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Abstract
Penrose’s crucial contributions toGeneral Relativity, symbolized by his 1965 singular-
ity theorem, received (half of) the 2020 Nobel prize in Physics. A renewed interest in
the ideas and implications behind that theorem, its later developments, and other Pen-
rose’s ideas improving our understanding of the gravitational field thereby emerged.
In this paper I highlight some of the advancements motivated by the theorem that
were developed over the years. I also identify some common misconceptions about
the theorem’s implications. A modern perspective on the concept of closed trapped
submanifolds, based on the mean curvature vector, is advocated.
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1 Introduction

The importance of Penrose’s contributions [113–123, 125, 127, 128] to the under-
standing of the gravitational field and the global structure of spacetime is enormous.
In particular, his 1965 singularity theorem [116, 144] was a gigantic milestone in the
history of General Relativity (GR) that changed the field for ever more. As argued
elsewhere [142, 144], this result genuinely started the post-Einsteinian era of GR.

The beautiful and fundamental concept of closed trapped surface was introduced
as the key assumption to prove the theorem in [116] and most of the many singu-
larity theorems that came later [72, 73, 135]. I will devote a substantial part of this
contribution to this idea from a modern perspective, and to highlight some of its less-
known properties as well as to the improvements that are currently fashionable. I will
also discuss some common misconceptions about the implications of the singularity
theorem, and discuss its shortcomings and strengths.

However, Penrose’s impact onto GR is much deeper and wider than the singularity
theorem and includes many other wonderful and fruitful ideas, such as using the
spinorial approach [105, 113], conformal treatment of spacetime [114, 115, 118, 119],
causal properties of spacetime and the causal boundary [59, 85, 121], asymptotic
conserved quantities [39, 106, 107], gravitational waves and their collision [81, 117],
black holes [120, 122, 126] and, of course, the question of –weak and strong– cosmic
censorship [122–124] (the list is far from complete!).

I will also dwell into these subjects, especially for those advancements arising
from the 1965 theorem, presenting some (hopefully) interesting remarks that are not
usually considered in the standard literature. A notable exception will be cosmic cen-
sorship that I will just discuss tangentially herein and for which I refer to [156] and
to Landsman’s contribution to this Special Issue [90] where the subject is masterly
discussed.

2 The 1965 theorem, and a 2022 version

The original Penrose “singularity” theorem is actually an incompleteness theorem and
contained the following assumptions

1. A 4-dimensional Lorentzian manifold with a metric g of class C2 and causally
oriented.

2. a non-compact C3 Cauchy hypersurface �

3. a closed future-trapped surface
4. Rμνkμkν ≥ 0 for all null kμ (null convergence condition, Rμν is the Ricci tensor)
5. all null geodesics are complete towards the future of �

The proof of the theorem showed that these 5 hypotheses are inconsistent. Hence, by
following the traditional reformulation of the theorem [72, 73], one usually states it by
saying that, if 1–4 hold, then spacetime must have future-incomplete null geodesics.
Observe that the theorem is independent of the Einstein field equations

Rμν − 1

2
R gμν + �gμν = 8πG

c4
Tμν (1)
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where R = Rμ
μ is the scalar curvature, G is Newton’s gravitational constant, c is the

speed of light in vacuum and � the cosmological constant.
Let me scrutinize these 5 assumptions and their meaning.

2.1 Incompleteness, causal boundary and isocausality

Consider first hypothesis 5 whose negation, as just mentioned, became the standard
conclusion of the general singularity theorems [72, 135, 144]. The main problem with
what relativists want to consider singularities is that spacetime breaks down at them,
so that singularities are not part of the spacetime [57]. Still, physical curves are good
pointers and they do belong to the spacetime. By using curves that are maximally
extended to the future, say, (that is, no further continuation of the curve is feasible
to the future) such curves may be complete or not. In the former case they go up
to infinity in the future, in the latter case the canonical parameter (affine parameter
for geodesics) only achieves a finite value and they are pointing towards a problem
within reach: the singularity. Under the influence of Hawking [66–70, 72] and Geroch
[56, 57] (geodesic) incompleteness eventually became the standard characterization
of singularities proven by the theorems.

Actually, the ideas contained in the previous paragraph are the fundaments for the
construction of the causal boundary [59] assuming some basic causal properties, such
as a distinguishing spacetime (for the causal ladder and more on causality see [54,
101, 103]). Basically, instead of working with points in spacetime one deals with
causal curves, and their pasts and futures. If a curve terminates (to the future) at a
given point, then the past of the causal curve and that of its endpoint are the same.
Similarly, mutatis mutandis, for curves that start from a point in the past. Thus we
can replace points by pasts and futures of curves. Obviously, some identifications are
required, but these technicalities can usually be resolved satisfactorily. Now, to this
set of pasts and futures we can add the future and past sets that are not the future or
past of any point. They correspond to futures and pasts of inextendible causal curves,
and are then considered to be the elements of a new, larger, set which contains all
the points of the spacetime plus “points on the boundary”. Basically, this defines the
causal boundary as those points on the larger set that are not points of the original
manifold. The causal boundary contains both points at infinity and singularities –as
also does the conformal boundary [49, 72, 115, 119]. For the history and development
of these important concepts I refer to [42, 54]. For the most advanced and up-to-date
constructions, see [42–46].

The ideas of the causal boundary are based on the more fundamental causality
theory. Classical references are [72, 121, 135] butmore recent,more complete accounts
are given in [54, 101, 103] and some references therein. In particular, one can consider
abstract definitions of causal spaces [21, 85] which go beyond the scope of GR.
For the case of a Lorentzian manifold, the whole causality theory is based on the
fundamental result that states that in any normal neighbourhood of any point p the
exponential map defines a light-cone on the manifold (as the image of the null cone
in TpM) such that null geodesics are precisely on that light cone and any other causal
curve lies in the interior of the cone from the point that it fails to be a null geodesic

123



151 Page 4 of 28 J. M. M. Senovilla

on [10, 21, 54, 72, 84, 135]. This basic result can actually be improved inmanyways by
lowering the differentiability of the metric and other requirements [101]. Sometimes,
this result is interpreted as the local equivalence of causality with that of flat spacetime.
Unfortunately, this is an erroneous belief if causal equivalence is assumed to mean
conformal equivalence, as it is customary. This question was addressed in [85] where
the authors proved, by providing a counterexample, that the local equivalence of causal
(conformal) structure between different Lorentzian manifolds is simply a chimera: it
does not hold.

The definition of local causal equivalence that they used was as follows (see also
the discussion in [54]):

For each point p of the Lorentzian manifold (M, g) there exists a small open
neighbourhood Up of p and a homeomorphism h p of Up onto an open subset of
Minkowski spacetime such that h p is a causal isomorphism.

Here, assuming that (M, g) is distinguishing [101, 103, 135], a causal isomorphism
is actually a smooth conformal isometry [54]. The failure of this “natural” definition
is an unsatisfactory situation that can be remedied by adopting a better definition
of causal equivalence introduced in [53]; isocausality. Two spacetimes (M, g1) and
(M, g2) are said to be isocausal if the there exist (i) a diffeomorphism � that sends
every future-pointing vector in (M, g1) to a future-pointing vector in (M, g2) and
(ii) another diffeomorphism � that sends every future-pointing vector in (M, g2) to a
future-pointing vector in (M, g1). The important point here is to realize that� does not
necessarily have to be �−1. Actually, � = �−1 only when g1 and g2 are conformally
related. Isocausality preserves most of the causal properties of Lorentzian manifolds
[52, 53] though may not preserve the causal boundary [44].

With the concept of isocausality, the above characterization of local causal equiv-
alence can be modified as [54]:

For each point p of the Lorentzian manifold (M, g) there exists a small open
neighbourhood Up of p and an open subset U of Minkowski spacetime such that Up

and U are isocausal.
Using this new definition, any two Lorentzian manifolds (of the same dimension)

are locally isocausal [54].

2.2 Cauchy hypersurfaces: global hyperbolicity

Consider now hypothesis 2, existence of a non-compact Cauchy hypersurface. A par-
tial Cauchy hypersurface � is any edgeless closed acausal set. Acausality means that
no pair of points in the set are causally related. For the definition of edge see [72,
135], it basically states that it has no end. The Cauchy development or domain of
dependence [58] of�, denoted by D(�), is given by all points x such that either every
future-directed, or every past-directed, inextendible causal curve from x meet �. � is
called a global Cauchy hypersurface, or simply a Cauchy hypersurface, if its domain
of dependence is the entire manifold, that is, D(�) = M .

One usually considers spacelike Cauchy hypersurfaces, though there can be other
ones. Therefore, in simple words, a Cauchy hypersurface is a spacelike slice amenable
to sustain initial data that can determine the full spacetime completely. This is of
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course the basis for the initial value formulation of the GR field equations [23, 48],
see [133] for details. One can prove [58] that � is a Cauchy hypersurface if and
only if every inextendible null curve crosses it exactly once (and then, every timelike
inextendible curve also intersects� once). Spacetimes with Cauchy hypersurfaces are
called globally hyperbolic [72, 121, 155], a concept that comes from previous works
by Leray [91], because the sets containing all causal curves between any two points
are compact –and therefore, there will always be a maximizing geodesic between any
two causally related points.

Globally hyperbolic spacetimes possess the best causal behaviour [54, 103], and
therefore they are at the top of the causal ladder. From a physical point of view, it seems
reasonable to believe that realistic spacetimes will be globally hyperbolic. Actually,
the strongest versions of cosmic censorship aspire to prove this under very general
circumstances [90]. As proven originally by Geroch, globally hyperbolic spacetimes
have a fixed spatial topology (given by that of any Cauchy hypersurface �) as they
are topologically M = R × � and actually all spacelike Cauchy hypersurfaces are
diffeomorphic, see [13–15, 101] for the latest on this subject.

The concept of domain of dependence and of global hyperbolicity is very powerful.
As an interesting example, consider the exterior region of the vacuum Schwarzschild
solution, given in standard coordinates by

ds2 = −
(
1 − rg

r

)
c2dt2 + dr2

1 − rg
r

+ r2
(
dθ2 + sin2 θdϕ2

)
(2)

with t ∈ (−∞,∞), θ ∈ [0, π), ϕ ∈ [0, 2π) and r ∈ (rg,∞), where the gravitational
or Schwarzschild radius rg is a positive constant. This metric is globally hyperbolic,
any t = const. slice being a Cauchy hypersurface. This implies, without performing
any extension nor any further calculations that r → rg must be a null boundary, and
therefore this metric has not the structure of Minkowski minus a cylinder of radius
rg . This is a very simple way to learn that r = rg , not being a curvature singularity,
is actually a horizon without having to perform any extension of the metric or other
calculations, see [53] for further comments.

Coming back to the theorem’s hypothesis 2, assuming that � is non compact
amounts to saying that the spacetime is open, that is to say, space is not finite. Actually,
according toMinguzzi [102] the assumption of the existence of� can be considerably
relaxed, so that the main result is kept even in absence of total predictability. Still, the
assumption of spacetime being “spatially open” was needed in [102], so that the idea
that space is infinite survives. Whether or not this is reasonable is dabatable, but in
any case it looked like a reasonable assumption for the analysis of spacetimes with
collapsing matter.

There are well-known examples of geodesically complete spacetimes without
Cauchy hypersurfaces. A dramatic example is also due to Penrose in 1965, plane
waves [117]. Plane waves are solutions of the Einstein-Maxwell equations (includ-
ing the vacuum case) without cosmological constant1 with a parallel null vector field

1 Vacuum or electromagnetic plane waves’ Ricci tensor takes the form Rμν = −(A(u)+C(u))kμkν where
kμ is the parallel vector field of the spacetime
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�k = ∂v orthogonal to null hyperplanes k = −du. This vector field defines the direction
of the propagating waves. Using coordinates x, y on the planes orthogonal to k the
line-element can be written as

ds2 = −2dudv + dx2 + dy2 +
(
A(u)x2 + 2B(u)xy + C(u)y2

)
du2 (3)

where A, B and C are three arbitrary functions of the retarded time u. The non-zero
components of the Riemann tensor in the coordinate basis are

Ruxux = −A, Ruxuy = −B, Ruyuy = −C

so that there are no curvature singularities whatsoever as long as the three functions
are regular everywhere. Under these conditions, the geodesic completeness of these
spacetimes was proven in [47]. Plane waves cannot contain closed trapped surfaces
[98, 137], and this will be briefly discussed later in Sect. 2.4.

It is quite remarkable that these spacetimes, that describe appropriately physically
realistic gravitational waves far enough from the sources, are free from singularities
and complete, nevertheless, failing to be globally hyperbolic, they are not strongly
cosmic censored. This may seem controversial, and is basically due to the structure of
its causal boundary ( [54] and references therein) but that is how things are at present,
see [90].

A question naturally arises: what about globally hyperbolic and geodesically com-
plete spacetimes? There are several well-known examples, such as (i) the Einstein
static universe metric (� > 0) [38]

ds2 = −c2dt2 + 1

�

[
dχ2 + sin2 χ

(
dθ2 + sin2 θdϕ2

)]

that satisfies (1) for a dust Tμν = �uμuν with u = −cdt , 8πG� = 2c4� and
χ ∈ (0, π) so that the 3-dimensional metric in parenthesis is the standard metric of a
round 3-sphere. (ii) de Sitter spacetime [65, 147] given by

ds2 = −c2dt2 + λ2 cosh2(ct/λ)
[
dχ2 + sin2 χ

(
dθ2 + sin2 θdϕ2

)]
, λ2 = 3/�

where, again, the t =const. 3-spheres are Cauchy hypersurfaces with the standard
round metric. This is a vacuum solution of (1) with � > 0: Tμν = 0. (iii) any global
spherically symmetric spacetime obtained by properly matching an interior solution to
the Schwarzschild exterior (2) across an r =const. hypersurface. (iv) A less symmetric
and dynamical example is given by (R4, g) in cylindrical coordinates {t, ρ, ϕ, z} with
line element [134]

ds2 = cosh4(at) cosh2(3aρ)(−c2dt2 + dρ2) + cosh−2(at) cosh−2/3(3aρ)dz2

+ 1

9a2
cosh4(at) cosh−2/3(3aρ) sinh2(3aρ)dϕ2
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where a is a positive constant. This metric satisfies (1) with � = 0 for a perfect fluid
in comoving coordinates with energy density

8πG

c4
� = 15a2 cosh−4(at) cosh−4(3aρ)

and a radiation dominated equation of state

p = 1

3
�.

For proofs of the geodesic completeness and the global hyperbolicity of this solution
see [22]. A discussion about how these examples avoid the incompleteness predicted
by the most powerful singularity theorems can be found in [22, 143].

The previous list contains just (standard orwell-known) particular examples. These
examples provide a lot of information about geodesically complete and globally hyper-
bolic spacetimes, but one wonders if general results can be found while keeping the
convergence condition

Rρνv
ρvν ≥ 0 (4)

for arbitrary causal vμ. The answer is yes.
First, in the stationary case, if (4) holds then geodesic completeness requires [55]

Rμνξ
μξν

ξμξμ

∼ k/ρ̄2

for someconstant k,where �ξ is the timelikeKillingvector fieldwhile ρ̄ is an appropriate
spatial distance between any two events.

The dynamical and ‘closed universe’ situation is not possible if themodel is expand-
ing (or contracting), as standard singularity theorems apply [72]: closed expanding
non-singular models necessarily require the violation of (4), see [135].

In the dynamical and ‘open universe’ case, for expanding (or contracting) models,
if (4) is satisfied then at least one of the following must hold to ensure geodesic
completeness [139, 140]

• the cosmological constant � < 0 is negative
• the averaged energy density on a Cauchy hypersurface vanishes
• the averaged intrinsic scalar curvature of a Cauchy hypersurface vanishes

Here ‘averaged X ’ means the variable X integrated over a Cauchy hypersurface �

divided by the volume of�, or the appropriate limit thereof if� is non-compact [139,
140]. The conclusion is thus similar to that of the stationary case: the energy density
at any instant of time must fall off quickly enough in spatial directions.

Dynamical situations where the world is expanding somewhere but contracting
somewhere else are still open for study.
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2.3 Spacetime dimension. Differentiability of themetric

Let me analyze now assumption 1. It has three different parts, the causal orientation,
the 4-dimensional Lorentzian manifold, and the C2 differentiability of the metric.
With regard to the first, this is just assuming that there is a well-defined and consistent
future direction in the spacetime. Basically it requires the existence of a global smooth
vector field in the manifold.

Concerning the dimensionality, actuallyPenrose proved the theorem just in 4dimen-
sions for obvious reasons, but it holds in arbitrary dimension n greater than or equal to
3. Of course, this requires some minor adjustments, basically that the closed trapped
surface is a compact (without boundary) spacelike submanifold of dimension n − 2;
equivalently, that its co-dimension is 2. Of course, the dimensionality of the Cauchy
hypersurface is always n − 1, a co-dimension 1 submanifold in any n. Yet, when ana-
lyzing the more powerful Hawking-Penrose singularity theorem [72, 73], the question
arises of why the boundary assumption in the theorem requires either a hypersurface,
a trapped surface, or a point with re-converging light cones. That is, the boundary
hypothesis is placed on submanifolds of co-dimension 1, 2 or n. Is there anything
wrong if one wishes to place a boundary condition in submanifolds of co-dimension
3, . . . , n − 1? The answer is actually negative, and this will be discussed and clarified
at large in Sects. 2.4 and 2.5.

With regard to differentiability, the traditional singularity theorems required the
metric to be at least of class C2. This is actually needed in many intermediate steps
necessary for proving the theorems. A list of these places can be found in section
6.1 of [135]. At first sight, it may seem reasonable to deal with C2 metrics, however,
this would leave out important metric models that are built by matching spacetimes
[97], such as the gravitational field of a spherical star or shock (electromagnetic or
gravitational) waves, among others.

For a long time, this excessive assumption of differentiability was one of the short-
comings of singularity theorems, because one might think that actually the geodesic
incompleteness would not obtain, but rather that the metric could just be of class C1.
This should not count as a true singularity, especially if geodesics can be uniquely
continued. After such a long waiting time, things starting to change with the results in
[87, 99] where local results concerning convex normal neighbourhoods and the exis-
tence, uniqueness and properties of geodesics were found for metrics of class C1,1,
that is, with first partial derivatives Lipschitz continuous. It must be observed that the
Riemann tensor is not continuous in this situation, having finite jumps. Thus, it is not
defined pointwise, and the assumptions and strategies in the theorems must be adapted
accordingly. Despite these difficulties, soon after, the first singularity theorem to be
proven in C1,1 regularity [88] was the classical one of [70], and Penrose’s theorem
came immediately after [89]. Nevertheless, the goal to prove the more demanding
Hawking-Penrose theorem [73] required some extra effort and even new techniques,
but after some 3 more years the goal was achieved in [63].

From a physical point of view, such a result may seem satisfactory and no further
relaxation of differentiability looks desirable in principle. For pure C1 (or lower)
metrics the curvature tensor is not well defined as a tensor field and one must resort
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to the use of tensor distributions. Still, there are important idealizations of physical
situations with such type of distributional curvature, such as impulsive gravitational
waves. Actually, the very first collision of plane gravitational waves, due to Khan and
Penrose [81], used such impulsive waves. And by the way, the collision of plane waves
is known to lead to singularities in generic situations [64, 152, 160]. Therefore, the
quest for incompleteness theorems with even lower regularity continued, and the key
results were put forward in [62]. Extra effort, once again, has been needed to prove
the Hawking-Penrose theorem for C1 metrics, but the result is already claimed to be
achieved recently [86].

For an up-to-date summary of all these advances lowering the differentiability of
the metric, detailed explanations and future perspectives, check [146].

2.4 Trapped submanifolds

Consider now hypothesis 3. This is the most important legacy of Penrose’s singularity
theorem, a brilliant and prolific idea with innumerable applications, see e.g. [144] for
an account.

In GR the geometry, the curvature, of space-time is the gravitational field and there-
fore basic geometrical quantities –such as lengths, areas or volumes— will undergo
a time evolution in generic dynamical scenarios. A closed (future) trapped surface
appears when its area instantaneously decreases (to the future) no matter how they
evolve in a causal way. This is why they are called trapped –though perhaps trapping
would be better–, for everything they contain will be surrounded by surfaces of less
area. There is a dual version to the past. This idea cleverly captures the concept of
‘point of no return’ in, for instance, stellar gravitational collapse.

Of course, this can be mathematically well defined for arbitrary submanifolds of
any dimension n − m (co-dimension m). From classical geometry we know that the
instantaneous ‘evolution’ of the m-volume of any submanifold is governed by its
mean curvature vector field, and thus trapped submanifolds can be characterized by
properties of this vector field.

To be more precise, consider any smooth (n−m)-dimensional submanifold ζ ⊂ M
embedded in the n-dimensional spacetime M . Let {�eA} be a basis of vector fields
tangent to ζ and denote by γAB = g|ζ (�eA, �eB) the (components in this basis of the)
first fundamental form of ζ . We assume that ζ is spacelike, so that γAB is positive
definite and (ζ, γ ) is a Riemannian manifold on its own whose Levi-Civita connection
will be denoted by ∇, while the connection in (M, g) is ∇ as usual. Therefore, by
splitting into tangential and normal parts with respect to ζ we have [84, 110, 141, 144]

∇�eA �eB = ∇�eA �eB − �KAB

where �KAB is called the shape tensor, or the second fundamental form vector, of ζ in
M . Notice that �KAB is normal to ζ . Given any one-form v defined at least on ζ one
also has on ζ

eμ
Ae

ν
B∇μvν = ∇ Av̄B + vμK

μ
AB (5)
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where v̄ denotes the pull-back of v: v̄A := v(�eA).
The mean curvature vector of ζ in M is the trace of �KAB , that is

�H := γ AB �KAB .

Observe that �H is normal to ζ by construction, and therefore it has m independent
components. If �n is any vector field normal to ζ

θn := nμH
μ

is called the expansion along �n of ζ . In particular if �n is null, θn is called a null
expansion. Contracting (5) with γ AB a formula using the Lie derivative of the metric
can be derived

1

2
�μν(£vg)μν = ∇ Av̄A + vμH

μ (6)

where

�μν := γ ABeμ
Ae

ν
B (7)

is the (contravariant) projector to ζ .
The mean curvature vector controls the variation of the m-volume Vζ of ζ along

any possible deformation vector. Let �ξ be any vector field and deform ζ along its flow.
Then, on using (6), the initial variation of the m-volume can be easily seen to be [84,
110]

δξVζ =
∫

ζ

(
∇ A ξ̄ A + ξμH

μ
)

so that for closed (compact) ζ the first term vanishes and we are left with

δξVζ =
∫

ζ

ξμH
μ for compact ζ. (8)

The classical characterization of minimal (or rather extremal) submanifolds by the
vanishing of �H follows automatically. In Riemannian geometry, this is the only dis-
tinguished case. However, in Lorentzian geometry, �H can also be timelike, or null,
and this provides new important types of submanifolds. This leads to the definition of
trapped submanifolds, and their avatars.

A (closed) submanifold ζ of any dimension is said to be [141, 144]

• future trapped if �H is future timelike everywhere on ζ ,
• weakly future trapped if �H is future causal everywhere on ζ ,
• marginally future trapped if �H 
= 0 is future null everywhere on ζ .
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and similarly for past trapped. Notice that, from (8), any closed future trapped sub-
manifold has a negative variation of m-volume along any possible future direction
�ξ . And that all future null expansions are negative. This connects with the original
definition by Penrose, who stated that a trapped (co-dimension 2) surface is trapped
if two independent null expansions are negative2.

The characterization with the mean curvature vector has many advantages. As
an example, one can immediately derive that there cannot be any closed (weakly,
marginally) trapped surfaces contained in stationary regions of the spacetime [98].
For, by taking �ξ in (8) as the timelike Killing vector, we know that δξVζ = 0, and thus
Hμ cannot be future, nor past, everywhere on ζ (as if it were, ξμHμ would have a
sign). Similar results can be obtained if there are null Killing vectors, or causal con-
formal Killing vectors, etc. [12, 98, 137]. As an illustrative example, and as mentioned
previously, one can easily prove that planewaves (3) cannot contain any closed trapped
submanifolds. This follows because the null vector field �k is parallel∇νkμ = 0, hence
in particular is a hypersurface-orthogonal Killing vector, so that using �ξ = �k in (8)
one again derives that the integral on ζ of kμHμ vanishes and therefore Hμ cannot be
timelike everywhere. Many other interesting results using (5) and the mean curvature
vector can be found, see [12, 98, 141].

Now that we know that the concept of trapped submanifold is independent of the
co-dimension, wemay come back to the question raised above in Sect. 2.3: why should
there only be a few co-dimensions in the boundary assumption of the incompleteness
theorems?

2.5 The curvature condition: “Energy” conditions

Let me finally analyze hypothesis 4, the convergence condition. This is an assumption
on the curvature tensor which takes care of the attractive character of the gravitational
field. Traditionally, the curvature condition has been extracted from the Raychaudhuri
equation [72, 83, 130, 131, 135] as a requirement to ensure the so-called focusing
effect of gravity for generic congruences of causal geodesics. If these congruences of
causal geodesics emanate from a point, or orthogonally from a co-dimension one (for
timelike geodesics) or co-dimension 2 (for null geodesics) submanifold, the curvature
condition is simply (4) where vμ is the vector field tangent to the geodesic congruence.
If this holds, and if the initial expansion –or divergence/convergence— of the geodesic
congruence is negative (respectively positive), a caustic develops in finite proper time,
or affine parameter for null vμ, to the future (resp. past). These are usually called
conjugate and focal points. An important consequence of this is that causal geodesic
curves, and causal geodesic congruences orthogonal to (hyper)-surfaces, stop being
maximizing if they encounter one of these caustics [10, 72, 121]. One can prove that,

2 The original definition is still used in most of the physics literature, and in a large part of the mathematical
one. The reasons behind this are obscure tome. The characterizationwith themean curvature vector is clearly
neater and provides more information, apart from unifying the concept for arbitrary dimensional manifolds.
A (future) trapped submanifold has all possible (future) expansions negative, not only the null expansions.
Moreover, the computation of null expansions and the choice of null directions complicates the explicit
calculations. Computing the mean curvature vector is far simpler! [136]
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for a closed future-trapped surface, this implies that the boundary of the future3 of the
surface is compact (if the spacetime is complete). Such surfaces are thus examples of
trapped sets, a key concept introduced in the powerful Hawking-Penrose theorem [72,
73].

Nevertheless, the points focal to a submanifold ζ are best controlled (or identified)
by using the index form [51, 84, 110], and this is actually completely independent of
the co-dimension of ζ . In particular, one can prove (proposition 1 in [51]) that there
is a point focal to ζ along any future-directed geodesic emanating orthogonally from
ζ with tangent vector Nμ and initial negative expansion if

Rμνρσ P
νσ NμNρ ≥ 0 (9)

(provided that the geodesic gets that far) where Pνσ is the parallel propagation of the
projector �νσ defined in (7) along the geodesic:

Nρ∇ρ P
μν = 0, Pμν |ζ = �μν.

This readily implies that, if (9) holds along the future-directed null geodesics starting
orthogonal from a compact ζ , then ζ is a (future) trapped set (proposition 3 in [51])
if ζ is a trapped submanifold, independently of the dimension of ζ —or there are
incomplete null geodesics.

As the existence of a trapped set is the basic ingredient in the proof of the Penrose
and the Hawking-Penrose theorems [72, 73, 135], it follows that actually one can
assume the existence of a trapped submanifold of any dimension together with the
curvature condition (9) to get the same incompleteness result. Thus, the standard
singularity theorems were generalized to the case of having a trapped submanifold of
any co-dimension in [51]. Later, these generalized theorems were also proven in low
differentiability [63, 86].

Some relevant remarks are needed to clarify the role of condition (9). First of
all, from a physical point of view (9) is a condition on tidal forces (mathematically
speaking, this a condition on sectional curvatures) [51]. If (9) holds, the tidal forces,
alternatively the geodesic deviations, in directions (initially) tangent to ζ are attractive
on average. The overall result is a tendency to converge that represents the attractive
property of gravity.

Secondly, one must notice that, for co-dimension one, that is to say a hyper-
surface ζ , there is a unique (timelike) normal direction Nμ and therefore Pμν =
gμν − NμN ν/(NρNρ) so that (9) becomes simply RμνNμN ν ≥ 0, the convergence
condition (4) along Nμ. Exactly the same happens with surfaces, co-dimension two ζ

[51]. One thus recovers the classical theorems automatically when ζ has co-dimension
one or two.

3 Here, what I mean by the ‘boundary of the future’ of ζ is E+(ζ ) [72, 73, 121, 135], defined as the set
of points that can be reached from ζ causally, but not through a timelike curve. If E+(ζ ) is compact, then
ζ is a trapped set. Not to be confused with a trapped submanifold. Trapped submanifolds become trapped
sets precisely under the appropriate curvature condition –if spacetime is null complete–, as explained in
the text.
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The generalization to trapped submanifolds of any co-dimension is relevant to yet
another of Penrose’s ideas [125]: the possible classical instability of compact extra
dimensions —such as those necessary for consistency in string theory. According to
Penrose, such compact extra dimensions might develop ‘singularities’, in the sense of
geodesic incompleteness, in extremely short times. Similar arguments were raised in
[20] for the case of large, even infinite, extra dimensions, and there is also the pionner-
ing result in [158] for semi-classical perturbations. Penrose’s argument was appealing,
but somehow it needed some extra assumptions, such as unnatural splittings of the
spacetime in order to be able to connect with the Hawking-Penrose theorem. The
main problem here was that one needs co-dimension one, two or n (a point) to apply
the theorem, but of course the extra-dimensional space has co-dimension four (and
submanifolds within the extra-dimensional space a larger one). This is where the gen-
eralized theorems are relevant, as they admit all possible values of the co-dimension.
Such a possibility was suggested in [51] and later thoroughly analyzed in [26] , where
incompleteness theorems for warped products were proven and studied in connec-
tion with the instability of product manifolds. The idea was to check if a dynamical
evolution of the compact extra-dimensional part, considered as a perturbation of a
direct product spacetime, would lead to singularities. The answer is yes under some
precise circumstances, but not in full generality [26]. These kind of ‘instabilities’ are
of a different kind as those arising from initial value formulations and the analysis
of how perturbations may grow, as there are important results showing the (classical)
stability of product spacetimes in that sense, such as [19, 159] and the more recent
[2] for a high (n ≥ 11) dimensional direct product of n ≥ 10 Minkowski spacetime
times a compact Ricci-flat Riemannian manifold –if the entire perturbed spacetime is
also Ricci flat. In any case, this is yet another example of the influence that Penrose’s
arguments have had in the general gravitational community.

A final general comment about the curvature condition. In the traditional formula-
tions of the theorems, and in most of the standard literature, this assumption is termed
an energy condition. The reason is clear when one is working in GR, for in GR there
is the direct relation between the Ricci tensor and the energy-momentum tensor given
by the field equations (1). Thereby, the convergence condition (4) can be rewritten
in terms of physical quantities related to Tμν . However, the curvature condition is a
restriction on the curvature tensor (or its trace, the Ricci tensor), which is a geometrical
object. Hence, the theorems are valid in general geometric theories of gravity based on
Lorentzian geometry, or even generalizations thereof such as Finsler-like geometries,
see e.g. [1].

2.6 A 2022 version of Penrose’s theorem

A modern version of the 1965 singularity theorem [116], incorporating many of the
different improvements mentioned so far that have allowed for a better understanding
of the underlying mathematical and physical ideas, could be as follows

Theorem 1 (Sketch of a ‘2022 theorem’) Let (M, g) be an n-dimensional Lorentzian
manifold with a metric g of class C1. If
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1. there is a C2 non-compact Cauchy hypersurface (alternatively, spacetime is past-
reflecting and spatially open)

2. there exists a future-trapped C2 submanifold ζ of any dimension
3. the tidal condition (9) holds along future-directed null geodesics emanating orthog-

onally from ζ

Then, there are future-incomplete null geodesics.

Warning:As stated, this is just a sketch of the actual theorem, highlighting the novelties,
because the technical details behind every condition are cumbersome. For instance, the
curvature tensor is not a tensor field but rather a tensor distribution, so that condition (9)
cannot hold pointwise: it has to be appropriately generalized by using regularizations.
Similarly, geodesics (as solutions of an ODE system) are no longer unique, and focal
points are not well defined, just to mention a few problematic steps. However all these
difficulties can be resolved satisfactorily and, more importantly, the physical meaning
of all the hypotheses and the conclusion remain the same. For the technical details, I
refer to [51, 62, 86, 146]. Similarly, the theorem using the version with past reflectivity
and open space was only proven for co-dimension 2 trapped submanifold [102] under
the null energy condition, but it may well hold in for general trapped submanifolds
with condition (9).

3 Assessment of the 1965 theorem: merits andmisconceptions

In my opinion, the greatest merit of the 1965 theorem relies on the introduction and
use of the concept of closed trapped surface. It has been a prolific idea with multiple
applications, see e.g. [11, 30, 75, 79, 141], as well as an object of interest in pure math-
ematics [37]. It has evolved into a large fauna of interesting surfaces that generalize
the minimal surfaces of classical geometry [4, 5, 109, 138], and also led to the local
concepts of isolated, dynamical, trapping,... horizons [3, 6, 7, 12, 17, 74, 77]. Thereby,
it is also used to detect the formation of black holes inNumerical Relativity [9, 79, 149]
or changes in their evolving horizons. Similarly, it has influenced the development of
gravity analogues [8] and, of course, it also plays a role in the analysis of the Cosmic
Censor Conjecture [90, 156]. In relation to this, it fostered many important geometric
and physical inequalities, such as for instance the Penrose inequality [95, 122], but
many other ‘isoperimetric-like’ inequalities too [25, 32–36, 50, 60, 61, 78, 94, 145].

As impressive as this list may seem, this is not the full story. There is an even more
important point concerning trapped submanifolds which is key to the theorem and its
implications: stability.

The notion of trapped submanifold is intrinsic, a pure geometric notion, and its
characterization is the inequality HμHμ < 0.4 Hence, trapped submanifolds are
stable under small perturbations of the spacetime. This was already emphasized by
Penrose himself, by comparing the stability of censored versus naked singularities
[120]:

4 If one prefers the traditional notion with negative expansions, they are also strict inequalities
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However, there is an essential difference between the logical status of the [naked]
singularity (...) and that [censored (...)]. In the [censored] cases (...) there are
trapped surfaces present, so we have a theorem which tells us that even with
generic perturbation a singularity will still exist. In the [naked] situation (...),
however, we have no trapped surfaces, no known theorem guaranteeing singu-
larities (...)

Or again in ( [122], p.133):

It might even be possible to produce exact solutions representing a collapse of
some special matter distribution to such a [naked] singularity. But this would
in itself tell us rather little. We would have to know whether such behavior was
“stable” in the sense of being qualitatively unchangedwhen the initial conditions
are perturbed in some small but finite way.

That the stability of trapped submanifolds is a key point can be better understood by
noticing that there are well-known models of realistic spherically symmetric collapse
to produce black holes –see [71, 72, 155] for the definition of a black hole– with a sin-
gularity in the future, the paradigmatic example is the Oppenheimer and Snyder [111,
112] dust model, but there are many others with (perfect) fluids, e.g. [41]. Of course,
the assumption of spherical symmetry raises some reasonable doubts about how robust
and generic these results might be. With Penrose’s theorem this is clearly resolved:
the mentioned spherical models contain closed trapped surfaces, and the Einstein-
Euler set of field equations describing a perfect fluid in GR constitutes a system of
hyperbolic PDEs, so that the property of continuous dependence of the solution on the
initial conditions holds. Given that the initial conditions of the spherically symmetric
models lead to a trapped sphere in finite proper time, it follows that initial conditions
sufficiently close to the spherical ones also give rise to closed trapped surfaces that
must apear within the same time interval, regardless of symmetries. This is illustrated
in Fig. 1. Of course, this applies to situations of sufficient differentiability, so that the
improvements lowering differentiability of the theorems discussed above might not
lead to such stability outcomes.

Now let me consider some of the misconceptions and folklore surrounding Pen-
rose’s, and the general, singularity theorems. First of all, the theorems are many times
considered to prove that black holes form when gravitational collapse occurs with
high remaining mass, this is especially so in the astrophysics community. This is far
from the truth, despite sentences such as the statement for which Penrose was awarded
half of the Nobel prize in Physics 2020: “for the discovery that black hole formation
is a robust prediction of the general theory of relativity”, see also the discussion in
[90]. This may be argued to be right if all contributions by Penrose to GR –including
the yet unproven cosmic censorship conjecture– are taken into account but, as I just
wrote, this is incorrect in various respects if it refers to his singularity theorem exclu-
sively. Firstly, and most importantly, because of the assumption of the existence of
a closed trapped surface. It actually happens that, in asymptotically flat situations,
closed trapped surfaces are completely enclosed beyond the event horizon, which is
the distinctive feature of a black hole. There is actually a theorem [29, 72, 155] proving
this under some reasonable circumstances. In simpler words, closed trapped surfaces
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lie entirely within the black hole region of a black hole already formed. Therefore, the
theorems are speaking about the interior of black holes, or about spacetimes that are
sure to contain a black hole.

Of course, Penrose was aware of all this, see e.g. the following passage taken from
[124], pp.233-4 (italics are mine)

It is not hard to conceive of physical situations in which one of the standard cri-
teria for ‘unstoppable gravitations [sic] collapse’ is satisfied. All that is required
is for sufficient mass to fall into a small enough region. For the central region
of a large galaxy, for example, the required concentration could occur with the
stars in the region still being separated from each other, so there is no reason to
expect that there could be some overriding physical principle which conspires
always to prevent such unstoppable collapse.However, we cannot simply deduce
from this that a black hole will be the result. This deduction requires the crucial
assumption that cosmic censorship, in some form, holds true.
(... ...)
It appears to be a not uncommon impression among workers in the field that
as soon as one of these conditions is satisfied —say the existence of a trapped
surface— then a black hole will occur; and, conversely, that a naked singularity
will be the result if not. However, it should be made clear that neither of these
deductions is in fact valid. The deduction that a black hole comes about whenever
a trapped surface is formed requires the assumption of cosmic censorship.

Therefore, the important question to be answered is whether or not closed trapped
surfaces form in the evolution of stable and completely innocuous, regular initial data.
This was addressed in the massive work by Christodoulou [24], see also [82, 132].

Secondly, even more radical statements are too many times read or heard, such as
“singularities are consubstantial to GR” or similar ones, and these blunt statements
come inevitably accompanied by a reference to the singularity theorems. In this sense,
it is worth recalling that (almost) all gravitational systems, say planets, stars, planetary
systems, constellations, clusters, galaxies, pulsars, binary systems, ... are non-singular.
They are correctly described by GR and its post-Newtonian or post-Minskowskian
limits. In fact, (post)-Newtonian gravity is free from the singularity problem.What the
singularity theorems (in GR and any other gravitational theory based on a Lorentizian
manifold) have surfaced is the existence of two feasible situations where something
strange, or not understood, happens: the extremely early Universe –if the Universe is
on average as we nowadays think it is and it has been– and the mysterious, because of
their inaccessibility, black holes’ deep interiors. The incompleteness predicted by the
theorems in these two extreme situations is certainly something found out by means
of the theorems.

And once more, this was clear to Penrose. I quote now from [120]

The main significance of [the singularity] theorems (...), is that they show that
the presence of space-time singularities in exact models is not just a feature of
their high symmetry, but can be expected also in generically perturbed models.
This is not to say that all general-relativistic curved space-times are singular
—far from it. There are many exact models known which are complete and free
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from singularity. But those which resemble the standard Friedmann models or
the Schwarzschild collapse model sufficiently closely must be expected to be
singular.

To end this section, I want to stress a couple of shortcomings in the theorems,
which are related to each other: the very mild conclusion, and the unsolved question
of spacetime extendibility.

Concerning the former, and against popular belief, there is no definite established
relationship between incomplete geodesics and curvature divergences. Sometimes,
limits on curvature growth can be placed on maximal incomplete geodesics [80, 108,
148, 151]. Concerning curvature divergences there are scarce results [27, 28, 150, 153].
However, in many cases, what the theorems predict are some kind of horizon (usually
a Cauchy horizon) which can be made perfectly regular by extending the spacetime
beyond. In other words, it might be the case that the manifold itself is incomplete,
because one has inadvertently cut out regular portions thereof.

Which brings me to the second point, the important physical problem of how to
handle extendible space-times. This is a complicated matter [135, 143, 144]. The
main difficulty is that the possible extensions are highly non-unique. As an illustrative
example, consider the exterior part of the Schwarzschild solution (2). We are all used
to see the Kruskal-Szekeres maximal analytical extension in textbooks, e.g. [72, 104,
155], by keeping spherical symmetry and a vanishing Ricci tensor. But, does such an
extensionmakes physical sense?What one obtains is a globally hyperbolic, completely
empty spacetime, with two asymptotic regions, a strange topology and two curvature
singularities, one in the past the other in the future. Not very realistic! Many other
extensions are actually available, for instance at the end of [135] one could count
at least eleven different extensions of (2). Herein, let me just show an example of
extension leading to what is usually called a spherically symmetric regular black hole.
There are many more such regular black holes, see e.g. [93] and references therein,
but as far as I know this was the first example keeping the entire exterior region r > rg
of (2) and at the same time keeping the weak energy condition, namely

(Rμν − 1

2
Rgμν)v

μvν ≥ 0

for any causal vμ. Notice that, for null vμ this is simply the null convergence condition
(4). The model is given in standard advanced coordinates by [96]

ds2 = −eβ(r)
(
1 − 2m(r)

r

)
dv2 + 2dvdr + r2

(
dθ2 + sin2 θdϕ2

)
(10)

where the functions β and m read explicitly

2m(r) = rg�(r − rg) + r3

r2g

(
10 − 15

r

rg
+ 6

r2

r2g

)
�(rg − r),

β(r) = 5

3

(
1 + 3

r

rg

)(
r3

r3g
− 1

)
�(rg − r)
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where �(x) is the step Heaviside function. This spacetime is properly matched across
the null hypersurface r = rg so that themetric isC1,1 [97]. Smoothermodels could also
be built. Note that the metric is exactly (2) for all r ≥ rg –in advanced coordinates—
having β = 0 and a constant mass function 2m = rg there.

The extended portion of the spacetime is the region r < rg , see Fig. 2, where the
Ricci tensor no longer vanishes. As already mentioned, the null convergence con-
dition (4) is satisfied. There are trapped round spheres whenever rg/2 < r < rg ,
and the curvature tensor is regular everywhere with a regular centre of symmetry at
r = 0. This spacetime also possesses non-compact Cauchy hypersurfaces, as the �

shown in Fig. 2. In summary, all the hypotheses of the singularity theorem are met,
ergo some null geodesics must be future incomplete. This is the case for instance
for many radial null geodesics other than v = const., as they reach r = rg/2 for
v → ∞ with finite affine parameter. There are also past incomplete null geodesics,
but these are not predicted by the theorem. This spacetime can be further regularly
extended in many ways, and geodesically-complete extensions exist, see [96, 143].
These larger complete extensions avoid the Penrose singularity theorem because
the non-compact � becomes a partial Cauchy hypersurface. The more general
theorems [73] are not applicable either because (4) does not hold for arbitrary
causal vμ.

As explained, the metric (10) is just one possible extension among infinitely many
that can be attached to the original Schwarzschildmetric. Physicallymeaningful exten-
sions are extremely difficult to identify, and it also may depend on personal taste.
Should we always prefer extensions that keep classical energy conditions and lead
to singularities, over other extensions that avoid the singularities at the price of vio-
lating some classically reasonable conditions? From the mathematical point of view,
analytical extensions might be an answer, but they are not always available, nor they
are unique in general. As another illustrative example, consider the exterior radiating
Vaidya metric given in standard retarded coordinates by [147]

ds2 = −
(
1 − 2m(u)

r

)
du2 − 2dudr + r2

(
dθ2 + sin2 θdϕ2

)
(11)

where m(u) is a mass function depending on retarded time u. This spacetime satisfies
(4) as long as m(u) > 0 is a non-increasing function of u. If m were constant this
would simply be Schwarzschild. If there is a lower non-vanishing bound μ > 0 for
m(u), that is to say, μ := limu→∞ m(u), one can easily check that timelike radial
geodesics reach r = 2μ in finite proper time, so that they are incomplete, see Fig. 3.

The metric is thus extendible beyond that region r = 2μ, but the extension to be
performed is far from obvious and one needs some physical information to perform
it. A detailed discussion can be found in [40]. This problem was first studied by Israel
[76], who pointed out that his approach to the problem was not fully satisfactory
because the extended spacetime was chosen beforehand. However, observers in the
metric (11) can only get to know the properties of m(u) for finite values of u, while to
build the extension they should somehow guess at least some properties of the mass
beyond u → ∞. Furthermore, even knowing m(u) for all possible values of u plus
some of the physical properties of the particular situation to be described is not enough
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Fig. 2 A conformal diagram of the spacetime (10). The line r = 0 is a regular centre. The non-colored
region represents exactly (2). The red region contains trapped round spheres. The hypersurface � is a non-
compact Cauchy hypersurface. Causal geodesics reaching the dashed lines, to the future and to the past, are
incomplete

to define a unique extension. As proven in [40], by keeping the spherical symmetry and
a null radiation energy-momentum tensor, the ambiguities in the extension amount to
the choice of the mass function beyond r = 2μ, which then becomes a future event
horizon. In general, there will exist many different choices for the mass beyond that
horizon that comply with all the physical requirements. And, by the way, analytical
extensions are many times not even possible.

In [40] a constructive procedure was put forward to achieve reasonable extensions
of (11), equivalent to those of Israel, if one only knows m(u) for −∞ < u < ∞. The
following properties were proven to be needed for the extensions

μ 
= 0,
dkm

duk
(u → ∞) = 0 forall k ∈ N
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Fig. 3 A conformal diagram of the spacetime (11). There is a singularity with r = 0 in the past. There is a
dynamical (or apparent) horizon A3H at r = 2m(u), as shown, which diverts from the past event horizon
PEH. Radiation is emitted along u =const. lines so that themass functionm(u) is a decreasing function of u.
Causal geodesics reaching the dotted line in the future, which has an areolar coordinate r = 2m(u → ∞),
are incomplete. The metric can be extended beyond this line, but how?

plus the extended mass function must have a critical point, a local minimum, at the
null hypersurface r = 2μ. There exist an infinite number of ways to prolong m(u)

keeping these characteristics, and the only realistic way to find a proper one is to
consider the physics of the underlying situation, say by knowing things about the star
that emits the radiation. Imagine, for instance, that one arrives at r = 2μwith the A3H
becoming null there, as is actually the case represented in Fig. 3. Among the infinite
possible ways to extend the metric, there are two obvious choices which are totally
inequivalent: to assume that themass function remains constant in the extended part, or
to add a mirror symmetrical spacetime. In both cases one obtains smooth spacetimes.
These two inequivalent possibilities are represented in Fig. 4. And another remark: the
spacetime on the left in Fig. 4 is yet another extension of the Schwarzschild solution
(2)!

To summarize, the incompleteness proven by Penrose’e theorem may just be due
to extendibility of the spacetime, and the extensions may turn the original Cauchy
hypersurface into just a partial one, therefore a Cauchy horizon arises, see [72, 121,
135, 155]. The choice of spacetime beyond the Cauchy horizon suffers from all the
problems just discussed with regard extensions, so that the final global spacetime may
be regular or not. A possible way out to this unsatisfactory situation would be that
generic Cauchy horizons turned out to be unstable, such as the one in Kerr’s black hole
[31, 129]. As an aside remark, to this day there is no theorem “predicting” the ring
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Fig. 4 Two posible extensions, among many, of the metric (11) of figure 3. The hypersurface through which
the extension is performed becomes a partly future, partly past, event horizon FEH/PEH in both cases, and
there arises a second singularity with r = 0 in the future. On the left the mass function is kept constant at
equal to μ all along, so that the added part of the spacetime is actually Schwarzschild, the original A3H
merges with a new FEH and there is no radiation there. On the right an alternative completely different
situation is represented. Now the mass function has a minimum at r = 2μ and the added portion of the
spacetime is mirror symmetric with the original one. Thus, radiation keeps flowing though, in the extended
part, it now has an ‘incoming’ character. In this case, the A3H is a dynamical horizon everywhere except
at the central point where it becomes null instantaneously. Unless one has some information about the
processes behind the radiation, it is not possible to choose between these two extensions (or the infinite
number not shown here) with information only from the original spacetime. Observe that even if one gets rid
of the second asymptotically flat part and cuts out the spacetime by the blue line that represents a possible
surface of the radiating body (a star say) removing all that is to the left of that blue line, the two extensions
are still different beyond FEH, one keeps a radiating star and the one on the left does not

singularity in the analitycally maximally extended Kerr black hole [65], see however
[92, 100, 102].

4 Closing remarks

The singularity theorems provide supporting evidence for the need to better under-
stand the behaviour of the gravitational field well inside black holes and probably at
the initial stages of our Universe [18, 154]. Whether or not this has to be resolved
by a quantum theory of gravity is unclear [16, 157], but most probably some kind of
corrections to GR, or some violation of classical convergence conditions, will prob-
ably be required to restore global regularity. The important problem of extensions of
incomplete spacetimes should eventually be clarified by taking decisions on when and
how extensions should be performed, and under which criteria.

Letting that aside, I hope this expository paper will convey my belief that Penrose’s
ideas and, in particular his 1965 milestone paper [116], have influenced the evolution
of GR and the understanding of the gravitational field in many different directions
and in a revolutionary manner. In particular, Penrose deserved the Nobel prize for
his gigantic contributions to GR, for the advancements that his results provoked in
the understanding of black holes and, perhaps more importantly, for his visionary,
unusually keen foresighted, writings. As an emblematic example, let me quote him
once more [120]

Does it follow, then, that nothing of very great astrophysical interest is likely to
arise out of collapse?Dowemerely deduce the existence of a few additional dark
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“objects” which do little else but contribute, slightly, to the overall mass density
of the universe?Ormight it be that such “objects”, while themselves hidden from
direct observation, could play some sort of catalytic role in producing observable
effects on amuch larger scale. The “seeding” of galaxies is one possibility which
springs to mind. And if “black holes” are born of violent events, might they not
occasionally be ejected with high velocities when such events occur! (The one
thing we can be sure about is that they would hold together!) I do not really want
to make any very specific suggestions here. I only wish to make a plea for “black
holes” to be taken seriously and their consequences to be explored in full detail.
For who is to say, without careful study, that they cannot play some important
part in the shaping of observed phenomena?

Let me finish with some personal remarks speaking as a member of a truly joy-
ful relativity community that, lately, is starting to ‘get used’ to such distinctions as
the Nobel prizes. The half 2020 Nobel prize has a particularly special significance
to us, because it awarded mainly mathematical work. This constitutes an unequivo-
cal recognition of mathematical relativity and of its physical implications. The 2020
Nobel prize was a very pleasant surprise that heartened a theoretical community who,
figuratively speaking, felt somehow “represented” in the award.
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88. Kunzinger, M., Steinbauer, R., Stojković, M., Vickers, J.A.: Hawking’s singularity theorem for C1,1-

metrics. Class. Quantum Gravit. 32, 075012 (2015)
89. Kunzinger, M., Steinbauer, R., Vickers, J.A.: The Penrose singularity theorem in regularity C1,1.

Class. Quantum Gravit. 32, 155010 (2015)
90. Landsman, K.: Penrose’s 1965 singularity theorem: From geodesic incompleteness to cosmic cen-

sorship. Gen. Relativ. Gravit. 54, 115 (2022)
91. Leray, J.: HyperbolicDifferential Equations, Institute forAdvancedStudy, (Princeton Preprint) (1952)
92. Lesourd, M.: A new singularity theorem for black holes which allows chronology violation in the

interior. Class. Quantum Gravit. 35, 245003 (2018)
93. Maeda, H.: Quest for realistic non-singular black-hole geometries: regular-center type.

arXiv:2107.04791 (2021)
94. Malec, E.: Isoperimetric inequalities in the physics of black holes. Acta Phys. Pol. B 22, 829–858

(1991)
95. Mars, M.: Present status of the Penrose inequality. Class. Quantum Gravit. 26, 193001 (2009)
96. Mars, M., Martín-Prats, M.M., Senovilla, J.M.M.: Models of regular Schwarzschild black holes

satisfying weak energy conditions. Class. Quantum Gravit. 13, L51–L58 (1996)
97. Mars, M., Senovilla, J.M.M.: Geometry of general hypersurfaces in spacetime: junction conditions.

Class. Quantum Gravit. 10, 1865–1897 (1993)
98. Mars, M., Senovilla, J.M.M.: Trapped surfaces and symmetries. Class. Quantum Gravit. 20, L293

(2003)
99. Minguzzi, E.: Convex neighborhoods for Lipschitz connections and sprays. Monatsh Math. 177,

569–625 (2015)
100. Minguzzi, E.: The boundary of the chronology violating set. Class. Quantum Gravit. 33, 225004

(2016)
101. Minguzzi, E.: Lorentzian causality theory. Living reviews in relativity vol. 22:3, 1–202. Springer

(2019)
102. Minguzzi, E.: A gravitational collapse singularity theorem consistent with black hole evaporation.

Lett. Math. Phys. 110, 2383–2396 (2020)
103. Minguzzi, E., Sánchez, M.: The causal hierarchy of spacetimes, in Recent developments in pseudo-

Riemannian geometry, H. Baum and D. Alekseevsky (eds.), ESI Lect. Math. Phys. (Eur. Math. Soc.
Publ. House, Zurich), pp. 299–358 (2008)

104. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W.H. Freeman and Co., New York (1973)

123

http://arxiv.org/abs/2110.09176
http://arxiv.org/abs/2107.04791


The influence of Penrose’s singularity theorem in… Page 27 of 28 151

105. Newman, E.T., Penrose, R.: An approach to gravitational radiation by a method of spin coefficients
J. Math. Phys.3 566–78; erratum4 998 (1962)

106. Newman, E.T., Penrose, R.: 10 exact gravitationally conserved quantities. Phys. Rev. Lett. 15, 231–33
(1965)

107. Newman, E.T., Penrose, R.: New conservation laws for zero rest-mass fields in asymptotically flat
space-time. Proc. R. Soc. Lond. A 305, 175–204 (1968)

108. Newman, R.P.A.C.: Persistent curvature and cosmic censorship. Gen. Relativ. Gravit. 16, 1177 (1984)
109. Newman, R.P.A.C.: Topology and stability of marginal 2-surfaces. Class. Quantum Gravit. 4, 277

(1987)
110. O’Neill, B.: Semi-Riemannian Geometry: With Applications to Relativity. Academic Press, Cam-

bridge (1983)
111. Oppenheimer, J.R., Snyder,H.:On continued gravitational contraction. Phys. Rev. 56, 455–459 (1939)
112. Oppenheimer, J.R., Volkoff, G.M.: On massive neutron cores. Phys. Rev. 55, 374 (1939)
113. Penrose, R.: A spinor approach to general relativity. Ann. Pays. (N.Y.) 10, 171–201 (1960)
114. Penrose, R.: Asymptotic properties of fields and space-times. Phys. Rev. Lett. 10, 66–68 (1963)
115. Penrose, R.: Conformal treatment of infinity, In: Relativity Groups and Topology eds. C M de Witt

and B de Witt (New York: Gordon and Breach) pp. 566–84 (1964)
116. Penrose, R.: Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14, 57 (1965)
117. Penrose, R.: A remarkable property of plane waves in General Relativity. Rev. Mod. Phys. 37, 215

(1965)
118. Penrose, R.: Zero rest-mass fields including gravitation: asymptotic behaviour. Proc. R. Soc. Lond.

Ser. A 284, 159–203 (1965)
119. Penrose, R.: Structure of space-time. In: Batelle Rencontres, C. M. de Witt and J. A. Wheeler, eds.

(Benjamin, New York) (1968)
120. Penrose, R.: Gravitational collapse: the role of general relativity. Riv. Nuovo Cimento 1, 252 (1969)
121. Penrose, R.: Techniques ofDifferential Topology inRelativity, Regional Conference Series inApplied

Math. 7 (SIAM, Philadelphia) (1972)
122. Penrose, R.: Naked singularities. Ann. N. Y. Acad. Sci. 224, 125 (1973)
123. Penrose, R.: Singularities and time asymmetry, In: General Relativity: an Einstein Centenary Survey,

S. W. Hawking and W. Israel, eds. (Cambridge University Press, Cambridge) (1979)
124. Penrose, R.: The question of cosmic censorship. J. Astrophys. Astron. 20, 233–248 (1999)
125. Penrose, R.: On the instability of extra space dimensions, in the future of the theoretical physics and

cosmology, 185–201. Cambridge University Press, Cambridge (2003)
126. Penrose, R., Floyd, R.M.: Extraction of rotational energy from a black hole. Nat. Phys. Sci. 229, 177

(1971)
127. Penrose, R., Rindler, W.: Spinors and Spacetime, vol. 1. Cambridge University Press, Cambridge

(1984)
128. Penrose, R., Rindler, W.: Spinors and Spacetime, vol. 2. Cambridge University Press, Cambridge

(1986)
129. Poisson, E., Israel, W.: Inner-horizon instability and mass inflation in black holes. Phys. Rev. Lett.

63, 1663 (1989)
130. Raychaudhuri, A.K.: Relativistic cosmology I. Phys. Rev. 98, 1123 (1955)
131. Raychaudhuri, A.K.: Singular state in relativistic cosmology. Phys. Rev. 106, 172 (1957)
132. Reiterer, M., Trubowitz, E.: Strongly focused gravitational waves. Commun. Math. Phys. 307, 275

(2011)
133. Ringström, H.: Origin and development of the Cauchy problem in general relativity. Class. Quantum

Gravit. 32, 124003 (2015)
134. Senovilla, J.M.M.: New class of inhomogeneous cosmological perfect-fluid solutions without big-

bang singularity. Phys. Rev. Lett. 64, 2219 (1990)
135. Senovilla, J.M.M.: Singularity theorems and their consequences. Gen. Relativ. Gravit. 30, 701–48

(1998)
136. Senovilla, J.M.M.: Trapped surfaces, horizons and exact solutions in higher dimensions. Class. Quan-

tum Gravit. 19, L113 (2002)
137. Senovilla, J.M.M.: On the existence of horizons in spacetimes with vanishing curvature invariants. J.

High Energy Phys. 11, 046 (2003)
138. Senovilla, J.M.M.: Classification of spacelike surfaces in spacetime. Class. Quantum Gravit. 24,

3091–3124 (2007)

123



151 Page 28 of 28 J. M. M. Senovilla

139. Senovilla, J.M.M.: A singularity theorem based on spatial averages. Pramana 69, 31–47 (2007)
140. Senovilla, J.M.M.: A new type of singularity theorem. In: Proceedings of 30th Spanish Relativity

Meeting ERE2007, A. Oscoz, E. Mediavilla and M. Serra-Ricart eds., EAS Publ.Ser. 30 (2008).
arXiv:0712.1428

141. Senovilla, J.M.M.: Trapped surfaces. Int. J. Mod. Phys. D 20, 2139–2168 (2011)
142. Senovilla, J.M.M.: Singularity theorems in general relativity: achievements and open questions, Chap-

ter 15 of Einstein and the Changing Worldviews of Physics (eds. C Lehner, J Renn, M Schemmel),
Einstein Studies 12, (Birkhäuser) (2012)

143. Senovilla, J.M.M.: A critical appraisal of the singularity theorems. Philos. Trans. R. Soc. A 380,
20210174 (2022). https://doi.org/10.1098/rsta.2021.0174

144. Senovilla, J.M.M., Garfinkle, D.: The 1965 Penrose singularity theorem. Class. Quantum Gravit. 32,
124008 (2015)

145. Simon, W.: Bounds on area and charge for marginally trapped surfaces with cosmological constant.
Class. Quantum Gravit. 29, 062001 (2012)

146. Steinbauer, R.: The singularity theorems of General Relativity and their low regularity extensions.
Jahresber. Dtsch. Math. Ver. (2022)

147. Stephani, H., Kramer, D., MacCallum, M.A.H., Hoenselaers, C., Herlt, E.: Exact Solutions to Ein-
stein’s Field Equations, 2nd edn. Cambridge University Press, Cambridge (2003)

148. Szabados, L.B.: On singularity theorems and curvature growth. J. Math. Phys. 28, 142 (1987)
149. Thornburg, J.: Event and apparent horizon finders for 3+1 numerical relativity. Living Rev. Relativ.

10, 3 (2007)
150. Thorpe, J.A.: Curvature invariants and spacetime singularities. J. Math. Phys. 18, 960 (1977)
151. Tipler, F.J.: On the nature of singularities in general relativity. Phys. Rev. D 15, 942 (1977)
152. Tipler, F.J.: Singularities from colliding plane gravitational waves. Phys. Rev. D 22, 2929 (1980)
153. Tipler, F.J., Clarke, C.J.S., Ellis, G.F.R.: Singularities and Horizons—a review article. In: General

Relativity andGravitation:OneHundredYearsAfter theBirth ofAlbert Einstein,A.Held, ed. (Plenum
Press, New York) (1980)

154. Vilenkin, A.,Wall, A.C.: Cosmological singularity theorems and black holes. Phys. Rev. D 89, 064035
(2014)

155. Wald, R.M.: General Relativity. The University of Chicago Press, Chicago (1984)
156. Wald, R.M.: Gravitational collapse and cosmic censorship, In: Black Holes, Gravitational Radiation

and the Universe, edited by B.R. Iyer and B. Bhawal (Springer, Berlin) arXiv: gr-qc/9710068 (1998)
157. Wall, A.C.: The generalized second law implies a quantum singularity theorem. Class. Quantum

Gravit. 30, 165003 (2013)
158. Witten, E.: Instability of the Kaluza–Klein vacuum. Nucl. Phys. B 195, 481 (1982)
159. Wyatt, Z.: The weak null condition and Kaluza–Klein spacetimes. J. Hyperbolic Differ. Equ. 15,

219–58 (2018)
160. Yurtsever, U.: Singularities in the collisions of almost-plane gravitational waves. Phys. Rev. D 38,

1731 (1988)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

http://arxiv.org/abs/0712.1428
https://doi.org/10.1098/rsta.2021.0174
http://arxiv.org/abs/gr-qc/9710068

	The influence of Penrose's singularity theorem in general relativity
	Abstract
	1 Introduction
	2 The 1965 theorem, and a 2022 version
	2.1 Incompleteness, causal boundary and isocausality
	2.2 Cauchy hypersurfaces: global hyperbolicity
	2.3 Spacetime dimension. Differentiability of the metric
	2.4 Trapped submanifolds
	2.5 The curvature condition: ``Energy'' conditions
	2.6 A 2022 version of Penrose's theorem

	3 Assessment of the 1965 theorem: merits and misconceptions
	4 Closing remarks
	Acknowledgements
	References




