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Abstract
We study the thermodynamics of the Taub–NUT AdS black holes by Visser’s holo-
graphic method using AdS radius as a constant parameter under the restricted phase
space approach. Instead of the variables P and V , we deal with the central charge
and also chemical potential as a unique couple of conjugate thermodynamic variables.
We study some interesting properties of the Taub–NUT black holes e.g. supercritical
phase equilibrium in the T − S processes, Q − � and the Hawking-Page phase tran-
sition in the μ − C processes. As a consequence, the consistency of the weak gravity
conjecture of multi-charge for Taub–NUT-AdS black holes at critical points is proved.
We conclude that in the presence of the central charge and assuming C = 3

8�
2, weak

gravity conjecture could be satisfied in the Taub–NUT-AdS black holes with n̂ � 1.
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1 Introduction

Studying the thermodynamics of black holes was initially motivated and developed by
Hawking and Bekenstein [1–4] by working on the thermal properties of black holes
fromviewpoint of the thermodynamics physics. In such studies, surface gravity and the
event horizon area are supposed to be proportional to temperature and entropy. Also,
the mass of a black hole is usually considered internal energy. Despite the successes of
the mentioned approach, there are still some ambiguities around the issue such as the
nature of microscopic degrees of freedom contributing to the entropy of black holes.
The holography principle and also AdS/CFT duality play an important role in studying
several quantities of black holes in which an AdS black hole state in bulk is equivalent
to a thermal state equivalent to dual field theory [5–8]. Besides the above formalisms,
one can analyze the thermodynamics of the black holes using different symmetries
of a gravitational model [9]. As an advanced study of AdS black holes, Hawking and
Page showed phase transition between AdS black holes with radiation and thermal
AdS [10]. Additionally, the thermodynamics quantities of black holes concerning the
extended phase space thermodynamics are discussed in [11–20]. In this approach, the
thermodynamics behavior of some gravitational models for different black holes is
studied by considering a negative cosmological constant proportional to the pressure.
Studying such structures provides an excellent incentive to include other parameters of
the consideredmodels as novel thermodynamic parameters [16–18, 21, 22].Moreover,
using P , V variables navigates us to the fact that AdS black holes can be assumed as
heat engines [23–25].

Recently, a new formalism for studying the thermodynamics of black holes has
been proposed by including the parameters central charge and the chemical potential
as a new couple of conjugate thermodynamics variables [26]. Also, in the dual theory,
the square number of colors is connected to the central charge [27–30]. Here, we focus
on the Taub–NUT-AdS black hole in the restricted phase space (RPS) and study the
thermodynamic properties of the model in the presence of the central charge. As the
key point of the present work, the weak gravity conjecture (WGC) for such a model
can be easily proved at the critical points.

The layout of the paper is the following. InSect. 2,we introduce the basic concepts of
the Taub–NUT-AdS black hole. In Sect. 3, we examine the thermodynamics properties
of the Taub–NUT-AdS black hole in the RPS formalism by T − S processes Q − �.
Also, we study the Hawking-Page phase transition in the μ −C processes in order to
prove WGC at critical points. In Sect. 4, we present a proof of WGC. Conclusions are
drawn in Sect. 5.
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2 Taub–NUT-AdS black holes

We begin with the action of the Taub–NUT-AdS black holes in the framework of
Einstein-Maxwell [31, 32]

S = 1

16π

∫
d4x

√−g(R − 2� − FμνF
μν), (1)

where g and R are the determinant of the metric tensor gμν and the Ricci scalar,
respectively. Also, � = − 3

�2
is cosmological constant where � denotes the anti-

de Sitter (AdS) radius. Here, the electromagnetic strength is given by F = Fμν =
∂μAν − ∂ν Aμ. By varying the action with respect to the metric gμν , the Einstein
equation takes the form

Rμν − 1

2
Rgμν + �gμν = Tμν, dGμν = 0, (2)

where the energy-momentum tensor of the Maxwell field is introduced by

Tμν = Fμσ F
σ
ν + GμσG

σ
ν , G = ∗F. (3)

Also, the electric and magnetic charges inside a two-dimensional surface S2 are
obtained as [31, 32]

qe = 1

4π

∫
S2
G, qm = 1

4π

∫
S2
F. (4)

We define metric of the Taub–NUT-AdS black holes as [33, 34]

ds2 = − f (r)(dt + 2n cos θdϕ)2 + dr2

f (r)
+ (r2 + n2)(dθ2 + sin2 θdϕ2),

Aμ = −[h(r) − h0]dt + 2nh(r) cos θdϕ, (5)

where

f (r) = r2 − 2MGr − n2 + 4Gn2g2 + Ge2

r2 + n2
− 3n4 − 6n2r2 − r4

�2(r2 + n2)
,

h(r) = er + g(r2 − n2)

r2 + n2
, (6)

where n, M and h0 are the NUT parameter, mass of the black hole and an arbitrary
constant, respectively. Also, e and g depict degree freedom of the electromagnetic
field. Using eq. (4), the electric and magnetic charges of a black hole on a spherical
surface with radius r are calculated as [31, 32]

qe(r) = e(r2 − n2) − 4grn2

r2 + n2
, qm(r) = 2n[er + g(r2 − n2)]

r2 + n2
. (7)
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Asymptotically, The electric and magnetic charges in the limit of r → ∞ recovers
qe(r) = e and qm(r) = 2gn, respectively. The horizon r = rH is as follows,

Qm = qe(rH ), Qe = qm(rH ). (8)

Also, the entropy at the event horizon takes the following form

S = A

4G
= π

G
(r2H + n2). (9)

3 RPS thermodynamics in Taub–NUT-AdS black holes

In the RPS formalism, the variables pressure p and volume v are not used because
of changing their meanings in the holographic viewpoint. On the other hand, two
quantities C and μ play a an important role in the context of conformal field theory
(CFT). Since the central charge C determines the number of degrees of microscopic
freedom in CFT, its conjugate μ is considered as a chemical potential [35]. In the
context of extended phase space thermodynamics, studying the thermodynamics of
the black holes is carried out by using a variable cosmological constnat. As a result, the
corresponding dynamical equations are changed. To escape from this, we introduce
the thermodynamics of restricted phase space in which Newton’s constant is assumed
as a variable instead of the cosmological constant and consequently the field equa-
tions are kept unchanged. Also, the relationship between the central charge and two
cosmological and Newton’s constants are introduced as C = �2

G , where �2 = −3
�

[26,
35, 36].

The first law of thermodynamics for a Taub–NUT-AdS black hole inRPS formalism
is written as

dM = TdS + φ̃ed Q̃e + φ̃md Q̃m + μdC . (10)

This is observed with an Euler-like relation,

M = T S + φ̃e Q̃e + φ̃m Q̃m + μC, (11)

where M , T and S are mass, temperature and entropy of our black hole, respectively.
Also, φ̃e, Q̃e are the properly re-scaled electric potential and electric charge while
φ̃m, Q̃m are the properly re-scaled magnetic potential. Generally, the electric and
magnetic charges can be defined by the quantities in dual CFT as

Q̃e = Qe�√
G

, Q̃m = Qm�√
G

, φ̃e = φe
√
G

�
, φ̃m = φm

√
G

�
. (12)

Due to the importance of the mass of a black hole, we consider it as a function of
S, Qe, QmC . Hence, using equation (9) and the definition G = �2

C , we rewrite the
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event horizon radius (rH ) in terms of S by

rH =
√

�2S

πC
− n2. (13)

Then, by using eqs. (7), (8) and (13), we express G, e and g as

G = �2

C
, e =

−2πn2QeC + Qe�
2S + 2nQmC

√
−n2π2 + �2Sπ

C

�2s
,

g =
−2πn2QmC + Qm�2S − 2nQeC

√
−n2π2 + �2Sπ

C

2n�2s
.

(14)

Setting f (rH ) = 0 and also using the eqs. (6), (12), (13) and (14), we have the mass
of the black hole as

M = −2C2n2π2(�2 + 4n2) + �4S2 + �2π [�2π(Q̃2
e + Q̃2

m) + CS(�2 + 4n2)]
2C�4π

3
2

√
−n2π + �2S

C

.

(15)

Also, from eqs. (10) and (15), we obtain the variables T , μ, φ̃e, φ̃m as follows

T =
(

∂M

∂S

)
Q̃e,Q̃m ,C

=
�2

√
−n2π + �2S

C [S(πC + 3S) − π2(Q̃2
e + Q̃2

m)]
4π

3
2 (πn2C − �2S)2

,

(16)

φ̃e =
(

∂M

∂ Q̃e

)
S,Q̃m ,C

= Q̃e

C
√

−n2 + �2S
πC

, (17)

φ̃m =
(

∂M

∂ Q̃m

)
S,Q̃e,C

= Q̃m

C
√

−n2 + �2S
πC

, (18)

μ =
(

∂M

∂C

)
S,Q̃e,Q̃m

= (�2 + 4n2)(−4π3C3n4 + 6π2C2�2n2S) + �6S[π2(Q̃2
e + Q̃2

m) + S2]
4C2�4π

3
2 (πn2C − �2S)

√
−n2π + �2S

C

−C�4π [2n2π2(Q̃2
e + Q̃2

m) + (�2 + 6n2)S2]
4C2�4π

3
2 (πn2C − �2S)

√
−n2π + �2S

C

. (19)

By re-scaling S, Q̃e and Q̃m,C as S → αS, Q̃e → α Q̃e, Q̃m → α Q̃m , C → αC ,
the mass of the black hole M (15) is re-scaled as → αM while the parameters T , μ,
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φ̃e and φ̃m remain unchanged. Consequently, M is first-order homogeneity and T , μ,
φ̃e and φ̃m are zero-order homogeneity which are defined as extensive and intensive
variables, respectively.

In the following, we investigate the thermodynamic processes e.g. T − S, φ̃e − Q̃e,
φ̃m − Q̃m and μ − C considering only one pair of conjugate intensive-extensive
variables.

3.1 T− S processes

The T − S curve at fixed Q̃e, Q̃m,C is a thermodynamic characteristic including a
first-order phase transition that becomes second-order at the critical point. To obtain
the critical point in the T − S curve at fixed Q̃e, Q̃m and C , we use

(
∂T

∂S

)
Q̃e,Q̃m ,C

= 0,

(
∂2T

∂S2

)
Q̃e,Q̃m ,C

= 0. (20)

Using eqs. (16) and (20) for the critical parameters, we have

Sc = πC(�2 + 12n2)

6�2
, Q̃2

e,c + Q̃2
m,c = C2

36

(
1 + 48

n2

�2
+ 144

n4

�4

)
. (21)

Also critical values of T and M are obtained by

Tc =
√
2

3

√
�2 + 6n2

π�2
, Mc = 1

3

√
2

3

C(�2 + 6n2)
3
2

�4
. (22)

In the limit of n → 0 and Q̃m,c → 0, eqs. (21) and (22) are reduced to Tc =
√

2
3

1
π�

,

Sc = πC
6 and Q̃e,c = C

6 which present the Reissner-Nordström black holes in the
RPS formalism [7].

To obtain the thermodynamic potential of the black holes using the Euclidean
action, we usually encounter the redshift degeneracy in the action. As a solution
to remove this shortcoming, we attempt to consider a suitable counterterm (coming
from the AdS/CFT correspondence) in the Euclidean action. Consequently, we can
solve the modified Euclidean action in order to find the thermodynamic potential
associated with the canonical and grand canonical ensembles. As an example, we refer
to the Gibbs energy potential G = i

β
where i and β are the Euclidean action and the

inverse of Hawking temperature, respectively. Then, we can find other thermodynamic
quantities such as S = − dG

dt , J = − dG
d�

and Q = − dG
dφ

using the obtained the Gibbs
energy potential. This approach is equivalent to the method using the first law of
thermodynamics to find the thermodynamic quantities.

Also, we can rewrite the thermodynamic quantities in terms of the Helmholtz free
energy and its conjugates as S = − dF

dt , J = − dF
d�

and Q = − dF
dφ

since it connects

to the Euclidean action as F = i
β
. Analogous to the Gibbs energy, the result coming
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from the Helmholtz free energy is still compatible with the result coming from the
first law of thermodynamics.

In the RPS formalism, Newton’s constant as a variable is situated out of the
Euclidean action so that it does not add any extra terms to the counterterm. Hence, one
can find different values of counterterm for different black holes in order to remove
the redshift degeneracy [37, 38].

Now, we start with the Helmholtz free energy as

F(T , Q̃e, Q̃m,C) = M(S, Q̃e, Q̃m,C) − T S. (23)

Fromeqs. (21), (22) and (23), the critical point ofHelmholtz energy takes the following
form

Fc = C

3
√
6

√
�2 + 6n2

�2
. (24)

For our purposes, it might be worth introducing the parameters

s = S

Sc
, t = T

Tc
, q2 = Q̃2

e + Q̃2
m

Q̃2
e,c + Q̃2

m,c

, f = F

Fc
. (25)

Using eq. (25) and the definition n̂ = n
�
, one can rewrite eqs. (16) and (23) as

t = −144n̂4(q2 − 3s2) + 24n̂2(−2q2 + 3s2 + 3s) + (−q2 + 3s2 + 6s)

8
√
n̂2 + 6[s + 6n̂2(−1 + 2s)] 32

, (26)

and

f = 144n̂4(−2 + q2 + 2s + s2) + 24n̂2(−3 + 2q2 + 4s + s2) + (q2 + s2 + 6s)

4
√
1 + 6n̂2

√
s + 6n̂2(−1 + 2s)

−
(
1 + 12n̂2

)
st . (27)

Fig. 1 presents the critical behavior of T /Tc − S/Sc in the Taub NUT black hole
for n̂ = 0.05, 0.5, 1, 2 with different q = 0.6, 1, 1.5, separately. From the figure, we
find that for q < 1, there is a critical point in n̂ = 0.05. Also, n̂ ≤ 0.13 is more
suitable for the Taub–NUT-AdS black holes at the critical point in RPS formalism.
Also, in the limit of n̂ → 0, the diagrams recover the results in [7, 9]. We note that
both constant parameters q and n̂ play an essential role in the drawn curves so that
for smaller values, there is a scaled problem for the red curve with no affection on the
results (see the top-left panel of Fig. 1). Moreover, the curve does not show any other
maximum or minimum points. This is also found through the proof of the WGC in
which the values of n̂ must be much smaller than 1. In order to establish an acceptable
expression for the WGC, and as we have shown in eqs. (32) to (35), we are required
to introduce some particular values of the critical points within certain limits.
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3.2 � − C processes

To study the μ − C processes, we obtain the maximum μ and C concerning eq. (19)
for the n̂ � 1. So, we have approximately

Cmax ≈ 3S(π2q2 + S2)

π(8n2π2 + S2 + 12n2S2)
,

μmax ≈ [S2 + 4n̂2(2π2q2 + 3S2)][S2 − 4n̂2(5π2q2 + 3s2)]
6
√
3�S4

√
S2 + n̂2(5π2q2 + 9S2)

π2q2 + S2
.

(28)

Here, we introduce the dimensionless parameters

c = C

Cmax
, m = μ

μmax
. (29)

Then, the re-scaled μ − C connection is obtained as

m = (3c − 1) + 2n2(27c2 − 15c + 8)

2c
3
2 [1 − n2(3c − 8)]

. (30)

In here for simplicity of the discussion we define the equation

� = −1 + 10n̂2 + √
1 + 4n̂2 − 284n̂4

36n̂2
. (31)

In Fig. 2, we show the behavior of μ/μmax − C/Cmax with respect to the constant
parameters of the Taub NUT black hole in n̂ = 0.05, 0.1, 0.24, 0.25. In such a case,
we face with three cases: i) For C = �Cmax , μ becomes zero. ii) For C > �Cmax in
n̂ ≤ 0.24, the free energy becomes zero so that the microscopic degrees of freedom
are repulsive. iii) For C < �Cmax , the degrees of freedom are attractive. Also, in
n̂ = 0, we reproduce the results of the RN-AdS and Kerr-AdS black holes [35, 36].

4 Weak gravity conjecture perspective

WGC as a swampland program has recently been challenged by different frameworks
[39, 39–43].More precisely, the existence of an infinite tower of exactly stable states in
a fixed direction in charge space is prohibited if we encounter a UV complete model of
quantumgravity.Arguments against such an infinite tower include a topic thatmay lead
to a species problem, etc [44]. It is generally consistent with all well-known explicit
evidence of string compactifications and other conjectures of quantum gravity such as
the finiteness principle and the absence of global symmetries [44]. These equivalences
can be considered to fit the conjectures, such as statements about the (in-) stability
of asymptotically large extremal black holes. In quantum gravity, we expect that the
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Fig. 2 The behavior of (μ/μmax −C/Cmax ) with respect to constant parameters of Taub NUT black hole

initial states with super-Planckian masses will appear to distant observers as a series of
black hole solutions in the framework of the low-energy effective field theory [45, 46].
One of the most famous predictions of WGC is associated with a single charge while
here in the Taub–NUT-AdS black holes, we face the electric and magnetic charges.
Hence, we require to redefine the WGC condition as [47]

q2e + q2m
M2 > 1, (32)

where qe, qm and M are electric , magnetic charges and mass of the black hole,
respectively . Considering the critical points, the relations (21) and (22), as well as the

scaling of the relation (12), n̂ = n
�
and M̃c =

√
3
8M�, we obtain

Q̃2
e,c + Q̃2

m,c

M̃2
c

= 1 + 48n̂2 + 144n̂4

(1 + 6n̂2)3
. (33)

Clearly, for n̂ > 1, the WGC condition in eq. (33) is not valid while for n̂ � 1, the
relation (33) is given as

Q̃2
e,c + Q̃2

m,c

M̃2
c

= 1 + 30n̂2 + O(n̂). (34)

As a secondary proof of WGC, we rewrite eq. (33) using eqs. (12) and (14), as follows
(without considering the scale change)

Q2
e,c + Q2

m,c

M2
c

= 3

8

�2

C

(
1 + 48n̂2 + 144n̂4

(1 + 6n̂2)3

)
. (35)
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Now assuming C = 3
8�

2, WGC is proved for the Taub–NUT-AdS black hole with
respect to n̂ � 1.

5 Conclusions

In this paper, we investigated the Taub–NUT-AdS black hole thermodynamics from
a new method with a particular structure that is founded on the thermodynamics of
Visser’s holographic. The AdS radius is considered a constant, called the restricted
phase space thermodynamics (RPST). Instead of the variable (P ,V ), this method
supposed a new variable, viz central charge, and chemical potential, as a unique couple
of conjugate thermodynamic variables. The Euler relation keeps in this formalism
automatically. Also, themass homogeneity in the first order and the intensive variables
homogeneity in the zeroth-order are constructed explicitly and shown earlier in this
formalism Therefore, we tried to investigate the thermodynamics of the Taub–NUT-
AdS black hole in the RPS formalism and obtained its features such as supercritical
phase equilibrium in the T − S , Q−� processes and Hawking-Page phase transition
in the μ−C processes. Then we benefited from this information and proved WGC of
multi-charge for Taub–NUT-AdS black hole in this mentioned phase space at critical
points. In this study, we considered two different states, the first without central charge,
inwhich case theWGCcondition holds for n̂ � 1.And the second state,we considered
the central chargewith assumingC = 3

8�
2, theWGC is proved for the Taub–NUT-AdS

black hole with respect to n̂ � 1.
As an outlook for our future works, we can search for a possible universal value

of the central charge due to testing the method for other black holes. Moreover, one
can explore for stronger proof to create a relationship between the WGC and the
AdS/CFT correspondence when some modifications of the conjectures are assumed.
In forthcoming papers, these aspects will be deeply investigated.

Data availibility The authors confirm that the data supporting the findings of this study are available within
the article and its supplementary material. Raw data that support the findings of this study are available
form the corresponding author, upon reasonable request.
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