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Abstract
By using the Taylor series and the solution-generating methods, we construct exact
black hole solutions with minimally coupled scalar fields. We find that the black hole
solutions can have many hairs except for the physical mass. These hairs come from
the scalar potential. Different from the mass, there is no symmetry corresponding to
these hairs. Thus they are not conserved and one cannot understand them as Noether
charges. They arise as coupling constants. Although there are many hairs, the black
hole has only one horizon. The scalar potential becomes negative for sufficient large φ

(or in the vicinity of black hole singularity). Therefore, the no-scalar-hair theorem does
not apply to our solutions since the latter do not obey the dominant energy condition.
Although the scalar potential becomes negative for sufficient large φ, the black holes
are stable to both odd parity and scalar perturbations. As for even parity perturbations,
we find there remains parameter space for the stability of the black holes. Finally, the
black hole thermodynamics is developed.
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1 Introduction

The black hole no-hair conjecture [1] claims that the final product of gravitational
collapse with any types of matters is the Kerr-Newman black hole, which is solely
determinedbymass, charge and angularmomentum.Except for these three parameters,
there exists no other physical quantities, named after the metaphor of “hair”, for black
holes. Since the no-hair conjecture focuses on the fate of gravitational collapse and
not the existence of black hole solutions with some types of matters, many stationary
black hole solutions [2–4] with either new global charges or new non-trivial fields have
been found over the past years. It is thus found that there are two types of hairs for
black holes. They are the primary type and the second type. The primary type of hairs
include the mass, charge and angular momentum etc. This type of hairs are subject to
the Gauss law and therefore are global charges. However, the second type of hairs are
not associated with the Gauss law and there is no correspondence with global charges.
The scalar hairs of black holes fall into the second type.

Bekenstein has formulated the no-scalar-hair theorem [5–7] for black holes. The
theorem states that the static black holeswith the energymomentum tensor contributed
by canonical scalar field and scalar potential can not have the scalar hairs. According
to the classification of a nice review paper [8], three assumptions are made in the
theorem.

The first assumption is that the theorem is limited to a canonical kinetic and
minimally coupled scalar field with a scalar potential. It is very obvious the first
assumption can be reasonably dropped in many scalar-tensor theories, for example,
the Brans-Dicke theory [9], the Horndeski theory [10], the Galileon theory [11] and
the generalized Galileon theory [12], etc. Therefore, scalar hairy black holes do exist
in these theories, for example, in the Yang-Mills gauge theory [13–16], the Skyrme
model [17, 18], the non-linear electromagnetic model [19] and the conformal coupling
gravity [20, 21]. People have found a lot of hairy black hole solutions by violating the
first assumption (see Ref. [22] and references therein).

The second assumption is that the scalar field inherits the symmetries of spacetime.
Namely, the scalar field is uniquely the function of radial coordinate r in the back-
ground of spacetime for static black holes. In fact, this assumption can also be dropped.
For example, the scalar field can have a harmonic time dependence if the scalar field is
complex. The resulting energy momentum tensor remains time-independent, although
the scalar field is time dependent. The explicit examples are the boson stars [23, 24].
These are self-gravitating, solitonic-like, scalar field configurations that were firstly
discussed by Kaup [25] and Ruffini-Bonazzola [26]. Basing on the same mechanism,
Herdeiro et al showed that in a series of studies [27–31], the Kerr and Kerr-Newman
black holes do have scalar hairs. Furthermore, the scalar hairs measure exactly the
conserved and continuous Noether charges. On the other hand, Babichev and Char-
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mousis et al. find that the scalar hairy black holes could be developed in the Horndeski
theory if one allows the scalar field to have a linear time dependence (thus violating
the second assumption) [32–34].

The third assumption is that the scalar potential is everywhere non-negative. This
assumption is also un-necessary in some scenarios, for example in the well-known
Higgs potential. Actually, abandoning the third assumption is the simplest way to
circumvent the no-scalar-hair theorem. Then it is found that allowing for the scalar
potential to be negative in some range of scalar field can lead to many scalar hairy
black holes in the closed form [35–43] and numerical form [44–47]. This paper is a
continuation of research in this field.

Concretely, by using the Taylor series method and the solution-generating method
[48–51], we construct exact black hole solutions with minimally coupled scalar fields.
The scalar potential is assumed to be infinite series, such that it can cover nearly all
the known ones. We find that the black hole solutions can have many hairs except
for the physical mass. These hairs come from the scalar potential. Unlike the mass,
there is no symmetry corresponding to these hairs, so they are not conserved and
cannot be understood as Noether charges. They arise as merely coupling constants.
The solutions require that the black holes have only one horizon, although they can
possess many hairs. The scalar potential becomes negative for sufficient large φ (or in
the vicinity of black hole singularity). Therefore, the no-scalar-hair theorem does not
apply to our solutions since the latter does not obey the dominant energy condition.
Although the scalar potential becomes negative for sufficient large φ, the black holes
are stable to both odd parity perturbations and scalar perturbations. As for even parity
perturbations, we find there remains parameter space for the stability of the black
holes. Finally, the black hole thermodynamics is developed. We find there are two
pairs of conjugated variables in the first law of thermodynamics. One pair includes
the Bekenstein-Hawking entropy and the Hawking temperature. The variables in the
other pair are related to the black hole scalar hair and a dimensionless quantity.

The paper is organized as follows. In Sect. II, we seek for the analytical and asymp-
totically flat black hole solutions with scalar hairs by using the Taylor series method.
Concretely, we expand both the metric functions and the scalar field into infinite series
of 1/r . But in the end of this section, we get an exact solution with a finite series. The
solution describes a black hole with one scalar hair except for the physical mass. In
Sect. III, by using the solution-generating method, we achieve exact, asymptotically
flat, hairy black hole solutions. The solutions allow black holes to have many scalar
hairs. The resulting one-scalar-hair black hole solution is exactly the one derived with
the Taylor series method. This shows the two methods are consistent with each other.
As a consequence of the violation of the third assumption, the scalar potential is always
negative for sufficiently large φ or sufficiently small r . But this does not mean the solu-
tion is not physical. In Sect. IV and Section V, we explore the metric perturbations
and scalar perturbations of the one-scalar-hair black hole. We find that black holes are
always stable to scalar perturbations. As for the metric perturbations, we find they are
always stable to odd parity perturbations. For even parity perturbations, there remains
parameter space for stability. Therefore, the black hole solution is physically mean-
ingful. In Sect. VI, we make an investigation into black hole thermodynamics. We
find the scalar hair should enter the first law of thermodynamics as one of conjugated
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thermodynamic variables. Finally, Section VII gives the conclusion and discussion.
Throughout this paper, we adopt the system of units in which G = c = � = 1 and the
metric signature (−,+,+,+).

2 Taylor series method

In this section, we derive the exact black hole solutions in the presence of a canonical
scalar field by using the Taylor series method. To this end, we consider the Einstein
theory with a non-minimally coupled scalar field, which has the action as follows

S =
∫

d4x
√−g

(
R − 1

2
∇μφ∇μφ −

∞∑
i=1

aiφ
i

)
, (1)

where the scalar potential V (φ) is an infinite series. ai are constants. The physical
motivation for taking this form of the scalar potential is that it can cover nearly all the
known scalar potentials.

Variation of the action with respect metric gives the Einstein equations

Gμν = −∇μφ∇νφ + gμν

(
1

2
∇αφ∇αφ +

∞∑
i=1

aiφ
i

)
. (2)

On the other hand, variation of action with respect to the scalar field gives the equation
of motion for the scalar field

∇μ∇μφ −
∞∑
i=1

iaiφ
i−1 = 0 . (3)

We shall look for the static, spherically symmetric black hole solutions in the theory.
To this end, we take the ansatz of the metric

ds2 = −Udt2 + σ 2

U
dr2 + r2d�2

2 , (4)

where U and σ are the functions of r . Then the Einstein and scalar field equations
give

4σ
′ + σrφ

′2 = 0 , (5)

2rσU
′′ + 4σU

′ − 4Uσ
′ − 2rU

′
σ

′ − rUσφ
′2

−2rσ 3
∞∑
i=1

aiφ
i = 0 , (6)

4σ 2 − 4rU
′ − 4U − r2Uφ

′2 + 2r2σ 2
∞∑
i=1

aiφ
i = 0 , (7)
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rUσφ
′′ + rσU

′
φ

′ − rUσ
′
φ

′ + 2σUφ
′

−rσ 3
∞∑
i=1

iaiφ
i−1 = 0 . (8)

The prime denotes the derivative with respect to r .
We will look for the solutions in the form of series. So we expand U , φ and U/σ 2

as follows

U = 1 +
∞∑
i=1

bir
−i , φ =

∞∑
i=1

sir
−i ,

σ = 1 +
∞∑
i=1

qir
−i , (9)

such that φ is asymptotically vanishing and the spacetime is asymptotically
Minkowski. Here bi , si and qi are constants to be determined. Substituting Eqs. (9)
into Eqs. (5-8), we find the equations of motion require

a1 = a2 = a3 = a4 = 0 , (10)

and give the solution as follows

U = 1 + b1
r

+D3 (s1, b1, a5) · s
2
1

r3

+D4 (s1, b1, a5, a6) · s
2
1

r4

+D5 (s1, b1, a5, a6, a7) · s
2
1

r5
+ · ·· , (11)

with

D3 = 1

24
·
(
b1 + 4a5s

3
1

)
, (12)

D4 = 1

24
·
(
2a6s

4
1 + 25a25s

6
1 − b21

)
, (13)

D5 = 1

1920
·
(
96a7s

5
1 − 2200b1a

2
5s

6
1 − 320a5b

2
1s

3
1

−144a6b1s
4
1 + 10000a35s

9
1 + 72b31 + 56a5s

5
1

+1920a5s
7
1a6 + 9b1s

2
1

)
; (14)

φ = s1
r

+ E2 (s1, b1, a5) · s1
r2
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+E3 (s1, b1, a5, a6) · s1
r3

+E4 (s1, b1, a5, a6, a7) · s1
r4

+ · ·· , (15)

with

E2 = 1

2
·
(
5a5s

3
1 − b1

)
, (16)

E3 = 1

24
·
(
−80a5s

3
1b1 + 200a25s

6
1 + s21

+8b21 + 24a6s
4
1

)
, (17)

E4 = 1

72
·
(
−1300a25s

6
1b1 + 2125a35s

9
1 + 32s51a5

+265a5s
3
1b

2
1 + 570a5s

7
1a6 + 42a7s

5
1

−6s21b1 − 18b31 − 144b1s
4
1a6

)
; (18)

σ = 1 + s21
8r2

+F3 (s1, b1, a5) · s
2
1

r3

+F4 (s1, b1, a5, a6) · s
2
1

r4

+F5 (s1, b1, a5, a6, a7) · s
2
1

r5
+ · ·· , (19)

with

F3 = 1

6
·
(
−b1 + 5a5s

3
1

)
, (20)

F4 = 3

128
·
(
s21 + 16a6s

4
1 − 80a5s

3
1b1 + 200a25s

6
1

+8b21
)

, (21)

F5 = 1

180
·
(
42a7s

5
1 − 2650b1a

2
5s

6
1 + 535a5b

2
1s

3
1

+840a5s
7
1a6 − 198a6b1s

4
1 + 4375a35s

9
1

−36b31 + 62a5s
5
1 − 12b1s

2
1

)
. (22)

Here Di,Ei,Fi represent the functions of corresponding parameters. We do not
give the expressions of D6,7,8,···,E5,6,7,···,F6,7,8,··· because they are rather lengthy.
Observing this solution, we find there are only two integration constants, b1 and s1.
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s1 can be understood as the scalar charge. Let b1 = −2M . Then M is exactly the
mass of the black hole. When the scalar charge s1 vanishes, the solution restores to
the Schwarzschild solution. In all, the black hole solutions have two hairs, the mass
M and the scalar charge s1. In contrast, ai are understood as the coupling constants.
Since ai appear in the metric functions and they could play a great role in the structure
of black hole spacetime, it is reasonable to regard them as the hairs of black holes.
Therefore, a black hole can have many hairs.

Eqs. (10) tells us that if the scalar potential V (φ) is chosen as

V = a1φ + a2φ
2 + a3φ

3 + a4φ
4 , (23)

the resulting black hole solution is nothing but the Schwarzschild solution.
The expressions ofU , φ and σ (Eqs. 11,15,19) are infinite series. In principle, they

can cover a vast of the solutions, for example, [35, 52–54]. In order to get finite series,
for example, with only two terms present in σ , we can set

F3 = 0 ⇒ a5 = H5 (s1, b1) ,

F4 = 0 ⇒ a6 = H6 (s1, b1, a5) ,

F5 = 0 ⇒ a7 = H7 (s1, b1, a5, a6) ,

· · · , (24)

where Hi are the functions of corresponding parameters. Then we are left with only
two free parameters, namely the mass M and the scalar charge s1. Then the resulting
black hole solution is

σ = 1 + s21
8r2

, (25)

U = 1 − 2M

r
− 3Ms21

20r3
− s41

192r4
, (26)

φ = s1
r

− s31
48r3

+ · · · . (27)

Now the expressions of both σ andU are finite series while φ remains infinite. This is
the solution we are interested in. In the next section, we shall meet this solution once
again by using the solution-generating method.

3 Solution-generatingmethod

In this section, we explore the exact black hole solutions in the presence of a canonical
scalar field by using the solution-generating method [48–51]. To this end, we consider
the action as follows

S =
∫

d4x
√−g

[
R − 1

2
∇μφ∇μφ − V (φ)

]
, (28)
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where the scalar potential V (φ) is assumed to be not an infinite series, but a scalar
function to be determined. The reason for this point is that we will explore the black
hole solution with the solution-generating method.

Variation of the action with respect metric gives the Einstein equations

Gμν = −∇μφ∇νφ + gμν

[
1

2
∇αφ∇αφ + V (φ)

]
. (29)

On the other hand, variation of action with respect to the scalar field gives the equation
of motion for the scalar

∇μ∇μφ − V,φ = 0 . (30)

Our goal is to look for the static, spherically symmetric black hole solutions in the
theory. For this purpose, we take the ansatz of the metric same as Eq. (4). Then the
Einstein and scalar field equations give

4σ
′ + σrφ

′2 = 0 , (31)

2rσU
′′ + 4σU

′ − 4Uσ
′ − 2rU

′
σ

′ − rUσφ
′2

−2rσ 3V = 0 , (32)

4σ 2 − 4rU
′ − 4U − r2Uφ

′2 + 2r2σ 2V = 0 , (33)

rUσφ
′′ + rσU

′
φ

′ − rUσ
′
φ

′ + 2σUφ
′

−rσ 3V,φ = 0 . (34)

We notice that only three of the four equations of motion are independent because of
the Bianchi identities. But we have four variables, U , σ , φ and V . We usually assign
the expression of scalar potential in advance. Then the equations of motion are closed.
But in practice, one can assign any of the four variables in advance. We find that the
equations of motion become considerably simple once we assume the expression of
σ in advance. To show this point, we combine Eqs. (32-34) and find

− 2rUσ
′ + 2Uσ − r2σU

′′ + r2U
′
σ

′ − 2σ 3 = 0 . (35)

Solving this equation, we obtain

U = r2
(
c1 +

∫
c2σ

r4
dr −

∫
2σ

∫
σdr

r4
dr

)
. (36)

Here c1 and c2 are integration constants. It is easy to complete the integrations if we
assume σ has the expression of power-series

σ = 1 +
∞∑
i=1

wi r
−i , (37)

wherewi are constants. We emphasize that we are interested in the asymptotically flat
spacetime solution. Therefore we require c1 = 0.
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In the first place, we consider

σ = 1 + w1

r
+ w2

r2
. (38)

Then we obtain from Eq. (36)

U = 1 + 1

r
·
(
20c2 + 8

9
w1 + 2

3
w1 ln r

)

+ 1

r2
·
(
15c2w1 + 1

8
w2
1 + 1

2
w2
1 ln r

)

+ 1

r3
·
(
12c2w2 − 8

25
w1w2 + 2

5
w1 ln r

)

+ 1

r4
·
(

−1

3
w2
2

)
. (39)

For sufficiently large r , we should get the Schwarzschild solution. Thus we should let

w1 = 0 , c2 = −M

10
, (40)

and eventually we obtain

U = 1 − 2M

r
− 6Mw2

5r3
− w2

2

3r4
. (41)

σ = 1 + w2

r2
, (42)

φ = 2
√
2 arctanh

√
w2√

r2 + w2

, (43)

V = 4

15
·

sinh5 φ

2
√
2

w2
2 cosh

6 φ

2
√
2

[
−5w2 sinh

3 φ

2
√
2

−15w2 sinh
φ

2
√
2

+ 12M
√

w2

]
. (44)

Expanding Eq. (43) into the Taylor series of 1/r and comparing Eqs. (41,42,43) with
Eqs. (25,26,27), we find they are exactly identical provided that w2 = s21/8. So they
are nothing but the solution we present in Sect. II. Observing the expression of φ, we
find we should require

w2 > 0 . (45)

Thus, the scalar field φ is always nonnegative. The linear stability of the asymptotic
Schwarzschild solution is guaranteed when one takes into account of the fact

V,φφ |φ=0 = 0 . (46)
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Fig. 1 The scalar potential V (φ)

for M = 1 and w2 =
0.18, 0.20, 0.23, 0.3, 0.4,
respectively, from top to bottom

–1

–0.5

0

0.5

V 1

1.5

2

0.5 1 1.5 2 2.5 3

phi

The equation of horizon is

U = 0 . (47)

It gives a fourth-order equation but it has only one positive root. So this black hole has
only one event horizon. The physical singularity locates at r = 0. In Fig. (1) we plot
the scalar potential V (φ). It is apparent the potential is negative for large φ (or in the
vicinity of black hole singularity). Therefore, the no-hair theorem [55, 56] simply does
not apply to our solution since the latter does not obey the dominant energy condition.

Secondly, we can derive the other black hole solutions. For example, if we take

σ = 1 + w2

r2
+ w3

r3
+ w4

r4
+ w5

r5
, (48)

then we obtain

U = 1 − 2M

r
+

(
−6

5
Mw2 + 1

5
w3

)
· 1

r3

+
(
2

9
w4 − 1

3
w2
2 − Mw3

)
· 1

r4

+
(

−3

7
w2w3 + 3

14
w5 − 6

7
Mw4

)
· 1

r5

+
(

−1

3
w2w4 − 1

8
w2
3 − 3

4
Mw5

)
· 1

r6

+
(

− 5

27
w3w4 − 5

18
w2w5

)
· 1

r7
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Fig. 2 The scalar potential V (r)
for M = 1, w3 = w4 = w5 = 1
and w2 = 0.01, 0.05,
0.09, 0.13, 0.17, respectively,
from top to bottom

–6

–4

–2

V 0

2

4

6

5 6 7 8 9 10 11 12
r

+
(

− 3

20
w3w5 − 1

15
w2
4

)
· 1

r8

− 7

66
w4w5 · 1

r9
− w2

5

24
· 1

r10
, (49)

and

φ =
∫

2

√
2w2r3 + 3w3r2 + 4w4r + 5w5(

r5 + w2r3 + w3r2 + w4r + w5
)
r2

dr . (50)

Eqs. (48,49,50) constitute a new exact black hole solution. Here we do not give the
expressions of V because it is rather complicated. But in Fig. (2), we plot the scalar
potential V (r). It is apparent the potential becomes negative when one approaches the
black hole singularity.

In order that the expression of φ alwaysmakes sense when r ≥ 0, we should require
all the wi are positive. Then the black hole has only one event horizon.

4 Perturbations

The problem of dealing with black hole stability to perturbations was first solved
by Regge and Wheeler [57] in 1957. They showed Schwarzschild black hole is sta-
ble to odd parity perturbations. Then in 1969, Vishveshwara [58, 59] showed that
Schwarzschild black hole is also stable to even parity perturbations. Finally, Zerrili
examined these conclusions in a unified manner [60]. In this section, we shall make
the investigation into stability problem for a black hole that contains an additional
scalar field. The procedure for carrying out this task has been developed in [35]. In
order to follow the notation of [35], we should rewrite the metric, Eqs. (41,42) from
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the r coordinate to x coordinate in the form

ds2 = −U (x) dt2 + 1

U (x)
dx2 + f (x)2 d�2

2 , (51)

with

U (x) = 1 − 2M

f (x)
− 6

5
· Mw2

f (x)3
− 1

3
· w2

2

f (x)4
, (52)

f (x) ≡ 1

2
x + 1

2

√
x2 + 4w2 , (53)

via coordinate transformation

r = 1

2
x + 1

2

√
x2 + 4w2 . (54)

Now x is in the interval of (−∞, +∞). x = −∞ and x = +∞ represent the black
hole singularity r = 0 and spatial infinity r = +∞, respectively.

The total metric gtotμν is decomposed into two parts, i.e., the background metric gμν

and the perturbations hμν ,
gtotμν = gμν + δgμν , (55)

with |δgμν | 	 |gμν |. On the other hand, the total scalar field φtot is decomposed into
the background field φ and the perturbations δφ,

φtot = φ + δφ , (56)

with |δφ| 	 |φ|. The perturbations are regraded as independent fields, evolving in the
background of the static spherically symmetric hairy black hole. This implies their
energy, angular momentum and parity are all conserved. Therefore, the modes with
different energy, angular momentum or parity do not mix with the evolution of time.
So each mode can be dealt with separately. By introducing a factor of eIωt in each
mode of the decomposition, the energy ω is fixed. Likewise, the introduction of factor,
spherical harmonic function Ym

l in each mode fixes the angular momentum. Then we
are left with pure radial degrees of freedom and they are divided into two parts with
the odd parity and even parity, respectively.

Since the spherical harmonic functions Ym
l already have definite parity (−1)l , it is

not necessary to make parity separation for the scalar perturbations. On the contrary,
the metric perturbations possess directional information due to their tensor nature.
Therefore, the parity separation must be performed for the tensor perturbations. The
resulting equations of motion are simplified by gauging away four radial degrees
of freedom. What is more, with a rotation performed on each mode, the spherical
harmonic functions Ym

l is simplified to be the Legendre polynomial Pl(cos θ). This is
called the canonical decomposition [57]. They are eventually given by
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• for odd parity:

δgoddμν =

⎡
⎢⎢⎣

0 0 0 εh8(r)
0 0 0 εh9(r)
0 0 0 0

εh8(r) εh9(r) 0 0

⎤
⎥⎥⎦ eIωt sin θ ∂θ Pl , (57)

δφ = 0 , (58)

• for even parity:

δgevenμν =

⎡
⎢⎢⎣

εh1(r) εh2(r) 0 0
εh2(r) εh3(r) 0 0

0 0 εh7(r) 0
0 0 0 εh7(r) sin2 θ

⎤
⎥⎥⎦ eIωt Pl , (59)

δφ(r) = εψ(r) eIωt Pl . (60)

Here the constant ε denotes the order of perturbations. The advantage of the intro-
duction for ε is that what we should do is just to collect the terms with the order of
ε2 in the Lagrangian or the terms with the order of ε in the equations of motion and
eventually we let ε = 1.

4.1 Odd parity

Now substitute Eqs. (55) and (56) with the odd parity into the field equations and
retaining the terms only linear in ε, we obtain two independent equations after setting
ε = 1,

{
h9

[
l (l + 1) − 2

2 f 2
− ω2

2U

]
+ Iωh8

f
′

U f
− Iω

2U
h

′
8

}

· sin θ∂θ Ple
Iωt = 0 , (61)[

Iω

U
h8 − (Uh9)

′
]

·
[
1

2
l (l + 1) sin θ Pl + cos θ∂θ Pl

]
eIωt = 0 , (62)

where the prime denotes the derivative with respect to x . We notice that when l = 0,
we have the Legendre polynomial P0 = 1. Then both Eq. (61) and Eq. (62) become
identities. In other words, there is no monopole perturbations for odd parity. On the
other hand, when l = 1 we have the Legendre polynomial P1 = cos θ . Then Eq. (62)
becomes an identity. We are left with unique differential equation Eq. (61) but with
two degrees of freedom, h8 and h9. Therefore, the question turns out to be incomplete.
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In fact, with the help of gauge transformation

x̃ i = xi + δiϕ
I

ω f 2
eIωt h8 , (63)

and a redefinition of h9, we are able to let h8 totally vanish. Then the remainingEq. (61)
also gives vanishing h9. This shows there is no polar-pole mode for the odd parity,
either. Up to this pint, we conclude that the lowest angular momentum of odd parity
perturbations is l = 2 because the angular parts of Eq.(61) and Eq. (62) never vanish
when l ≥ 2. Therefore, we can focus on the radial parts of Eq.(61) and Eq. (62) in the
next. Then we obtain

{
2UU

′
f

′

f
−U

′2 −UU
′′ − U

f 2
[l (l + 1) − 2]

}
h9

+
(
2U 2 f

′

f
− 3UU

′
)
h

′
9 −U 2h

′′
9 = ω2h9 . (64)

By introducing a new dynamical variable � taking the place of h9 and the tortoise
coordinate r∗ taking the place of x as follows

� ≡ Uh9
f

, r∗ ≡
∫

1

U (x)
dx , (65)

we find the perturbation equation Eq. (64) is simplified to be

− ∂2r∗� (r∗) + Vef f (r∗) � (r∗) = ω2� (r∗) , (66)

where

Vef f (r∗) = U

f 2
[l (l + 1) − 2] + f

(
∂2r∗

1

f

)
, (67)

or

Vef f (r∗) = U

f 2
[l (l + 1) − 2] + f U∂x

(
U∂x

1

f

)
. (68)

The tortoise coordinate r∗ is a regular, monotonic function of x in the exterior of
the black hole because of U > 0 there. Since U tends to 1 for large distances, r∗
approaches positive infinity when x → +∞. On other hand, in the vicinity of the
horizon, U becomes zero such that r∗ tends to negative infinity. Therefore, r∗ covers
the whole exterior of the black hole. We note that the lowest angular momentum l for
the effective potential is l = 2 because the corresponding perturbations are vanishing
for l = 0, 1.

Kobayashi et. al [61] have completed the study of black hole perturbations for odd
parity in the Horndeski theory, which covers the Einstein-scalar theory studied in this
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paper. Therefore, to study the stability problem, we may refer to their results and
notations. Then we find

F = 1 , G = 1 , H = 1 . (69)

In order to avoid gradient instability, one requires

F > 0 . (70)

On the other hand, in order to avoid the presence of ghost, one requires

G > 0 . (71)

It is apparent the two conditions are all satisfied. The squared propagation speeds of
gravitational waves along the radial direction, c2r and the angular direction c

2
θ are found

to be

c2r = G
F = 1 , c2θ = G

H = 1 . (72)

Namely, they are exactly the square of speed for light. The above conditions of F >

0,G > 0 andH > 0 are all necessary, but not sufficient for the stability of black holes.
The sufficient condition for stability is

Vef f ,odd (r∗) ≥ 0 , (73)

in the exterior of black holes. By using Eq. (68), we find it is indeed the case regardless
of the values for M and w2 when l ≥ 2. One only requires M > 0 and w2 > 0. As an
example, we plot the effective potential Vef f in terms of x in Fig. (3). The potential is
positive everywhere and tends to zero at both infinity and the horizon. Therefore, we
conclude that the black hole is stable to odd parity perturbations.

Once the black hole is perturbed, it will evolve into three stages by emitting gravi-
tational waves: (1) a relatively short period of initial outburst of radiation, (2) a long
period of damping proper oscillations, dominated by the so-called quasinormalmodes,
(3) at very large time the quasinormal modes are suppressed by power-law or expo-
nential late-time tails. It is found the dominating contribution to gravitational waves
is the quasinormal mode with the lowest frequency: the fundamental mode. So in the
next, we turn to the evaluation of quasinormal frequencies for the odd parity pertur-
bations by using the third-order WKB approximation, a numerical and perhaps the
most popular method, devised by Schutz,Will and Iyer [62–64]. This method has been
used extensively in evaluating quasinormal frequencies of various black holes. For an
incomplete list, see [65–88] and references therein.

The quasinormal frequencies are given by

ω2 = V0 + �

√
−2V

′′
0 − iν (1 + �)

√
−2V

′′
0 , (74)
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Fig. 3 The effective potential
Vef f ,odd of odd parity for
M = 1, w2 = 1 and
l = 2, 4, 6, 8, 10, 12, 14,
respectively, from down to up. It
is positive everywhere outside
the black hole
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where � and � are

� = 1√
−2V

′′
0

{
V (4)
0

V
′′
0

(
1

32
+ 1

8
ν2

)

−
(
V

′′′
0

V
′′
0

)2 (
7

288
+ 5

24
ν2

)⎫⎬
⎭ , (75)

� = 1√
−2V

′′
0

⎧⎨
⎩

5

6912

(
V

′′′
0

V
′′
0

)4 (
77 + 188ν2

)

− 1

384

(
V

′′′2
0 V (4)

0

V
′′3
0

) (
51 + 100ν2

)

+ 1

2304

(
V (4)
0

V
′′
0

)2 (
67 + 68ν2

)

+ 1

288

(
V

′′′
0 V (5)

0

V
′′2
0

)(
19 + 28ν2

)

− 1

288

(
V (6)
0

V
′′
0

(
5 + 4ν2

))}
, (76)

and

ν = n + 1

2
, V (s)

0 = dsV

drs∗
|r∗=rp , (77)
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n is overtone number and rp corresponds to the peak of the effective potential. It is
pointed out that [89] that the accuracy of the WKB method depends on the multipolar
number l and the overtone number n. The WKB approach is consistent with the
numerical method very well, providing that l > n. Therefore, we shall present the
quasinormal frequencies of scalar perturbation for n = 0 and l = 2, 3, 4, 5, 6, 7,
respectively.

The fundamental quasinormal frequencies of the odd parity perturbations are given
in table I. From the table we see that with the increasing of scalar charge w2,the
damping time (∼ 1/Im(ω)) of gravitational waves becomes longer and longer. On
the other hand, the period of oscillation of gravitational waves (∼ 2π/Re(ω)) also
becomes longer and longer.

4.2 Even parity

In this section, we turn to the metric perturbations for even parity. Similar to the case
of odd parity, we substitute Eqs. (55) and (56) with the even parity into the field
equations and keep the terms only linear in ε. The resulting equations of motion are
rather complicated and we have not been able to achieve a final Schrodinger-like
equation [35, 61] except for the case of l = 0. When l = 0, one could gauge away
two degrees of freedom by putting

h1 = 0 , h7 = 0 . (78)

In the framework of this gauge, the (0, 1) component of theEinstein equations becomes
significantly simple and can be solved for h3

h3 = − f φ
′

2U f ′ ψ . (79)

On the other hand, the combination of the (2, 2) and (2, 3) components of Einstein
equations gives

h2 = I

16ω

(
4 f Uφ

′′

f ′ + f 2Uφ
′3

f ′2 − 4Uφ
′
)

ψ

+ IU f φ
′

4ω f ′ ψ
′
. (80)

By using the expressions of h2 and h3, we obtain the perturbation equation for φ

(
ω2

U 2 − φ
′4 f 2

8 f ′2 + 3φ
′2

2
+ f φ

′
φ

′′

f ′ + f U
′
φ

′2

2 f ′U
− ∂2φV

U

)
ψ

+ψ
′′ +

(
U

′

U
+ 2 f

′

f

)
ψ

′ = 0 . (81)
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Fig. 4 The effective potential
Vef f ,even of monopole
perturbation for even parity
when M = 1 and
w2 = 0.5, 1, 1.5, 2.0, 2.5, 3.0,
respectively, from top to down
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Similar to the case of odd parity, by introducing a new dynamical variable� taking
the place of ψ

� ≡ f ψ , (82)

and the tortoise coordinate r∗, we find the perturbation equation Eq. (81) is simplified
to be

− ∂2r∗� (r∗) + Vef f (r∗) � (r∗) = ω2� (r∗) , (83)

where

Vef f ,even (r∗) = 1

8
· φ

′4 f 2U 2

f ′2 − 5

4
U 2φ

′2 − φ
′
f U 2φ

′′

f ′

−φ
′2 f UU

′

2 f ′ + f
′
UU

′

f
+U∂2φV (φ) , (84)

and the prime denotes the derivative with respect to x .
In Fig. (4), we plot the effective potential Vef f ,even for the monopole perturbations

in terms of x . We find that the potential is positive everywhere and tends to zero at
both infinity and the horizon when w2 ≤ 1 with M = 1. On the other hand, when
w2 > 1 with M = 1, the effective potential would develop a negative potential in
the vicinity of the black hole event horizon. This means there would exist bound state
in the vicinity of the horizon. The bound states correspond negative eigenvalues of
ω2. Thus, an unstable mode is produced. Furthermore, if the mass M vanishes, the
effective potential Vef f ,even is always negative outside the black hole. Therefore, black
holes are always unstable in this case.

As a conclusion, we find the parameter space of w2 for stability is

0 ≤ w2 < 1.1M2 . (85)
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5 Scalar perturbations

In section IV,we studied the stability problemof black holes using themethod ofmetric
perturbations and scalar field perturbations. Except for this method, there is alternative
method, the so-called testing-field method. In this situation, the fields, such as scalar
fields, Maxwell fields and Dirac fields, evolving in the background of black hole are
regarded as perturbations to the spacetime while the background spacetime itself is
not perturbed. In this section, we study the stability of black holes using the testing-
field method. For simplicity, we consider a scalar field that obeys the Klein-Gordon
equation

∇2� + μ2
0� = 0 , (86)

where μ0 is the rest mass of the scalar particles. Here ∇2 is the four dimensional
Laplace operator and� the massless scalar field. Making the standard decomposition

� = e−Iωt Ylm (θ, φ)
� (r)

r
, (87)

we obtain the radial perturbation equation

d2�

dr2∗
+

(
ω2 − Vef f ,s

)
= 0 , (88)

where the effective potential is given by

Vef f ,s = U

⎡
⎢⎣ l (l + 1)

f 2
+

(
U f

′)′

f
+ μ2

0

⎤
⎥⎦ , (89)

where the prime denotes the derivative with respect to x .We find the effective potential
is everywhere positive in the exterior of the black hole. Therefore, the black hole is
stable to scalar perturbations.

6 Black hole thermodynamics

Finally, we conduct an investigation into the thermodynamics of the one-scalar-hair
black hole. Hawking showed that for the outermost, event horizon in an asymptotically
flat spacetime, the temperature of a black hole is

TEH = κEH

2π
, (90)

where the surface gravity κEH is defined by evaluating

lμ∇μl
ν = κlν , (91)
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on the event horizon. Here lμ is the future-directed null generator of the event horizon,
which coincides with a Killing vector Kμ on the horizon. If the Killing vector is
adopted as Kμ = ∂/∂t , then we have

κEH = 1

2
· U,r

σ
|r=rEH . (92)

As a result, the black hole temperature takes the form

TEH = 1

4π
· U,r

σ
|r=rEH . (93)

The radius rEH of event horizon is determined by

U |r=rEH = 0 . (94)

Thus, the temperature is eventually determined by the mass M and the scalar charge
w2.

The entropy of black holes generally satisfies the area law, which states that the
entropy is a quarter of the area of black hole event horizon [90–92]. Therefore, we
have the entropy of the black hole

SEH = πr2EH . (95)

Bardeen et. al [93] had shown that the static black holes satisfy the Smarr formula

M = 2TEH SEH + M (ext) , (96)

where

M (ext) = −
∫
r≥rEH

d3x
√−g

(
2T 0

0 − Tμ
μ

)
, (97)

is the contribution of the scalar field outside the event horizon to the total mass M . In
order to check this formula, we should compute the exterior mass M (ext). To this end,
we resort to the Einstein equations

Gμν = 8πTμν . (98)

Substituting the metric functions Eq. (41) and Eq. (42) into the Einstein equations, we
obtain

M (ext) = −
∫
r≥rEH

4πr2σ

[
1

8π

(
G0

0 − G1
1 − 2G2

2

)]
dr

= −2w2 (5w2 + 6MrEH )

15rEH
(
r2EH + w2

) < 0 . (99)
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We remember thatw2 is positive. So themass contributed by the scalar field is negative.
Substituting the expressions of M (ext), the Hawking temperature TEH and the entropy
SEH into the Smarr formula, we find it is indeed satisfied.

In the next, let’s consider the first law of black hole thermodynamics. Motivated
by the procedure adopted in the investigations of black hole thermodynamics with a
non-linear Maxwell field [94], we find we should introduce two conjugated thermo-
dynamical variables, ᾱ and A with

ᾱ ≡ w
3
4
2

(
5r2EH + 3w2

) 1
2

r
1
4
EH

(
3r2EH + 2w2

) 5
8

, (100)

A ≡ −2

3
· w

1
4
2

(
3r2EH + 2w2

) 13
8

r
3
4
EH

(
5r2EH + 3w2

) 3
2

, (101)

where ᾱ has the dimension of energy and A is dimensionless.
Then the Smarr formula takes the form

M = 2TEH SEH + Aᾱ , (102)

namely, the exterior mass is expressed as

M (ext) = Aᾱ . (103)

What is the physical significance of A and ᾱ? Considering the case of black hole
solution with vanishing mass, one has the event horizon rEH ∼ √

w2. So we have
ᾱ ∼ √

w2 and A is a pure real number. We conclude ᾱ is associated with the scalar
hair of the black hole and A is a dimensionless constant.

Bearing in mind the total massM , the Hawking temperature TEH , the Bekenstein-
Hawking entropy SEH , the dimensionless constant A and the scalar hair ᾱ are the
functions of the event horizon rEH and w2, we obtain the first law of thermodynamics

dM = TEHdSEH + Adᾱ . (104)

7 Conclusion and discussion

In conclusion, starting from the most general expression (an infinite series of φ for the
scalar potential) and by using the Taylor series method, we find the static and asymp-
totically flat black hole solutions, which are eventually determined by two integration
constants and many coupling constants. One of the two integration constants is the
physical mass and the other is understood as the scalar charge. The coupling constants
originate from the scalar potential. As opposed to the mass, there is no symmetry
correspondence between the scalar charge and the coupling constants. Therefore, they
are not conserved and one cannot understand them as Noether charges. But since both
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the scalar charge and the coupling constants are present in the metric functions, they
must play a great role in the structure of black hole spacetime. Then it is reasonable
to regard them as black hole hairs. So a black hole can have many hairs. By using
the solution-generating method, we arrive at the above conclusions once again. This
shows the two methods are consistent with each other.

The no-scalar-hair theorem of Bekenstein [5–7] states that the static black holes
with the energy momentum tensor of a minimally coupled canonical scalar field and
a scalar potential can not have scalar hairs. Abandoning the third assumption made in
the theorem is the price we pay in order to obtain scalar hairy black holes. The third
assumption requires the potential to be everywhere non-negative. The well-known
Higgs potential tells us this may be not necessary.We find the scalar potential becomes
negativemerely for sufficient large φ or in the interior of black hole. On the other hand,
black holes are stable to both odd parity perturbations and scalar perturbations. As for
even parity perturbations, there remains parameter space for the stability of the black
holes. Therefore, these scalar hairy black holes are physically significant.

Finally, we conduct an investigation into the thermodynamics of scalar hairy black
holes. Both the Smarr formula and the first law of thermodynamics are developed.
We find that a new pair of conjugated thermodynamical variables should be defined
except for the pair of Hawking temperature and Bekenstein-Hawking entropy. One of
the two new variables is determined by the physical mass and scalar charge. The other
new variable is dimensionless.

All data generated or analysed during this study are included in the article.
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