four dimensional description, the
integral of the GB term is topological invariant and does not contribute to the field
equations. Nevertheless in Ref. [23] Glavan and Lin suggested a novel 4D Einstein
Gauss Bonnet (EGB) gravity by rescaling the GB coupling constant α → α

D−4 and
taking the limit D → 4 at the level of field equations. Now the GB terms contribute to
the gravitational dynamics by avoiding the conditions imparted by Lovelock’s theorem
[21, 22]. Though this effective GB gravity admits solutions of spherically symmet-

1 See recent review [13] and references therein for related phenomena of phase transition of black hole
systems.
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ric black hole in four dimensions, but the dimensional regularization scheme due to
Glavan and Lin [23] was contradicted following many works in Refs. [24–30]. The
inconsistency arises from the fact that there is no manifestly covariant novel 4D EGB
gravity model with only two degrees of freedom to satisfy the Lovelock’s theorem.
Recently other approaches have been made in Refs. [31–36] to find well- defined the-
ories of 4D EGB gravity. Though, the authors in [31–36] have found consistent theory
of 4D EGB gravity but obtained gravity with 2 + 1 degrees of freedom in general.
Very recent Aoki–Gorji–Mukohyama in [37, 38] have proposed a well defined theory
of 4D EGB gravity based on Arnowitt–Deser–Misner (ADM) decomposition and by
breaking, a part of the 4D diffeomorphism invariance, that is to keep the 3-dimensional
spatial diffeomorphism invariance and break the temporal diffeomorphism. Finally it
was argued in [39] that the D 4 limit of any D-dimensional solution of EGB gravity
produced in [23] is a solution of the consistent Aoki–Gorji–Mukohyama theory even
though the matter fields are minimally coupled. Several authors have explored a wide
variety of black hole solutions with electrically charged AdS black hole [40], magnet-
ically charged nonsingular black holes [41, 42] and Born–Infeld (BI) AdS black hole
solution [43] in this new gravity theory. Other black hole solutions where 4D EGB
gravity coupled with nonlinear electrodynamics (NED) are obtained in [44, 45]. The
study of 4D EGB black hole in AdS space within the formulation of extended thermo-
dynamics have received much attention while considering Maxwell charge [46–51]
in this gravity model. Further investigation of extended thermodynamics in charged
Gauss–Bonnet Black Hole in de Sitter space-time was done in [52]. In particular, due
to GB coupling constant α this class of black hole shows VdW like phase transition
at its charge neutrality. The study of phase transitions in this gravity theory have been
extended forAdS black holewithBI charged [53], NEDcharged [54, 55],magnetically
charged Bardeen black hole [56] and Hayward AdS black hole [57].

Now, it is fascinating to study nonlinear electrodynamics (NED) which is mini-
mally coupled with gravity, has expectedly opened up a new window to understand
nonsingular nature of the black hole space-time [58–61]. In that context black hole
solution charged under BI electric field has been derived in [62] in 4D EGB gravity. A
large number of other black hole solutions in 4D EGB gravity with nonlinear electro-
magnetic field invariants are presented in [45, 63–68]. Having discussed the various
form of Abelian electromagnetic fields invariant coupled with 4D EGB gravity one
can immediately extend this problem by incorporating non-Abelian Yang–Mills (YM)
fields invariant which are inherently nonlinear. Earlier, authors of Refs. [69–72] have
made significant progress in that direction after exploring black hole solutions in higher
dimensions with GB and Lovelock terms. Therefore, as depicted in [73], one can go
further to consider spherically symmetric black holes in arbitrary D dimensions which
are sourced by the power of YM’s invariant (F (a)

μν Fμν(a))q , (q is a real number)2 cou-
pled with GB gravity. We are presenting here the standard Yang–Mills (YM) invariant
raised to the power q, as the source of our 4D EGB gravity and obtain the possible
black hole solutions in AdS space-time. In this paper the emphasis has been put on
the analysis of the horizon structure of the black hole solution, thermal stability of
the black hole, thermodynamic phase transition in extended phase space, Maxwell’s

2 Where F(a)
μν is the YM field with its internal index 1 ≤ a ≤ 1

2 (D − 2)(D − 1).
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equal area law and critical exponents of some specific thermodynamic quantities. Our
aim here is to capture the net effect of GB coupling parameter α and the non-linearity
parameter q of black holes in this process of studying various features of extended
thermodynamics.

The paper is organized as follows: In Sect. 2, we obtain a black hole solution
and discuss the horizon structure of 4D Einstein Power Yang–Mills Gauss–Bonnet
Gravity (EPYMGB) in AdS space. In Sect. 3 we probe the extended thermodynamic
behaviours of the black hole and study the thermal stability. We also analyze in Sect. 4
P−v criticality (where v is the specific volume) and study the Gibbs free energy to
comment on the Maxwell’s equal area law. In Sect. 5 we elaborate the discussion on
critical exponents of various thermodynamic parameters for this class of black holes.
We complete this paper with a conclusion in Sect. 6.

2 Black hole solutions in 4D Gauss Bonnet gravity

We consider the D dimensional action given in [73] for EPYMGB gravity in D dimen-
sions with a cosmological constant �, is given by (8πG = 1)

I = 1

2

∫
dDx

√−g
(
R − (D − 2)(D − 1)

3
� + αLGB − Fq

)
, (1)

Here α is the Gauss–Bonnet coupling constant and the Gauss–Bonnet Lagrangian is
given by

LGB = Rμνγ δR
μνγ δ − 4RμνR

μν + R2. (2)

The YM invariantF is

F =
(D−1)(D−2)

2
�
a=1

Tr(F (a)
λσ F (a)λσ ), (3)

R is the Ricci Scalar and q is a positive real parameter. The YM field is defined as

F (a)
λσ = ∂μA

(a)
ν − ∂ν A

(a)
μ + 1

2σ
C (a)

(b)(c)A
(b)
μ A(c)

μ . (4)

Here C (a)
(b)(c) are the structure constants of

(D−1)(D−2)
2 parameter Lie group G and σ is

a coupling constant, A(a)
μ are the SO(D−1) gauge group YM potentials. The equation

of motion for space-time metric gμν and the gauge potential A(a)
μ are given by

Gμν + (D − 2)(D − 1)

3
�gμν + αHμν = Tμν, (5)
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and

d(∗F(a)Fq−1) + 1

σ
C (a)

(b)(c)Fq−1A(b) ∧∗ F(c) = 0, (6)

where hodge star ∗ denotes duality.

Gμν = Rμν − 1

2
gμνR

Hμν = 2(RRμν − 2Rμσ R
σ
ν − 2RσδRμσνδ + Rσδλ

μ Rνσδλ) − 1

2
gμνLGB . (7)

The energy momentum tensor is

Tμ
ν = 2qFq−1Tr(F (a)

νδ F (a)μδ) − 1

2
δμ
ν Fq . (8)

The metric ansatz for D dimensions is chosen as

ds2 = − f (r)dt2 + dr2

f (r)
+ r2d�2

(D−2), (9)

where d�2
D−2 is the line element of the unit (D−2)-dimensional sphere. For the YM

fieldwe introduce themagneticWu–Yang ansatz [71, 72, 74, 75]where theYang–Mills
magnetic gauge potential one-forms are expressed as

A(a) = Q

r2
(xidx j − x j dxi ), r2 = x21 + x22 + · · · + x2D−1, (10)

where the indices a, i and j run in the following ranges 2 ≤ j + 1 ≤ i ≤ D − 1,
and 1 ≤ a ≤ (D−1)(D−2)

2 . The above ansatz Eq. (10) satisfy the Yang–Mills equations
Eq. (6) and yields the following form of the energy momentum tensor after using
Eq. (8)

T t
t = T r

r = −1

2
Fq , (11)

T θi
θi

= −1

2
(1 − 4q

D − 2
)Fq . (12)

Whereas the form of the Yang–Mills invariant F takes the form as

F = (D − 2)(D − 3)Q2

r4
, (13)

Tr(F (a)
θiσ

F (a)θiσ ) = 1

D − 2
F , (14)

with i run form 1 to D − 2.
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For D = 4 dimensions the integral over the Gauss–Bonnet term is a topological invari-
ant, thus not contributing to the dynamics. However, as found recently in [23], by
rescaling the coupling constant as α → α

D−4 , and then considering the limit D → 4
the (r , r) component of Eq. (5) reduces to

2(r3 − 2αrg(r))g′(r) + 2αg2(r) + 2r2g(r) + 2�r4 + (2Q2)q

r4(q−1)
= 0, (15)

inwhich f (r) = 1+g(r) and prime denotes the derivativewith respect to r . Integration
of the above equation gives the following solutions of the 4D black holes in AdS space
of Einstein Power Yang–Mills Gauss Bonnet gravity,

f (r) = 1 + r2

2α

⎛
⎝1 ±

√
1 + 8αM

r3
− 4α

l2
− 2α(2Q2)

q

(4q − 3)r4q

⎞
⎠ . (16)

This solution describe an exact four dimensional black hole solution in the 4D EGB
gravity coupled to power Yang–Mills field with negative cosmological constant � =
− 3

l2
. The dimensional regularization scheme [23] adopted here in order to obtain

static spherically symmetric black hole solution Eq. (16), which is also a solution of
consistent Aoki Gorji–Mukohyama theory of 4D EGB gravity as follows from [39].
These class of solutions again characterized by the mass M , cosmological constant
� = − 3

l2
, Yang–Mills magnetic charge Q, nonlinear parameter q and Gauss–Bonnet

coupling constant α. For Q = 0 solution (16) reduces to the 4D EGB solution
presented in [23]. Setting the nonlinear parameter q = 1 gives us the black hole
solution derived in [76]. Further by taking the limit of vanishingGB coupling constant
α the solution of plus sign branch reduces to the solution of nonlinearly charged
black hole in Einstein Yang–Mills gravity with a negative mass and unphysical charge
whereas the negative branch solution correctly reproduces the physical black hole
solution as presented in [77–79]. So the present study will be confinded in the negative
branch of the solution (16).
The location of horizon radii are given by all the real positive roots of f (r+) = 0
which follows from the equation

r4+
l2

+ r2+ − 2Mr+ + (2Q2)qr4−4q
+

2(4q − 3)
+ α = 0. (17)

We solve the above equation numerically for the set of parameters and study all those
positive real roots of the Eq. (17) and have been illustrated in Fig. 1. There are various
subplots in Fig. 1, according to those subplots there can be two horizons namely inner
Cauchy and outer Event horizons, an extremal black hole with degenerate horizon and
finally no horizon i.e. naked singularity appear for the particular set of parameters.
For the given set of values of Gauss–Bonnet coupling α, nonlinear charge parameter
q, magnetic charge Q and AdS length scale l various plots are presented for different
mass parameterM in Fig. 1a. It is quite obvious from the abovementioned plot that the
number of zeros are changing with the values of M . This analysis shows that the line
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Fig. 1 Plot of metric function f (r) versus r for various values of parameters

element Eq. (16) describes a naked singularity for M < Mext and a black hole with
an outer event horizon and an inner Cauchy horizon appear for M > Mext . Finally,
for M = Mext , the horizon is degenerate and Eq. (16) represents an extremal black
hole with horizon radius r+ = rext . For extremely large values of M for the domain
of M > Mext , black hole solutions obtained with a single horizon like uncharged
Schwarzschild black hole. Other two subplots Fig. 1b and c show the horizon radius
of black hole solutions with the variation of α and q values respectively. Again we can
obtain α = αext and q = qext , where the extremal black hole with single degenerate
horizon exist. Nonextremal black holes with two distinct horizons are appeared for
α < αext whereas the nohorizon condition appear for α > αext . Finally we focus
on the analysis of the black hole solutions (16) from the perspective of non-linearity
parameter q. At q = qext = 1 for given values of the other parameters as shown in
Fig. 1c produces an extremal black hole. But there are set of curves for values q < qext
where q < 0.75 the single horizon formed and it will disappear to produce naked
singularity when q > 0.75. However for q > qext we always obtain nonextremal
black hole solutions in the 4D power Yang–Mills Gauss–Bonnet gravity theory. In
the following analysis we consider such values of parameter for which the black hole
event horizon should always exist.
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3 Thermodynamics and thermal stability of 4D AdS EPYMGB black
hole

In this section we investigate the various thermodynamic quantities which are impor-
tant to show first law of thermodynamics of black holes in 4D Einstein Gauss–Bonnet
gravity coupled with power Yang–Mills fields in AdS space-time. Later we are inter-
ested to study the combined effect of GB coupling parameter α and non-linear
parameter q on the thermodynamic stability of this class of black hole by calcu-
lating the specific heat capacity in canonical ensemble. The mass of the black hole
which is identified as the enthalpy of the black hole in extended thermodynamics can
be expressed in terms of the horizon radius r+ from Eq. (17) as

M = 1

2

(
r+ + r3+

l2
+ α

r+
+ (2Q2)q

2(4q − 3)r4q−3
+

)
. (18)

The Hawking temperature associated with this black hole can be obtained from the
relation TH = f (r)′

4π |r+ as follows

T = 1

4πr+(r2+ + 2α)

(
r2+ − α − 2q−1Q2qr4−4q

+ + 3r4+
l2

)
. (19)

For Q = 0 Eq. (19) reduces to the temperature of 4D EGB black holes in AdS
space-time [35]

T = 3r4+ + l2(r2+ − α)

4πr+l2(r2+ + 2α)
. (20)

On the other hand if non-linearity parameter q = 1 then the above temperature (19)
takes the form as given in [76].
However we can derive the entropy of the black hole following the approach of [80,
81] and using the expression

S =
∫

dM

T
=

∫
1

T

( ∂M

∂r+

)
dr+ + S0, (21)

where S0 is an integration constant. Substituting (18) and (19) into (21), we obtain the
entropy of the Gauss–Bonnet black holes (16) as

S = πr2+ + 4πα ln |r+| + S0. (22)

Following the arguments discussed in [82] we fix the constant S0 = −2πα ln |α|. So
the Eq. (22) turns into the following simple form

S = πr2+ + 4πα ln
( r+√

α

)
. (23)
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The first term of the above entropy formula exactly coming from the Bekenstein–
Hawking entropy area law. The second term appears here solely due to the effect of
higher derivative curvature terms in Gauss–Bonnet theory. So all together this entropy
(22) of the black hole does not satisfy the area formula of Bekenstein and Hawking.
Another point to be noted here is that Yang–Mills charge has no effect on the entropy
(22) of this 4D Einstein Gauss–Bonnet Power Yang–Mills black hole. As it is known
that the thermodynamic pressure P is connected with the cosmological constant �

through the relation P = − �
8π = 3

8πl2
in the extended phase-space thermodynamics.

The corresponding thermodynamic volume is given by

V =
(

∂M

∂P

)
S,Q,α

= 4

3
πr3+. (24)

The Yang–Mills potential due to non-linearly charged Yang–Mills black holes can be
measured at infinity with respect to the horizon, as expressed in [83]

�q = 2q−1qQ2q−1

(4q − 3)r4q−3
+

. (25)

In the extended phase space the GB coupling is considered as thermodynamic variable
to satisfy the first law of thermodynamics. So its conjugate potential can be calculated
form Eqs. (18), (23) and (19) which comes out as

�α = 1

2r+

(
1 − 2TH ln

( r+√
α

))
. (26)

TheSmarr relation for 4D EPYMGBblackhole in the extendedphase space is obtained
by using all the above quantities and considering the mass M as the enthalpy of the
black hole [10],

M = 2TH S +
(2q − 1

q

)
�q Q − 2V P + 2�αα. (27)

However Eqs. (19), (18), (23), (26) for all those thermodynamic quantities must satisfy
the first law of black hole thermodynamics in extended phase space

dM = TdS + �qdQ + VdP + �αdα. (28)

The heat capacity of the black hole (16) is a very essential thermodynamic quantity
which study gives the information regarding stability under thermal fluctuation of this
class of black holes. The heat capacity can be calculated from the following relation
for fixed charge ensemble

CQ =
(∂M

∂T

)
Q
=

( ∂M

∂r+

)
Q

(∂r+
∂T

)
Q
. (29)
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Using Eqs. (18) and (19) for M and T we can derive the expression for heat capacity
as a function of horizon radious r+ in the following form

CQ = A

B
. (30)

where A and B take the following form

A = 2π(r2+ + 2α)2{−6r4q+4
+ + l2(2q(Q2)qr4+ + 2r4q+ (α − r2+))}, (31)

B = 2ql2Q2qr4+{α(8q − 6) + (4q − 1)r2+} + 2r4q+ {2α2l2 + 5α2r2+
+(18α − l2)r4+ + 3r6+}. (32)

In order to analyze the thermal stability and the thermodynamic phase transitions
for EPYMGB black holes we simply plot CQ (30) along side with the temperature
(19) as a function of r+ to learn several features of extended thermodynamics from
both the curves. The analytical solutions of Eq. (30) for r+ where the numerator A = 0
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Fig. 5 T (left panel), CQ (right panel) versus r+ plot for various parameter values

in one hand and on the other hand the denominator B = 0 are not obvious. Here we
can only go for numerical analysis after presenting all the plots in Figs. 2, 3, 4 and
5 for various values of the parameters like GB coupling and non linear YM charge
parameter.As shown inFig. 2a andb there is a critical horizon radius r+c where both the
temperature and the specific heat is zero and this is the size of the extremal black hole
we are considering here. Hence the black hole with larger radius than the critical radius
for particular set of parameters are stable have positive specific heat and temperature.
This particular situation have been shown in Fig. 3. These curves show that the zeros
of the Eq. (30) depend on the the value of the parameter q we fixed here, that means
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the value of r+c increases as the parameter q decreases. It is evident in CQ − r+
plots that the divergences occur at larger horizon radius larger than r+c and these
divergences signify the phase transition between small and large black holes through
some intermediate thermally unstable black hole phases, where intermediate phases
have negativeCQ . These divergences occur at those r+ values where temperature plots
show its extremum. Here it is observed in Fig. 2a and b for very small values of q phase
transition occur but as the value of q increases the divergences in the function of CQ

disappear and get a smooth behaviour with positiveCQ , that signifies the solutions are
thermally stable. On the other hand if q changes to even larger values then again those
divergences appear, which means that phase transition happens between small and
large size of black holes. This is due to the non-linearity effect of power-invariant YM
fields appearing here in the thermodynamic phase transition of the black hole in EGB
gravity theory which has already been studied for non-linear electromagnetic fields
in [84]. Again this type of appearing and disappearing of divergences in the specific
heat are not seen if we tune the AdS length scale l to some lower values (as shown
in Fig. 4). Another point in this plot to be noted that as q changes the critical horizon
radius r+c remain fixed in this case. The effects of GB coupling parameter α on the
thermal structure of this class of black holes in 4D have been depicted in the Fig. 5.
Here the effect is quite different from the effect of the q parameter on the behaviour of
the temperature and the specific heat of EPYMGB black holes. As we can see that the
increment in the values of α, the divergences of CQ and the extrema of T ceased to
exist, hence the system does not show any thermodynamic phase transition. Therefore,
we always see thermodynamically stable large black hole phase if the GB coupling
constant is tuned to some larger values for the given set of parameters.

4 P−v criticality and Gibbs free energy

In this subsequent study follows from the previous discussionwe are intend to consider
black hole phase transition of Van der Waals (VdW) type by using P−v isotherms. In
the extended phase space the cosmological constant is related to the thermodynamical
pressure P of the black hole. According to Eq. (19) the equation of state for the class
of black holes we are considering as follows

P = T

v
+ 8αT

v3
− 1

2πv2
+ 2α

πv4
+ 25q−4Q2q

πv4q
, (33)

where v is denoted as the specific volume and identified with the horizon radius r+ of
the black hole through the relation v = 2r+.
Following [12] we present the critical temperature for the critical isotherm curve from
the condition

∂P

∂v
= ∂2P

∂v2
= 0. (34)
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Table 1 q=3, Q=1
α vc Pc Tc ρ = Pcvc

Tc

0 3.49293 0.0108709 0.0828457 0.458336

0.3 4.293 0.00398985 0.0457575 0.37433

0.5 5.15293 0.00251083 0.0360567 0.358827

1.0 7.19453 0.00126366 0.0255539 0.355776

1.2 7.87901 0.00105319 0.0233285 0.355708

1.5 8.80788 0.000842609 0.0208661 0.355678

Solving those above equations one will get

v4 − 48αv2 − 192α2 − 3 × 25q+1αq(4q − 3)Q2qv4−4q

−25q−2q(4q − 1)Q2qv6−4q = 0. (35)

We calculate all the thermodynamic quantities at critical phase transition point using
the Eq. (35) for arbitrary positive values of α and q. Furthermore it has been checked
numerically that for α > 0 and q 	= 3

4 always obtained single positive real root for
the critical specific volume vc, which leads to the system will have one critical phase
transition point. This observation finally concludes that this type of AdS EPYMGB
black hole system shows Van der Waals like phase transition for specific values of
those parameters. Though the analytical solutions for critical values of pressure Pc,
temperature Tc and specific volume vc are not obvious so we use numerical method to
show the universal dimensionless ratio ρ = Pcvc

Tc
in the tabular form in Tables 1 and 2.

However for α = 0 the exact value of ρ can be given in the following form

ρ = 4q − 1

8q
. (36)

The above ρ does not depend on YM charge Q but has an explicit dependence on the
nonlinear parameter q. For q = 1 the Eq. (36) reduces to the value of ρ for Van der
Waals fluid which is 0.375 that means we recover the results for the linear charged
black hole in the YM theory. One can see from Eq. (36) the effects of nonlinearity sets
into the theory does modify the universal ratio ρ. In Fig. 6a and b we have presented
the P−v diagrams for different parameter values of the EPYMGB black holes. We
get the critical isotherm at T = Tc whereas temperature below criticality the black
hole system undergoes VdW-like phase transition. Above criticality one should get
thermally stable black hole as discussed previously.

In order to understand first order phase transition one can also derive the Gibbs free
energy for canonical ensemble (fixed Q) from the following definition

G = M − T S (37)

Since the corresponding expression for the thermodynamic potential G for this
EPYMGB black hole calculated using Eqs. (18), (19), (23) is very cumbersome so
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Table 2 α =0.5, Q =1
q vc Pc Tc ρ = Pcvc

Tc

0.5 7.47677 0.000379817 0.000775783 0.366056

1.0 7.12971 0.00141321 0.0275925 0.365164

1.5 6.03845 0.00206579 0.0332854 0.374764

2.0 5.52327 0.00235547 0.0351919 0.369685

3.0 5.15293 0.00251083 0.0360567 0.358827
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Fig. 6 P versus r+ plot for different temperature
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Fig. 7 Gibbs free energy versus temperature plot for 4D EPYGB black hole in AdS space-time

we do not present here instead the behaviour of G is depicted in Fig. 7 in terms of
Hawking temperature. The subplots (a) and (b) of Fig. 7 are displayed for GB cou-
pling parameter α = 0.5 for two different values of nonlinear parameter q, however
the value of YM charge Q = 1 for both the cases. In these G−T plots characteristic
swallow tail behaviour observed for pressure P < Pc and the system is undergoing
first order phase transition between small and large black holes. There is an inter-
section point at temperature T = T∗ shown in both the subplots are the coexistence
temperature at which small and large size black holes have the same free energy. It has
also been shown that at critical pressure Pc the cross over behaviour of free energy
disappear. Beyond the critical point free energy become a smooth decreasing function

123



Black holes in 4D AdS Einstein Gauss Bonnet gravity... Page 15 of 22 161

of the temperature, hence no phase transition occur. By the Fig. 7, one can obtain the
coexistence temperature T∗ numerically from the intersection point. Substituting the
value of T∗ into Eq. (33) we get the values of v1, v2 and v3 for P−v diagram, here, v1,
v2 and v3 denote the three values of v from small to large size black hole corresponding
to isobar P = P∗ in P−v diagram. We use these values of v to calculate areaA1 and
A2 of Maxwell’s equal area law in P−v isotherm following the equation

A1 = P∗(v3 − v1) =
∫ v3

v1

Pdv = A2. (38)

Here we are also intended to verify Maxwell’s area law [85] for isotherm considered
in P−V plane just by calculating V1, V2 and V3 which denote the three values of V
from small to large thermodynamic volume corresponding to P = P∗ with the help
of Eqs.(33) and (38) by taking the volume V as the variable at the place v. The results
of this numerical study of Maxwell’s area law for the class of black hole in EPYMGB
gravity have been presented in Tables 3 and 4. For different set of parameters we have
shown in Tables 3 and 4 that the relative errors calculated for isotherm in (P, v) plane
are very large while relative errors in the (P, V ) plane are extremely small.

So it is concluded from numerical study that Maxwell’s equal area law valid for
P−V diagram and fails for P−v diagram as similarly found in [86].

5 Critical exponents

In this section we would like to analyse the critical behaviour of some physical quanti-
ties in extended phase space by computing the critical exponents. Here we find critical
exponents α′, β, γ , δ which determine the following quantities near critical point

Cv ∝ |t |−α′
, (39)

η ∝ |t |β, (40)

κT ∝ |t |−γ , (41)

|P − Pc| ∝ |v − vc|δ. (42)

In order to compute the critical exponent α′, we consider entropy S from Eq. (23)
which is independent of temperature T . So that the specific heat at constant volume
Cv = T ∂S

∂T |v vanishes. We conclude that the critical exponent α′ = 0 in this case. To
calculate other exponents, let us define t = T

Tc
− 1, ε = v

vc
− 1 and p = P

Pc
. Using

the above definition we expand the equation of state (33) around the critical point as
following:

p = 1 + p10t + p01ε + p11tε + p02ε
2 + p03ε

3. (43)
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The non zero expansion coefficient for this EGBPYM black holes are given by

p10 = Tc
Pcv3c

(8α + v2c ),

p11 = − Tc
Pcv3c

(24α + v2c ),

p03 = 1

Pc

(
−40α

πv4c
− 80αTc

v3c
+ 2

πv2c
− Tc

vc
− 25q−2qQ2q(4q + 1)2

3πv
4q
c

)
, (44)

where p01 = p02 = 0. During the phase transition the pressure of large black hole
with volume εl is equal to the pressure of the small black hole with volume εs . So the
equation of state (43) can be written in the following manner

p = 1 + p10t + p11tεl + p03ε
3
l = 1 + p10t + p11tεs + p03ε

3
s . (45)

Equation (45) wil be simplified to the form below

p11t(εl − εs) + p03(ε
3
l − ε3s ) = 0. (46)

However using Maxwell’s area law we also obtain

∫ εl

εs

ε(p11t + 3ε2 p03)dε = 0. (47)

The above integration has been performed to get the following expression

p11t + 3

2
p03(ε

2
s + ε2l ) = 0 (48)

With Eqs. (46) and (48) one will get the nontrivial solutions for εs and εl as

εl = −εs =
√

−p11t

p03
(49)

p11 and p03 can easily be evaluated from Eq. (44) for certain parameters value of the
EGBPYM black holes. The order parameter η can be calculated as

η = vl − vs = vc(εl − εs) = 2vcεs = 2vc

√
−p11t

p03
∝ √−t . (50)

Hence we have β = 1
2 . Now to estimate the value of γ as given in Eq. (41) we use the

definition of isothermal compressibility κT = − 1
v

∂v
∂ p |T . So differentiating Eq. (45) to
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get

κT ∝ − 1
∂ p
∂ε

= − 1

p11t
. (51)

The Eq. (51) indicates that the critical exponent γ = 1. For critical isotherm at T = Tc,
t = 0 and one should obtain from Eq. (45)

|P − Pc| = Pc
vc

p03|v − vc|3 ∝ |v − vc|3. (52)

Which leads to the corresponding value of the exponent δ = 3. This study again
confirm that the scaling law behaviour of certain physical quantities remain unchanged
near critical point of the phase transition for this class of 4D EPYMGB black hole.

6 Conclusion

In this work we have found an exact solution of charged AdS black hole sourced by a
power of YM’s invariant in the context of 4D EGB gravity. The power of the invariant
form of nonabelian YMfields have chosen as (F (a)

μν Fμν(a))q , where q is a positive real
number. A dimensional regularization technique [23] has been used to get this solution.
However according to [39] this spherically symmetric nonlinear charged solution (16)
happens to be a solution of the consistent theory proposed byAoki–Gorji–Mukohyama
[37] using temporal diffeomorphism breaking regularization scheme. By making the
nonlinear parameter q = 1 our black hole solution reduces to the solution of [76]. This
black hole can have two horizons, one degenerate horizon, no horizon and some time
single horizon of Schwarzschild type depending on various black hole parameters M ,
Q, l, α and q.

We also have studied extended thermodynamics and the thermal stability of
EPYMGB black holes by calculating the Hawking temperature, entropy, other
potentials due to YM charge, heat capacity etc. We have obtained first law of ther-
modynamics of this novel 4D EPYMGB black hole in AdS space and verified the
Smarr relation. In the analysis of thermal stability we have determined specific heat
at constant charge and plotted with respect to the horizon radius. There are zeros and
divergences in the function of CQ which signify the extremality and the thermody-
namic phase transition of the black hole. The divergences of CQ are identified with
the extrema of temperature as shown using the plots presented in Figs. 2, 4 and 5. An
interesting phenomena happened for larger values of l, where existence/absence of
phase transition occur for various values of nonlinearity parameter q. After studying
specific heat as a function of r+ we conclude that small and large size black hole
phases are thermodynamically stable due to positive specific heat (CQ > 0) and there
are unstable phases for which CQ < 0 as shown in plots (Figs. 2, 4, and 5).

Next we examined the equation of state P = P(T , v) and presented P−v diagrams
to investigate the phase transition and critical behaviour of the black hole system
at fixed temperature T . The universal ratio ρ also has been determined for various
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parameter values. The first order phase transition between small and large size black
hole were studied from the isotherm in the P−v plane, has similar phase structure like
liquid gas phase transition of VdW fluids. On the other hand this structure of phase
transitionwe studied from the curve inG−T plane and showeda characteristic swallow
tail behaviour below the critical pressure. From theG−T plot we obtained coexistence
temperature at which the free energy is equal for small and large black hole solutions.
Further this coexistence temperature was used to show that the Maxwell’s equal area
law holds for P−V isotherms and fails for P−v isotherms. We have further studied
the behaviour of certain physical quantities near the critical point and calculated those
critical exponents α′ = 0, β = 1

2 , γ = 1 and δ = 3.
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