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Abstract
The goal of this survey is to give a self-contained introduction to synthetic timelike
Ricci curvature bounds for (possibly non-smooth) Lorentzian spaces via optimal trans-
port and entropy tools, including a synthetic version of Hawking’s singularity theorem
and a synthetic characterisation of Einstein’s vacuum equations. We will also discuss
some motivations arising from the smooth world and some possible directions for
future research.
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Introduction

Optimal transport turned out to be a very effective tool to study spaces with extremely
low regularity in Riemannian signature. More precisely, one can use optimal transport
to define and study metric measure spaces with Ricci ≥ K ∈ R and dimension
≤ N ∈ [1,∞) in a synthetic sense; this is indeed the celebrated theory of CD(K , N )

spaces pioneered by Sturm [88, 89] and Lott-Villani [66] independently.
Motivated by the success of optimal transport techniques in the Riemannian sig-

nature, during the last few years the development of optimal transport tools in the
Lorentzian setting has become an increasingly popular topic of research, let us give a
brief account.

The optimal transport problem for relativistic costs was proposed by Brenier [17],
further investigated in [13, 14], and pushed to a geometric Lorentzian setting in [31, 55,
91]. An intriguing physical motivation for studying optimal transport in a Lorentzian
setting is the early universe reconstruction problem. Studied in [18] and in the Nature
paper [36] with methods of optimal transportation, such a problem amounts to recon-
structing the trajectories of masses from the big bang to their present day positions
in Robertson-Walker spacetimes. A mathematical formulation for general globally
hyperbolic spacetimes would read as follows: given two probability measures, one
concentrated on a Cauchy hypersurface, the other on the past cone of a point, what can
be said about the trajectories of the minimizers in a dynamical optimal coupling of the
two measure? In [36] it is explained why the problem can be attacked with methods
of optimal transportation.

Due to the central role played by the Ricci curvature in general relativity (e.g.
Einstein’s equations can be formulated just in terms of the Ricci tensor, the energy
momentum tensor, and the cosmological constant) and due to the success of optimal
transport tools to study Ricci curvature bounds in the Riemannian signature, there
has been a growing interest in the interplay of optimal transport and Ricci curvature
bounds in a Lorentzian setting. Indeed, for a smooth Lorentzian manifold (see Sect.
1.5), McCann [72] characterised non-negative timelike Ricci curvature lower bounds
in terms of dispacement convexity, and the second author joint with Suhr [76] charac-
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terised any lower and upper bound on the timelike Ricci curvature (and thus the full
Einstein equations) in terms of optimal transport and entropy.

While the non-smooth (or “synthetic”) counterpart of a Riemannian manifold is a
metric (measure) space, and thus the latter gives a natural framework for Lott-Sturm-
Villani theory, the interplay of causal and metric structures in a Lorentzian manifold is
more subtle and forces tomodify the setting in order to develop a synthetic theory. Such
a program was pioneered in seminal work by Kronheimer-Penrose [58] and has been
recently formalised by Kunzinger-Sämann [59] into the concept of Lorentzian (pre-
)length spaces (see Sect. 1.1). Lorentzian (pre)-length spaces give a natural framework
to develop a theory of optimal transport and of synthetic curvature bounds.

Synthetic timelike sectional curvature bounds for Lorentzian (pre)-length spaces
have been investigated in [59] (see also the more recent [10]). Synthetic timelike
Ricci curvature lower bounds in Lorentzian (pre)-lenght spaces, which constitute the
subject of the present survey, have been developed by the authors in [25] (inspired by
the aforementioned smooth characterisations obtained in [72, 76]). The aim of [25]
has been to initiate a theory of Lorentzian CD spaces, denoted by TCD for “timelike
CD” (see Sect. 2), and to obtain some first geometric and functional insights; for
instance the following inequalities are among the consequences of the TCD condition:
volume comparison, diameter bound and Poincaré inequality.Moreover, a far reaching
synthetic version of the Hawking’s singularity theorem holds (in a sharp form, and in
a formulation which includes Lorentzian metrics of very low regularity: C0,1 or, more
generally, C0 plus causally plain). We refer to Sect. 3 for an overview of (some of)
the applications.

In Sect. 4 we survey synthetic timelike Ricci upper bounds and a synthetic for-
mulation of Einstein’s vacuum equations for Lorentzian (pre)-length spaces, obtained
in [76, App. B] after [25, 90]. We will end the review by proposing some possible
directions for future research, see Sect. 5.

Let us conclude the introduction by stressing that, apart from the specific synthetic
framework and the aforementioned results, we expect optimal transport tools to be
useful in a wide range of applications. Indeed, typically, classical arguments make use
of Jacobi fields computations (e.g. Raychaudhuri equation) heavily relying on the C2-
regularity of the metric (with some effort, one can lower to C1,1 by approximation).
The main advantage of the optimal transport tools surveyed here (see [25] for more
results and details) is that they often allow to carry over arguments in a setting of very
low regularity (including C0,1 or, more generally, C0 and causally plain) where the
classical terms are even not well defined.

Motivations for studying Lorentzian metrics of low regularity (or lowering the
regularity even to a Lorentzian synthetic framework) come both from the PDE point
of view in general relativity (i.e. the Cauchy initial value problem for the Einstein
equations) and from physically relevant models.

From the PDE point of view, the standard local existence results for the vacuum
Einstein equations assume the metric to be of Sobolev regularity Hs

loc, with s > 5
2 (see

for instance [82]). The Sobolev regularity of the metric has been lowered even further
(e.g. [57]). Related to the initial value problem for the Einstein equations, one of the
main open problems in the field is the so called (weak/strong) censorship conjecture
proposed originally by Penrose and later refined in [27] (see also [29] for a more
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updated overview). The strong form of the conjecture asserts (roughly) that the maxi-
mal globally hyperbolic development of generic initial data for the Einstein equations
is inextendible as a suitably regular Lorentzian manifold. Formulating a precise state-
ment of the conjecture is itself non-trivial since one needs to give a precise meaning to
“generic initial data” and “suitably regular Lorentzian manifold”. Understanding the
latter is where Lorentzian metrics of low regularity and related inextendibility results
play a pivotal role. The strongest form of the conjecture would prove inextendibility
for a C0 metric. As pointed out by Chrusciel-Grant [28] (see also [65] for a survey),
causality theory for C0 metrics departs significantly from classical theory (e.g. the
lightlike curves emanating from a point may span a set with non-empty interior, a
phenomenon called “bubbling”). Nevertheless, Sbierski [86] gave a clever proof of
C0-inextendibility of Schwarzschild, Minguzzi-Suhr [75] showed C0-inextendibility
for timelike geodesically complete spacetimes, and Grant-Kunzinger-Sämann [42]
pushed the inextendibility to Lorentzian length spaces.

As already envisaged in seminal work by Lichnerowitz in the 50’ies [64], from
the point of view of physically relevant models, several types of matter in a space-
time may give a discontinuous energy-momentum tensor and thus, via the Einstein
equations, lead to a Lorentzian metric of regularity lower thanC2. Examples of such a
phenomenon are spacetimes that model the inside and outside of a star, matched space-
times [69], self-gravitating compressible fluids [21] or shock waves. Some physically
relevant models require even lower regularity, for instance: spacetimes with conical
singularities [94], cosmic strings [93] and (impulsive) gravitational waves (see for
instance the pioneering work of Penrose [81], and the more recent [45, Chapt. 20]),
or models for cyclic spacetimes [63].

Finally, a long term motivation for studying non-regular Lorentzian spaces is the
desire of understanding the ultimate nature of spacetime. The rough picture is that
at the quantum level (and thus in extreme physical conditions such as gravitational
collapse or the origin of the universe), the spacetimemay be very singular and possibly
not approximable by smooth structures (see the end of Sect. 1.1).

In case of a metric of low regularity, the approach to curvature used so far is
distributional, exploiting the smoothness of the underline spacetime. This allows [38]
(see also [87]) to define distributional curvature tensors for W 1,2

loc -Lorentzian metrics
satisfying a suitable non-degeneracy condition (fulfilled for instance when the metric
is C1, see [41]). One of the goals of the approach surveyed here is to address the
question of (timelike Ricci) curvature when not only the the metric tensor, but the
space itself is singular.

1 Optimal transport in Lorentzian spaces

1.1 Classical setting and Lorentzian length spaces

We start by introducing some basic terminology.
Given aLorentzianmanifold (Mn, g),we alsofix an auxiliary completeRiemannian

metrich onM andwedenote bydh the associated distance.We say that v ∈ TxM\{0} is
timelike if g(v, v) < 0. (M, g) is time-oriented if it admits a continuous timelike vector
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field Y . Such a Y induces a partition on the set of timelike vectors: the equivalence
class of future pointing vectors {v ∈ TxM | g(v,Y ) < 0} and the class of past pointing
vectors {v ∈ TxM | g(v,Y ) > 0}.

The closure of the set of future pointing timelike vectors is called future causal cone
and denoted by C ⊂ T M . Let I = [0, 1] denote the unit interval. A locally Lipshitz
curve γ : I → M is causal if γ̇ ∈ C for a.e. t ; timelike if γ̇ ∈ Int(C) for a.e. t .
These definitions induce two causal relations for x, y ∈ M :

• we say that x ≤ y if ∃ γ causal curve with γ0 = x and γ1 = y;
• we say that x 	 y if ∃ γ timelike curve with γ0 = x and γ1 = y.

The length of a causal curve γ : I → M is defined as

Lg(γ ) :=
∫
I

√|g(γ̇ , γ̇ )| dt .

The time separation function τ : M × M → [0,∞] is defined as

τ(x, y) :=
{
sup {Lg(γ ) : γ causal, γ0 = x, γ1 = y}, if x ≤ y,

0, otherwise.
(1.1)

The following reverse triangle inequality holds true for τ :

τ(x, y)+ τ(y, z) ≤ τ(x, z), if x ≤ y ≤ z. (1.2)

If g is C0,1-regular (C0 is not enough, but C0 and causally plain suffices [59] after
[28]): τ is lower-semicontinuous and τ(x, y) > 0 if and only if x 	 y.

The idea to formulate a synthetic theory for Lorentzian spaces is to turn the previous
properties into definitions. Such a point of view has roots in the seminal work of
Kronheimer–Penrose [58] and has been formalised in recent work by Kunzinger–
Sämann [59].

Definition 1.1 (Causal space (X ,	,≤))A causal space (X ,	,≤) is a set X endowed
with a preorder ≤ and a transitive relation	 contained in ≤.

One says that x and y are timelike (resp. causally) related if x 	 y (resp. x ≤ y).
Let A ⊂ X be an arbitrary subset of X . We define the chronological (resp. causal)
future of A the set

I+(A) := {y ∈ X | ∃x ∈ A, x 	 y}, J+(A) := {y ∈ X | ∃x ∈ A, x ≤ y}

respectively. Analogously, one can define the chronological (resp. causal) past of A.
In order to keep the notation short, it is also useful to set

X2≤ := {(x, y) ∈ X2 | x ≤ y}, X2	 := {(x, y) ∈ X2 | x 	 y}.

Additionally requiring the existence of a time separation function produces the
following notion that has to be understood like the Lorentzian analog of metric spaces.
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Definition 1.2 (Lorentzian pre-length space (X ,d,	,≤, τ )) A Lorentzian pre-length
space (X ,d,	,≤, τ ) is a casual space (X ,	,≤) additionally equippedwith a proper
metric d (i.e. closed and bounded subsets are compact) and a lower semicontinuous
function τ : X × X → [0,∞], called time-separation function, satisfying

τ(x, y)+ τ(y, z) ≤ τ(x, z) ∀x ≤ y ≤ z reverse triangle inequality

τ(x, y) = 0, if x � y, τ (x, y) > 0 ⇔ x 	 y.
(1.3)

Notice that X is endowed with the metric topology induced by d and all the topo-
logical concepts on X (like l.s.c. of τ ) are formulated in terms of this topology. Note
that the lower semicontinuity of τ implies that I±(x) is open, for any x ∈ X .

Analogously to the causal relations, γ : I → X is said timelike (resp. causal) if it
is locally Lipschitz (w.r.t. d) and γt1 	 γt2 (resp. γt1 ≤ γt2 ) for all t1 < t2. The length
induced by τ for a causal curve γ is then defined as:

Lτ (γ ) := inf
∑
i

τ(γti , γti+1),

where the inf is taken over all finite partitions 0 = t0 < t1 < . . . < tm = 1, m ∈ N,
of I = [0, 1].
A causal curve γ : [a, b] → X is a geodesic if Lτ (γ ) = τ(γa, γb).
We denote the set of causal (resp. timelike) geodesics as:

Geo(X) := {γ : [0, 1] → X : τ(γs, γt ) = (t − s)τ (γ0, γ1)∀s < t}, (1.4)

TGeo(X) := {γ ∈ Geo(X) : τ(γ0, γ1) > 0}. (1.5)

Note that, by definition, geodesics are always maximising, future oriented, and
parametrised at constant speed on [0, 1].

Moreover a Lorentzian pre-length space (X ,d,	,≤, τ ) is called:

• Causally closed: {x ≤ y} ⊂ X × X is closed
• Non-totally imprisoning if ∀ K ⊂ X compact, ∃C > 0 s.t. Ld(γ ) ≤ C for all γ

causal curve in K .
• Globally hyperbolic if it is non-totally imprisoning and ∀ x, y ∈ X , J+(x)∩ J−(y)
is compact.

• K-Globally hyperbolic: if it is non-totally imprisoning and ∀ K1, K2 ⊂ X com-
pact, J+(K1) ∩ J−(K2) is compact.

• Geodesic: if ∀ x, y ∈ X with x ≤ y there exists a geodesic γ from x to y.

It was proved in [59, Theorem 3.28] that for a globally hyperbolic Lorentzian
geodesic (actually length would suffice) space (X ,d,	,≤, τ ), the time-separation
function τ is finite and continuous. Moreover, any globally hyperbolic Lorentzian
length space (for the definition of Lorenzian length space see [59, Definition 3.22],
we skip it for brevity since we will not use it) is geodesic [59, Theorem 3.30].
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Examples entering the class of Lorentzian synthetic spaces

Spacetimes with a continuous Lorentzian metric. Let M be a smooth manifold
endowed with a continuous Lorentzian metric g. Assume that (M, g) is time-oriented.
Observe that, for C0-metrics, the natural class of differentiability of the underlying
manifolds is C1; now, C1 manifolds always admit a C∞ subatlas, and one can pick
such a sub-atlas whenever convenient. We endow such a spacetime (M, g) with the
time separation function τ defined in (1.1).

For a spacetime with a Lorentzian C0-metric:

• Global hyperbolicity implies causal closedness and K-global hyperbolicity [84,
Prop. 3.3 and Cor. 3.4].

• Recall that a Cauchy hypersurface is a subset which intersects exactly once every
inextendible causal curve. It was proved in [84] that everyCauchy hypersurface is a
closed acasual topological hypersurface and that global hyperbolicity is equivalent
to the existence of a Cauchy hypersurface.

• If g is a causally plain (or, more strongly, locally Lipschitz) Lorentzian C0-metric
on M then the associated synthetic structure is a Lorentzian pre-length space, see
[59, Prop. 5.8]. More strongly, if g is a globally hyperbolic and causally plain
Lorentzian C0-metric on M then the associated synthetic structure is a causally
closed, K-globally hyperbolic Lorentzian geodesic space (see [59, Thm. 3.30 and
Thm. 5.12]).

Summarising, if M is a smooth manifold endowed with a C0-Lorentzian metric g
making (M, g) time-oriented then (M,	,≤) is a causal space but it is not necessarily
a Lorentzian pre-length space. If g is “causally plain” [28] (for instance g ∈ C0,1),
then (M,dh,	,≤, τ ) is a Lorentzian pre-length space. If in addition g is globally
hyperbolic, then (M,dh,	,≤, τ ) is a causally closed, K-globally hyperbolic and
geodesic Lorentzian space.

Thus, the framework of causally closed, K-globally hyperbolic and geodesic
Lorentzian spaces is rather natural and will provide the setting of our work.
Closed cone structures. Closed cone structures can be seen as the synthetic-Lorentzian
analogue of Finsler manifolds. They provide a rich source of examples of Lorentzian
pre-length and length spaces (see [59, Sec. 5.2] for more details). We refer to Min-
guzzi’s comprehensive paper [74] for a thorough analysis of causality theory in the
framework of closed cone structures, including embedding and singularity theorems.
Some examples towards quantum gravity. The general setting of Lorentzian pre-length
spaces allows to consider more general structures than Lorentz(-Finsler) metrics on
smooth manifolds. A remarkable motivation for such a general framework is given
by certain approaches to quantum gravity. For instance let us mention [70] where
it is shown that, in a purely order theoretic manner, one can reconstruct a globally
hyperbolic spacetime and the causality relation from a countable dense set of events.
Twoapproaches to quantumgravity, particularly close in spirit toLorentzian pre-length
spaces, are the theory of causal Fermion systems [34, 35] and the theory of causal sets
[16]. The basic idea in both the approaches is that the structure of spacetime needs
to be relaxed on a microscopic scale to include quantum effects. This leads to non-
smoothness of the underlying geometry, and the classical structure of a Lorentzian
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spacetime emerges only in the macroscopic regime. For the connection to the theory
of Lorentzian (pre-)length spaces, the reader is referred to [59, Sec. 5.3] and [34, Sec.
5.1].

1.2 Optimal transport in Lorentzian spaces

The space of Borel probability measures (resp. with compact support) over a metric
space (X ,d) is denoted by P(X) (resp. Pc(X)). For μ, ν ∈ P(X), we denote by
μ⊗ ν ∈ P(X2) the unique probability measure such that

μ⊗ ν(A × B) := μ(A) · ν(B), for all A, B ⊂ X Borel subsets. (1.6)

Note that (1.6) uniquely defines a probability measure on X2, as the σ -algebra of Borel
sets of X2 is generated by products of Borel sets of X .

Let Pi : X × X → X , i = 1, 2, denote the projection maps on the factors. For
a Borel map f : X → Y , the associated push-forward map f� : P(X) → P(Y ) is
defined by

f�μ(B) := μ( f −1(B)), for all μ ∈ P(X) and B ⊂ Y Borel subset.

Notice that (P1)�(μ⊗ ν) = μ and (P2)�(μ⊗ ν) = ν.

Definition 1.3 (Transport plans) If (X ,d,	,≤, τ ) is a Lorentzian pre-length space
and μ, ν ∈ P(X), we can distinguish different families of transport plans:

– Classic: �(μ, ν) := {π ∈ P(X2) | (P1)�π = μ, (P2)�π = ν}.
– Causal: �≤(μ, ν) := {π ∈ �(μ, ν) | π(X2≤) = 1},
– Timelike: �	(μ, ν) := {π ∈ �(μ, ν) | π(X2	) = 1}.
Some intuition behind the notion of transport plan. Since the survey is meant

for an audience possibly not specialized in optimal transport, let us discuss some basic
heuristics.

The rough idea of a classical transport plan π ∈ �(μ, ν) is that the “mass μ(dx) at
x” is possibly split and transported following the lawπ(dxdy). Note that if f : X → X
is a Borel map, then π := (Id, f )�μ ∈ �(μ, f�μ) is a classical transport plan from
μ to f�μ. However this is a very special case of a transport plan, namely a transport
plan induced by a map (called transport map). A (trivial) example of a transport plan
not induced by a map is π := μ⊗ ν obtained by taking the product of μ and ν as in
(1.6). It is also instructive to consider the case ofμ = δx0 , ν = 1

2

(
δx1 + δx2

)
, where δx

denotes the Dirac mass at x ∈ X : in this case it is not possible to find a trasport map,
and a transport plan is given by the product μ ⊗ ν, which corresponds to “splitting”
the Dirac mass at x0 in half and transporting each half into x1 and x2 respectively.

The rough idea of a causal (resp. timelike) transport plan π ∈ �≤(μ, ν) is that
the “mass μ(dx) at x” is possibly split and transported following the law π(dxdy) so
that “the destination is in the causal (resp. timelike) future of the source”. Clearly, for
μ = δx0 and ν = δx1 , it holds that π = μ ⊗ ν ∈ �≤(μ, ν) (resp. �	(μ, ν)) if and
only if x0 ≤ x1 (resp. x0 	 x1). �
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Definition 1.4 Let (X ,d,	,≤, τ ) be aLorentzian pre-length space and let p ∈ (0, 1].
Given μ, ν ∈ P(X), the p-Lorentz-Wasserstein distance is defined by


p(μ, ν) := sup
π∈�≤(μ,ν)

(∫
X×X

τ(x, y)p π(dxdy)

)1/p

. (1.7)

When �≤(μ, ν) = ∅, we set 
p(μ, ν) := −∞.

Definition 1.4 extends to Lorentzian pre-length spaces the corresponding notion given
in the smooth Lorentzian setting in [31] (see also [72, 76], and [91] for p = 1).
When �≤(μ, ν) = ∅, we adopt the convention of McCann [72] (note that [31] set

p(μ, ν) = 0 in this case).

The function 
p inherits the properties of the time-separation function τ . Indeed,
by using the classical technique of gluing (used for instance to prove the triangle
inequality for the Wasserstein distance), one can prove that 
p verifies the reverse
triangle inequality:


p(μ0, μ1)+ 
p(μ1, μ2) ≤ 
p(μ0, μ2), ∀ μ0, μ1, μ2 ∈ P(X) (1.8)

with the convention on the left hand side that∞−∞ = −∞.
To invoke the classical theory of Optimal Transport it is more convenient to move

the causal constraint on the transport plans to the cost function. In other words, it is
useful to reformulate the variational problem on the right hand side of (1.7) with the
following cost function:


(x, y) :=
{

τ(x, y), if x ≤ y,

−∞, otherwise.
(1.9)

Notice that
∫
X×X

τ(x, y)p π(dxdy) =
∫
X×X


(x, y)p π(dxdy) ∈ R≥0, for all π ∈ �≤(μ, ν).

Moreover, if π ∈ �(μ, ν) satisfies
∫
X×X 
(x, y)p π(dxdy) > −∞ then π ∈

�≤(μ, ν). Thus the maximization problem (1.7) is equivalent (i.e. the sup and the
set of maximisers coincide) to the maximisation problem

sup
π∈�(μ,ν)

(∫
X×X


(x, y)p π(dxdy)

)1/p

. (1.10)

Aπ ∈ �≤(μ, ν)maximising in (1.7) is said to be 
p-optimal. The set of 
p-optimal
plans from μ to ν is denoted by �

p-opt
≤ (μ, ν).

The advantage of the formulation (1.10) is that, when (X ,d,	,≤, τ ) is causally
closed (so that {(x, y) | x ≤ y} ⊂ X × X is a closed subset) and globally hyperbolic
geodesic (so that τ is continuous) then 
 is upper semi-continuous on X×X . Similarly,
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when X is locally causally closed globally hyperbolic geodesic, if μ and ν have
compact support then 
 is upper semi-continuous on suppμ× supp ν.
In both cases, one can apply standard optimal transport techniques (e.g. [95]) to the
Monge-Kantorovich problem (1.10).

In the following, given two functions a, b : X → R, we denote by a⊕b : X×X →
R the function on the product defined by

(a ⊕ b)(x, y) := a(x)+ b(y), for all x, y ∈ X .

Proposition 1.5 (Existence of optimal plans) Let (X ,d,	,≤, τ ) be a causally closed
(resp. locally causally closed) globally hyperbolic Lorentzian geodesic space and let
μ, ν ∈ P(X) (resp. Pc(X)). If �≤(μ, ν) �= ∅ and if there exist measurable functions
a, b : X → R, with a ⊕ b ∈ L1(μ ⊗ ν) such that 
p ≤ a ⊕ b on suppμ × supp ν

(e.g. when μ and ν are compactly supported) then the sup in (1.7) (and henceforth in
(1.10)) is attained and finite.

We fix the following notation

�
p-opt
≤ (μ, ν) := {π ∈ �≤(μ, ν) is p-optimal},

�
p-opt
	 (μ, ν) := {π ∈ �	(μ, ν) is p-optimal}.

1.3 The Kantorovich duality

Existence of optimal plans π ∈ �≤(μ, ν) easily follows by the direct method of the
Calculus of Variations. The rough picture behind a transport plan is that π is moving
the mass μ(dx) “at x" in other “suitable points" of supp ν. A natural question is then:
which are such “suitable points" chosen by x? Or, better said, how can we detect
� ⊂ X2≤ such that π(�) = 1?

These questions can be answered via two key notions in optimal transport theory:
cyclical monotonicity and Kantorovich duality. Optimal transport problems possess
indeed a rich duality theory, first discovered by Kantorovich and valid for a large
family of cost functions. The dual variational problem permits, among other things,
to describe the geometry of the optimizers of the original variational problem (1.10).

A set � ⊂ X2 is cyclically monotone with respect to a cost function c if it is c-
optimal with respect to perturbation by finitely many points (for the precise definition
we refer to [95, Sec. 5]). Kantorovich duality gives a recipe to construct such cyclically
monotone sets. The relevanceof this condition canbeunderstoodbymentioning that, in
the smooth Riemannian setting, cyclical monotonicity of a transport plan is equivalent
to its optimality.

However, when the cost function is not real valued, for instance in our setting with

(x, y) as in (1.9), more attention is required. In particular, Kantorovich duality is
more subtle ([14, 55, 72]) and the equivalence between the optimality of a transport
plan and the cyclical monotonicity of its support breaks down.

To have a full duality theory we have to consider a more regular family of measures.
The following definition relaxes the notion of q-separated introduced byMcCann [72,
Definition 4.1] in the smooth Lorentzian setting.
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Definition 1.6 (Timelike p-dualisable) Let (X ,d,	,≤, τ ) be aLorentzian pre-length
space and let p ∈ (0, 1]. We say that (μ, ν) ∈ P(X)2 is timelike p-dualisable (by
π ∈ �	(μ, ν)) if

1. 
p(μ, ν) ∈ (0,∞);
2. π ∈ �

p-opt
	 (μ, ν);

3. there exist measurable functions a, b : X → R, with a⊕ b ∈ L1(μ⊗ ν) such that

p ≤ a ⊕ b on suppμ× supp ν.

If X is globally hyperbolic, (μ, ν) have compact support and admit a timelike p-
optimal planπ ∈ �

p-opt
	 (μ, ν), then (μ, ν) is timelike p-dualisable byπ . In particular,

the notion of timelike p-dualisability relaxes the condition of q-separation introduced
byMcCann [72]. Moreover timelike p-dualisabily ensures a weak form of duality (for
the proof see [25, Prop. 2.19]):

Proposition 1.7 (Weak Kantorovich duality) Fix p ∈ (0, 1]. Let (X ,d,	,≤, τ ) be a
(resp. locally) causally closed globally hyperbolic Lorentz geodesic space. If (μ, ν) ∈
P(X)2 (resp. Pc(X)2) is timelike p-dualisable, then Kantorovich duality holds:


p(μ, ν)p = inf

{∫
X
u μ+

∫
X

v ν

}
, (1.11)

where the inf is taken over all measurable functions u : suppμ → R ∪ {+∞} and
v : supp ν → R∪{+∞} with u⊕v ≥ 
p on suppμ× supp ν and u⊕v ∈ L1(μ⊗ν).
Furthermore, the value of the right hand side does not change if one restricts the inf
to bounded and continuous functions.

We next discuss the validity of the strong Kantorovich duality, i.e. the existence of
optimal functions (called Kantorovich potentials) achieving the infimum on the right
hand side of (1.11).

Since the dual minimization problem runs over the couples of functions verifying
u ⊕ v ≥ 
p on suppμ × supp ν, one can consider special couples of functions. The
following definition is indeed taylored to this duality principle.

Definition 1.8 (
p-concave functions, 
p-transform and 
p-subdifferential) Fix p ∈
(0, 1] and let U , V ⊂ X . A measurable function ϕ : U → R is 
p-concave relatively
to (U , V ) if there exists a function ψ : V → R such that

ϕ(x) = inf
y∈V ψ(y)− 
p(x, y), for all x ∈ U .

The function

ϕ(
p) : V → R ∪ {−∞}, ϕ(
p)(y) := sup
x∈U

ϕ(x)+ 
p(x, y) (1.12)

is called 
p-transform of ϕ. The 
p-subdifferential ∂
pϕ ⊂ (suppμ× supp ν) ∩ X2≤
is defined by

∂
pϕ := {(x, y) ∈ (suppμ× supp ν) ∩ X2≤ : ϕ(
p)(y)− ϕ(x) = 
p(x, y)}.
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Then the strong form of duality can be defined as follows.

Definition 1.9 (Strong Kantorovich duality) Fix p ∈ (0, 1]. We say that (μ, ν) ∈
P(X)2 satisfies strong 
p-Kantorovich duality if

1. 
p(μ, ν) ∈ (0,∞);
2. there exists ϕ : suppμ → R which is 
p-concave relatively to (suppμ, supp ν)

and satisfying


p(μ, ν)p =
∫
X

ϕ(
p)(y) ν(dy)−
∫
X

ϕ(x) μ(dx).

It is immediate to check that if (μ, ν) ∈ P(X)2 satisfies strong 
p-Kantorovich
duality, then the following holds: a plan π ∈ �≤(μ, ν) is 
p-optimal if and only if

ϕ(
p)(y)− ϕ(x) = 
p(x, y) = τ(x, y)p, forπ -a.e. (x, y),

i.e. if and only if π(∂
pϕ) = 1.
Motivated by this remark, we have devised a set of couples of probability mea-

sures larger than those satisfying the strong Kantorovich duality (but still sufficiently
regular).

Definition 1.10 (Strongly timelike p-dualisable) A pair (μ, ν) ∈ (P(X))2 is said to
be strongly timelike p-dualisable if

1. (μ, ν) is timelike p-dualisable;
2. there exists a measurable 
p-cyclically monotone set� ⊂ X2	∩(suppμ×supp ν)

such that a plan π ∈ �≤(μ, ν) is 
p-optimal if and only if π is concentrated on
�, i.e. π(�) = 1.

The next two propositions (for their proof see [25, Cor. 2.29, Cor. 2.30]) show
that the notion of strongly timelike p-dualisable measures is non-empty: the first one
addresses the “local” behaviour.

Proposition 1.11 Fix p ∈ (0, 1]. Let (X ,d,	,≤, τ ) be a causally closed (resp.
locally causally closed) globally hyperbolic Lorentzian geodesic space and assume
that μ, ν ∈ P(X) (resp. Pc(X)) satisfy:

1. there exist measurable functions a, b : X → R with a⊕ b ∈ L1(μ⊗ ν) such that
τ p ≤ a ⊕ b on suppμ× supp ν;

2. suppμ× supp ν ⊂ X2	.

Then (μ, ν) is strongly timelike p-dualisable.

The second one shows that in the case where ν is a Dirac measure, strongly timelike
p-dualisability is equivalent to timelike p-dualisability.

Proposition 1.12 Let (X ,d,	,≤, τ ) be a Lorentzian pre-length space and let p ∈
(0, 1]. Fix x̄ ∈ X and let ν := δx̄ . Assume that μ ∈ P(X) satisfies:

τ(·, x̄)p ∈ L1(X , μ) and τ(·, x̄) > 0μ-a.e. . (1.13)
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Then (μ, ν) is strongly timelike p-dualisable. In other words, in the case where ν

is a Dirac measure, strongly timelike p-dualisability is equivalent to timelike p-
dualisability.

1.4 Geodesic structure of the Lorentz–Wasserstein space

A relevant object in the study of the geometry of Lorentz-Wasserstein space are
geodesics.

Definition 1.13 Let (X ,d,	,≤, τ ) be a Lorentzian pre-length space.
We say that (μs)s∈[0,1] ⊂ P(X) is an 
p-geodesic if and only if


p(μs, μt ) = (t − s)
p(μ0, μ1), for all s, t ∈ [0, 1] with s ≤ t .

In particular 
p-geodesics are implicitly causal future-directed.

In the next proposition (for the proof see [25, Prop. 2.32]) we collect some useful
properties of 
p-geodesics. Before stating it, we introduce the evaluation map

et : C([0, 1], X) → X , γ �→ et (γ ) := γt , for all t ∈ [0, 1], (1.14)

and the stretching/restriction operator restrs2s1 : C([0, 1], X) → C([0, 1], X)

(restrs2s1γ )t := γ(1−t)s1+ts2 , for all s1, s2 ∈ [0, 1], s1 < s2 and all t ∈ [0, 1].
(1.15)

Proposition 1.14 Let (X ,d,	,≤, τ )beaK-globally hyperbolic, Lorentziangeodesic
space. Let μ0, μ1 ∈ Pc(X) such that there exists π ∈ �

p-opt
≤ (μ0, μ1) with suppπ �

{τ > 0} (in particular, if supp(μ0 ⊗ μ1) � {τ > 0}). Then
1. There always exists an 
p-geodesic from μ0 to μ1.
2. For every 
p-geodesic (μt )t∈[0,1] from μ0 to μ1 there exists a probability measure

η ∈ P(C([0, 1], X) such that (et )�η = μt for every t ∈ [0, 1] and η-a.e. γ is a
maximal causal curve from γ0 ∈ suppμ0 to γ1 ∈ suppμ1. Such an η is called

p-dynamical optimal plan and the set of dynamical optimal plans from μ0 to μ1
is denoted by OptGeo
p

(μ0, μ1).
3. If η ∈ OptGeo
p

(μ0, μ1) then for all s1, s2 ∈ [0, 1] with s1 < s2 it holds:

ηs1,s2 := (restrs2s1)�η ∈ OptGeo
p
((es1)�η, (es2)�η).

Proposition 1.14 proves that the 
p-optimal transport is performed along geodesics of
the underlying space X . This link with the geometry of X has been crucially used to
study Ricci curvature.
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1.5 Timelike Ricci curvature lower bounds: smooth setting

In the sequel, we fix a non-negative Borel measure m on (X ,d) which is finite on
bounded sets. Such an m will play the role of reference volume measure. In case of
a smooth Lorentzian manifold (M, g), a natural choice is given by m = volg (i.e.
the volume measure associated to g) or m = exp( f ) volg , where f ∈ C∞(M) plays
the role of a weight. Once a reference volume measure m is fixed, one can define an
entropy functional.

Definition 1.15 Given a probability measure μ ∈ P(X) we define its relative
Boltzmann-Shannon entropy by

Ent(μ|m) =
∫
M

ρ log(ρ)m, (1.16)

ifμ = ρ m is absolutely continuous with respect tom and (ρ log(ρ))+ ism-integrable.
Otherwise we set Ent(μ|m) = +∞.

A simple application of Jensen’s inequality using the convexity of (0,∞) � t �→
t log t gives

Ent(μ|m) ≥ − logm(suppμ) > −∞, for all μ ∈ Pc(X). (1.17)

We set Dom(Ent(·|m)) := {μ ∈ P(X) : Ent(μ|m) ∈ R} to be the finiteness domain
of the entropy.

Recall that a sequence of probability measures (μn) ⊂ P(X) is narrowly conver-
gent to μ ∈ P(X) as n →∞ if

lim
n→∞

∫
X
f μn =

∫
X
f μ, for all f ∈ C0

b (X),

where C0
b (X) denotes the space of continuous and bounded real functions defined on

X .
An important property of the relative entropy is the lower-semicontinuity under

narrow convergence, (for the proof see for instance [88, Lemma 4.1])

μn → μ∞ narrowly and m
( ⋃
n∈N

suppμn

)
< ∞ �⇒ lim inf

n→∞ Ent(μn |m) ≥ Ent(μ∞|m).

(1.18)

The connection between Ricci curvature lower bounds and convexity properties
of the entropy functional along Wasserstein geodesics (classically called “displace-
ment convexity”) is now well understood in the Riemannian setting. It was proved by
McCann (in his Ph.D. thesis [71]) that displacement convexity holds in R

n . Then
Otto-Villani [78] formally observed that non-negative Ricci implies displacement
convexity for smooth Riemannian manifolds, an observation then rigorously proved
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by Cordero Erausquin-McCann-Schmuckenschläger [26]. The circle was then closed
by von Renesse-Sturm [83], who proved a complete characterization of Ricci lower
bounds for smooth Riemannian manifolds in terms of convexity properties of the
entropy.

In the same spirit as in the Riemannian setting, the convexity properties of the
entropy functional along 
p-geodesics are equivalent to lower bounds on the Ricci
curvature. This was proved first by McCann [72] for non-negative timelike Ricci
lower bounds; in an independent slightly subsequent work,M.-Suhr [76] characterised
general lower and upper timelike Ricci bounds (for the proof of the exact statement
below, see [25, Theorem 3.1]).

Theorem 1.16 (McCann and M.-Suhr) Let (Mn, g) be a smooth globally hyperbolic
spacetime, 0 < p < 1 and denote by volg the associated volume measure.
Then the following assertions are equivalent:

• Ricg(v, v) ≥ −Kg(v, v), for every timelike v ∈ T M.
• ∀ (μ0, μ1) ∈ (Dom(Ent(·|volg)))2 timelike p-dualisable, there exists a (unique)


p-geodesic (μt )t∈[0,1] s.t. [0, 1] � t �→ e(t) := Ent(μt |volg) is semi-convex
(hence locally Lipschitz on (0, 1)) and it satisfies:

e′′(t)− 1

n
e′(t)2 ≥ K

∫
M×M

τ(x, y)2 π(dxdy), (1.19)

in the distributional sense on [0, 1].
• For any couple (μ0, μ1) ∈ (Dom(Ent(·|volg)) ∩ Pc(X))2 which is strongly time-
like p-dualisable there exists a (unique) 
p-geodesic (μt )t∈[0,1] joining them and
satisfying (1.19).

Remark 1.17 (Timelike Ricci lower bounds and energy conditions in General Relativ-
ity)

• Weak energy condition. A lower bound on the timelike Ricci curvature of a
spacetime (Mn, g), i.e. the first item in Theorem 1.16:

There exists K ∈ R such that Ricg ≥ −Kg(v, v) for all timelike vectors v ∈ T M,(1.20)

is quite a natural assumption in General Relativity. Of course, for a C2-metric g,
the lower bound (1.20) is satisfied on compact subsets of the space-time.
Recalling that the Einstein equations postulate proportionality of Ricg and T −
1

n−2 trg(T )g (where T is the so-called energy-momentum tensor), for a general
cosmological constant � ∈ R, the lower bound (1.20) is equivalent to requiring
that

T (v, v) ≥ − 1

n − 2
trg(T )+ 1

8π

(
K − 2�

n − 2

)
, for all v ∈ T M with g(v, v) = −1.

In particular, if infM trg(T ) > −∞ (or, equivalently, infM Rg > −∞ where Rg

is the scalar curvature of g), then the weak energy condition T (v, v) ≥ 0 for all
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timelike v (which is believed to hold for most physically reasonable T , according
to [96, pag. 218]) implies (1.20).

• Hawking-Penrose’s strong energy condition (SEC for short). The SEC asserts
that, calling T the energy-momentum tensor in the Einstein equations, it holds
T (v, v) ≥ 1

2 trg(T ) for every time-like vector v ∈ T M satisfying g(v, v) = −1.
Assuming that the space-time (M, g) satisfies the Einstein equations with zero
cosmological constant, the SEC is equivalent to Ricg(v, v) ≥ 0 for every timelike
vector v ∈ T M . This corresponds to the case K = 0 in Theorem 1.16.
The SEC, proposed by Hawking and Penrose [49, 51, 80], plays a key role in
General Relativity. For instance, in the presence of trapped surfaces, it implies
that the space-time is geodesically incomplete. This fact is interpreted as singular
behaviour possibly connected to the presence of a black hole (for a general dis-
cussion about singularity theorems see for instance the monographs [50, 61, 96]).
Moreover, due to the averaged-focusing effect on geodesics, the SEC is sometimes
interpreted as the geometric counterpart of the fact that gravity is an attractive force.

Remark 1.18 (A heuristic thermodynamic interpretation of Theorem 1.16) An 
p-
geodesic (μt )t∈[0,1] can be interpreted as the evolution 1 of a distribution (in
space-time) of a gas. Theorem 1.16 says that timelike Ricci lower bounds (which
correspond to energy conditions in General Relativity) can be equivalently formulated
in terms of the convexity properties of the Boltzmann-Shannon entropy along such
evolutions (μt )t∈[0,1] ⊂ P(M). Extrapolating a bit more, we might say that the sec-
ond law of thermodynamics (i.e. in a natural thermodynamic process, the sum of the
entropies of the interacting thermodynamic systems decreases, due to our sign con-
vention) concerns the first derivative of the Boltzmann-Shannon entropy; gravitation
(in the form of Ricci curvature) is instead related to the second order derivative of the
Boltzmann-Shannon entropy along a natural thermodynamic process.

Remark 1.19 (Some related physics literature) The existence of strong connections
between thermodynamics and General Relativity is not new in the physics literature;
it has its origins at least in the work Bekenstein [11] and Hawking with collaborators
[9] in the mid-1970s about black hole thermodynamics. These works inspired a new
research field in theoretical physics, called entropic gravity (also known as emergent
gravity), asserting that gravity is an entropic force rather than a fundamental interac-
tion. Let us give a brief account. In 1995 Jacobson [48] derived the Einstein equations
from the proportionality of entropy and horizon area of a black hole, exploiting the
fundamental relation δQ = T δS linking heat Q, temperature T and entropy S. Sub-
sequently, other physicists (let us mention Padmanabhan [79]) have been exploring
links between gravity and entropy. More recently, in 2011 Verlinde [92] proposed
a heuristic argument suggesting that (Newtonian) gravity can be identified with an
entropic force caused by changes in the information associated with the positions of
material bodies. A relativistic generalization of those arguments leads to the Einstein
equations.

1 strictly speaking t is not the proper time, but only a variable parametrising the evolution
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Theorem 1.16 can be seen as an additional strong connection between general
relativity and thermodynamics/information theory. It would be interesting to explore
this relationship further.

Remark 1.20 Let us stress that the framework (1.20) includes any solution of the Ein-
stein equations in vacuum (i.e. with null stress-energy tensor T ) with possibly non-zero
cosmological constant �. Already such a framework is highly interesting as the stan-
dard black holemetrics (e.g. Schwartzshild, Kerr) are solutions of the Einstein vacuum
equations, and also the more recent literature on black holes typically focuses on vac-
uum solutions (see e.g. [27, 29, 30, 57]). A key role in such breakthroughs on black
holes is given by a deep analysis of the system of non-linear hyperbolic partial differ-
ential equations corresponding to the Einstein vacuum equations (in a suitable gauge).
At least in the smooth setting, it was recently proved by the second author and Suhr
[76] that the optimal transport point of view is compatible with the hyperbolic PDEs
one (in the sense that it is possible to characterise solutions of the Einstein equations
in terms of optimal transport). We believe that all of this suggests that the proposed
optimal transport approach has potential for the future.

2 Synthetic theory of timelike Ricci lower bounds

2.1 Definitions of TCDe
p(K,N),wTCDe

p(K,N) and TMCPep(K,N)

Theorem 1.16 proves the equivalence between a condition requiring the smoothness
of the Lorentzian metric g and a condition (the ordinary differential inequality for e)
that can be formulated in any Lorentzian pre-length space. Inspired by the Riemannian
counterpart which led to the flourishing theory of Lott-Sturm-VillaniCD(K , N )metric
measure spaces [66, 88, 89], it is then natural to turn it into a definition.

Definition 2.1 (TCD condition) Fix p ∈ (0, 1), K ∈ R, N ∈ (0,∞). A measured
pre-length space (X ,d,m,	,≤, τ ) satisfies the TCDe

p(K , N ) (resp. wTCDe
p(K , N ))

if for any couple (μ0, μ1) ∈ Dom(Ent(·|m))2 which is timelike p-dualisable (resp.
(μ0, μ1) ∈ (Dom(Ent(·|m)) ∩ Pc(X))2 which is strongly timelike p-dualisable) by
some π ∈ �

p-opt
	 (μ0, μ1), there exists an 
p-geodesic (μt )t∈[0,1] such that [0, 1] �

t �→ e(t) := Ent(μt |m) is semi-convex (hence locally Lipschitz on (0, 1)) and it
satisfies

e′′(t)− 1

N
e′(t)2 ≥ K

∫
X×X

τ(x, y)2 π(dxdy), (2.1)

in the distributional sense on [0, 1].

The condition (2.1) is a differential, and therefore infinitesimal, condition. One can
however formulate an equivalent global condition taking inspiration from the entropic
formulation of the curvature-dimension condition CD obtained by Erbar-Kuwada-
Sturm [32]. This is done by noticing that t �→ e(t) is semi-convex and satisfies the
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inequality (2.1) if and only if t �→ uN (t) := exp(−e(t)/N ) is semi-convex and
satisfies

u′′N ≤ −K

N
‖τ‖2L2(π)

uN . (2.2)

Set

sκ(ϑ) :=

⎧⎪⎪⎨
⎪⎪⎩

1√
κ
sin(

√
κϑ), κ > 0

ϑ, κ = 0
1√−κ

sinh(
√−κϑ), κ < 0

, cκ(ϑ) :=
{
cos(

√
κϑ), κ ≥ 0

cosh(
√−κϑ) κ < 0

,

(2.3)

and

σ (t)
κ (ϑ) :=

⎧⎪⎨
⎪⎩

sκ (tϑ)
sκ (ϑ)

, κϑ2 �= 0 and κϑ2 < π2

t, κϑ2 = 0

+∞ κϑ2 ≥ π2

.

Note that the function κ �→ σ
(t)
κ (ϑ) is non-decreasing for every fixed ϑ, t . With the

above notation, the differential inequality (2.2) is equivalent to the integrated version
(cf. [32, Lemma 2.2]):

uN (t) ≥ σ
(1−t)
K/N

(‖τ‖L2(π)

)
uN (0)+ σ

(t)
K/N

(‖τ‖L2(π)

)
uN (1). (2.4)

We thus proved the following proposition.

Proposition 2.2 Fix p ∈ (0, 1), K ∈ R and N ∈ (0,∞). The measured Lorentzian
pre-length space (X ,d,m,	,≤, τ ) satisfies TCDe

p(K , N ) (resp. wTCDe
p(K , N ))

if and only if for any couple (μ0, μ1) ∈ (
Dom(Ent(·|m))

)2
which is timelike p-

dualisable (resp. (μ0, μ1) ∈ [Dom(Ent(·|m)) ∩ Pc(X)]2 which is strongly timelike
p-dualisable) by some π ∈ �

p-opt
	 (μ0, μ1), there exists an 
p-geodesic (μt )t∈[0,1]

such that the function [0, 1] � t �→ uN (t) := UN (μt |m) satisfies (2.4).

By considering (K , N )-convexity properties only of those 
p-geodesics (μt )t∈[0,1]
whereμ1 is a Diracmeasure one obtains the following weaker condition [25] (inspired
by the Riemannian counterparts by Sturm [89] and Ohta [77]).

Definition 2.3 Fix p ∈ (0, 1), K ∈ R, N ∈ (0,∞). Themeasured globally hyperbolic
Lorentz geodesic space (X ,d,m,	,≤, τ ) satisfies TMCPe(K , N ) if and only if for
any μ0 ∈ Pc(X) ∩ Dom(Ent(·|m)) and for any x1 ∈ X such that x 	 x1 for μ0-a.e.
x ∈ X , there exists an 
p-geodesic (μt )t∈[0,1] from μ0 to μ1 = δx1 such that

UN (μt |m) ≥ σ
(1−t)
K/N

(√∫
X

τ(x, x1)2 μ0(dx)

)
UN (μ0|m), for all t ∈ [0, 1).

(2.5)
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Remark 2.4 The validity of the TMCPe(K , N ) condition is independent of the choice
of p ∈ (0, 1) in Definition 2.3. Indeed for any p, q ∈ (0, 1), a curve (μt )t∈[0,1] with
μ1 = δx̄ is an 
p-geodesic if and only if it is an 
q -geodesic. Let us briefly recall the
argument. By Proposition 1.14, given an 
p-geodesic (μt )t∈[0,1] there exists a measure
η ∈ P(TGeo(X)) such that μt = (et )�η. Thus, for any q ∈ (0, 1), it holds


q(μt , μ1)
q =

∫
X×X

τ q(γt , x̄) η(dγ ) = (1− t)q
∫
X×X

τ q(γ0, x̄) η(dγ )

= (1− t)q
∫
X×X

τ q(x, x̄) μ0(dx) = (1− t)q
q(μ0, μ1)
q ,

where in the second identity of the first line we used that η-a.e. γ is a timelike geodesic
from γ0 to x̄ , and in the last identity we used that μ0 ⊗ δx̄ is the unique (and thus
optimal) plan from μ0 to δx̄ .

Also the TMCP condition is able to characterize the lower bounds on the time-like
Ricci curvature. In particular (see [25, Cor. A.2] if (Mn, g) is a globally hyperbolic
smooth spacetime of dimension n ≥ 2 without boundary then:

1. If Ricg(v, v) ≥ −Kg(v, v) for every timelike vector v ∈ T M , then the associated
Lorentzian geodesic space satisfies TMCPe(K ′, N ′) for every K ′ ≤ K and N ′ ≥
N .

2. If the Lorentzian geodesic space associated to (Mn, g) satisfies TMCPep(K , N ),
then n ≤ N .

Hence the notion of TMCP is compatible with the smooth setting. Finally, as
expected, thewTCDe

p(K , N ) condition implies the TMCPe(K , N ) (see [25, Prop. 3.11]
for the proof).

Proposition 2.5 Fix p ∈ (0, 1), K ∈ R, N ∈ (0,∞). The wTCDe
p(K , N ) condition

implies the TMCPe(K , N ) condition for locally causally closed, d-compatible, K-
globally hyperbolic Lorentzian geodesic spaces.

A number of geometric consequences can be deduced for measured pre-length
spaces verifying the wTCD condition (some of them valid also under the weaker
TMCP). Referring to [25] for the complete list, here we only mention the timelike
Brunn-Minkowski inequality, the timelikeBishop-Gromov inequality, and the timelike
Bonnet-Myers.

2.2 Stability of synthetic Ricci curvature lower bounds

One of the main motivations for the huge impact of the Lott-Sturm-Villani theory
of synthetic curvature bounds lies in the the stability property of the CD condition:
if a sequence of metric measure spaces (Xn,dn,mn) verifies CD(K , N ) and it is
converging in the measured-Gromov-Hausdorff sense to a limit metric measure space
(X ,d,m), then (X ,d,m) satisfies the CD(K , N ) condition as well.

We have therefore faced the challenging problem of developing a stability property
for the TCD condition. While there is a well established theory of convergence for
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Riemannian manifolds (and more generally for metric measure spaces), the situation
for Lorentzianmanifolds (and evenmore for Lorentzian length spaces) is more open to
investigation. Without a well established notion of convergence for Lorentzian length
spaces already present in the literature, we have devised the following one. Before
stating it, recall that a topological embedding is a map f : X → Y between two
topological spaces X and Y such that f is continuous, injective and with continuous
inverse between X and f (X). We also say that a space X is pointed, if a reference
point � ∈ X is specified.

Definition 2.6 A sequence of pointed measured Lorentzian geodesic spaces {(X j ,d j ,

m j , � j ,	 j ,≤ j , τ j )} j∈N converges to (X∞,d∞,m∞, �∞,	∞,≤∞, τ∞) if and only
if:

1. There exists a locally causally closed,K-globally hyperbolic Lorentzian geodesic
space
(X̄ , d̄,	, ≤̄, τ̄ ) such that each j ∈ N∪{∞}, (X j ,d j ,m j ,	 j ,≤ j , τ j ) is isomor-
phically embedded in it, i.e. there exist topological embedding maps ι j : X j → X̄
such that

• x1j ≤ j x2j if and only if ι j (x1j )≤̄ι j (x2j ), for every j ∈ N ∪ {∞}, for every
x1j , x

2
j ∈ X j ;

• τ j (x1j , x
2
j ) = τ̄ (ι j (x1j ), ι j (x

2
j )) for every x

1
j , x

2
j ∈ X j , for every j ∈ N∪ {∞};

2. The measures (ι j )�m j converge to (ι∞)�m∞ weakly in duality with Cc(X̄) in X̄ ,
i.e.

∫
ϕ (ι j )�m j →

∫
ϕ (ι∞)�m∞ for all ϕ ∈ Cc(X̄).

3. Convergence of the reference points: ι j (� j ) → ι∞(�∞) in X̄ .

In Definition 2.6 we use topological embeddings to identify spaces with their image
inside a larger space. This procedure to compare different spaces is rather standard in
the framework of metric measure spaces and it provides an effective way to define and
study the pointed measured Gromov-Haudorff convergence (in the latter, the assump-
tion is actually that each embedding is isometric, which of course is much stronger
than merely a topological embedding; for an overview of equivalent formulations of
convergence for metric measure spaces see for instance [39, Sec. 3]). An important
assumption is that the causal structures are preserved under the image of the embed-
dings.

Even though we haven’t specifically listed any topological assumption on the
sequence of spaces X j , they actually inherit them from X via the topological embed-
dings ι j . Themap ι j preserves both the causal relations and τ j , hence (X j ,d j ,m j ,	 j ,

≤ j , τ j ) are locally causally closed andK-globally hyperbolic Lorentzian geodesic (by
assumption) spaces.

Theorem 2.6 (Weak stability of TCD) Let {(X j ,d j ,m j , � j ,	 j ,≤ j , τ j )} j∈N be a
sequence of pointed measured Lorentzian geodesic spaces converging to (X∞,d∞,
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m∞, �∞,	∞,≤∞, τ∞) in the sense of Definition 2.6. Assume moreover that there
exist p ∈ (0, 1), K ∈ R, N ∈ (0,∞) such that (X j ,d j ,m j ,	 j ,≤ j , τ j ) satisfies
TCDe

p(K , N ), for each j ∈ N.
Then the limit space (X∞,d∞,m∞,	∞,≤∞, τ∞) satisfies wTCDe

p(K , N ).

Let us comment on the general strategy to obtain a stability result for the TCD
condition; this will highlight the reasons why full stability is not yet at our disposal,
and motivates the presence of the two distinct definitions (weak and strong) of the
timelike curvature-dimension condition (see Definition 2.1). For the detailed proof
see [25, Thm. 3.14].

Somecomments on theproof.Start byfixing twoprobabilitymeasuresμ0,∞, μ1,∞ ∈
Pc(X̄) both a.c. with respect to m∞. The goal is to construct an 
p-geodesic
(μt,∞)t∈[0,1] such that the map [0, 1] � t �→ uN (t) := exp(−Ent(μt,∞|m∞)/N )

satisfies the inequality (2.4).
The classical approach in the metric measure space setting (see for instance [88,

89]) would be to use thatm j → m∞ in W (X̄ ,d̄)
2 (this can be assumed without any loss

of generality) and to take an optimal plan γ j ∈ P(X̄ × X̄) between m j and m∞.
Then, denoting by μi,∞ = ρim∞, for i = 0, 1, one defines two sequences of

probability measures:

μi, j := (P1)�
(
ρiγ j

)
, i = 0, 1. �⇒ μi, j 	 m j ,

also verifying μi, j⇀μi,∞ as j →∞ for i = 0, 1.
The general scheme (that in this setting breaks down) would be to consider an 
p-

geod (μt, j )t∈[0,1] fromμ0, j toμ1, j given by the TCD(K , N ) condition of X j and then
to prove (non-trivial but classical) the upper semi-continuity to the limit on uN , j (t)
and continuity for uN , j (0) and uN , j (1).

In the present setting, the major difficulty is that μ0, j and μ1, j may or may not be
causally related; in particular, one cannot invoke the TCD(K , N ) condition between
μ0, j andμ1, j . This is themain reasonwhywe assume that the spaces in the converging
sequence satisfy the TCD(K , N ) (i.e. the slightly stronger version of the condition),
and we obtain that the limit space satisfies the wTCD(K , N ) (i.e. the slightly weaker
version of the condition).

Alternatively, this issue could be circumvented also by imposing some restrictions
on the family of geodesics along which the concavity of the entropy has to be checked.

�

If eitherμ0 orμ1 is a Diracmeasure, then full stability is granted. This is the content
of the next result (for a detailed proof see [25, Thm 3.12])

Theorem 2.7 (Stability ofTMCP)Let {(X j ,d j ,m j , � j ,	 j ,≤ j , τ j )} j∈N bea sequence
of pointed measured Lorentzian geodesic spaces converging to (X∞,d∞,m∞, �∞,

	∞,≤∞, τ∞) in the sense of Definition 2.6. Assume moreover that there exist
p ∈ (0, 1), K ∈ R, N ∈ (0,∞) such that (X j ,d j ,m j ,	 j ,≤ j , τ j ) satisfies
TMCPe(K , N ), for each j ∈ N.

Then the limit space (X∞,d∞,m∞,	∞,≤∞, τ∞) satisfiesTMCPe(K , N )aswell.
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3 Applications: Hawking’s singularity theorem and geometric
comparison results in a Lorentzian synthetic setting

3.1 Some useful preliminary concepts

In this sectionwewill address a generalization to the synthetic setting, namely for those
Lorentzian geodesic spaces verifying the TMCPe(K , N ) condition, of the Hawking’s
singularity Theorem.

To this aim, we will need an extra regularity assumption on the geodesics, namely
we will require the space to be timelike non-branching (recall the definition (1.5) of
TGeo(X)).

Definition 3.1 (Timelike non-branching) A Lorentzian pre-length space (X ,d,	,≤,

τ ) is said to be forward timelike non-branching if and only if for any γ 1, γ 2 ∈
TGeo(X), it holds:

∃ t̄ ∈ (0, 1) such that ∀t ∈ [0, t̄ ] γ 1
t = γ 2

t �⇒ γ 1
s = γ 2

s , ∀s ∈ [0, 1].

It is said to be backward timelike non-branching if the reversed causal structure is
forward timelike non-branching. In the case it is both forward and backward timelike
non-branching it is said timelike non-branching.

Remark 3.2 By Cauchy–Lipschitz (or Picard–Lindelöf) Theorem, it is clear that if
(M, g) is a space-time whose Christoffel symbols are locally-Lipschitz (e.g. in case
g ∈ C1,1) then the associated synthetic structure is timelike non-branching. It is
expected that for spacetimes with a metric of lower regularity (e.g. g ∈ C1 or g ∈ C0)
timelike branchingmay occur. Similar behaviour could occur in closed cone structures
when the Lorentz-Finsler norm is not strictly convex (see [74, Remark 2.8]). For a
discussion about geodesics in Lorentzian manifolds of low regularity see for instance
[85].

The starting point for the Hawking’s singularity theorem is to consider an achronal
subset of X .

Definition 3.3 (Achronal set) Let (X ,d,	,≤, τ ) be a Lorentzian pre-length space.
A set V ⊂ X is achronal if x �	 y, ∀x, y ∈ V .

Remark 3.4 V is achronal if and only if I+(V ) ∩ I−(V ) = ∅.
We will need to give a meaning to lower bounds on the mean curvature of V and

we therefore need some additional regularity.
The following compactness property, originally introduced by Galloway [37] in the
smooth setting, will play an important role.

Definition 3.5 (Future timelike complete (FTC))) A subset V ⊂ X is future timelike
complete (FTC for short) if for each point x ∈ I+(V ), the intersection J−(x)∩V ⊂ V
has compact closure (w.r.t. d) in V . Analogously for past timelike complete (PTC).
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A key role in the proof of the Hawking’s singularity theorem is played by the signed
time-separation function from an FTC subset V . This can be seen as the Lorentzian
counterpart of the signed distance function from a compact set in a Riemannian man-
ifold. Let us recall its definition.

Definition 3.6 (Signed time-separation τV ) Let V ⊂ X be an achronal subset. The
signed time-separation from V is the function τV : X → [−∞,+∞] defined by

τV (x) :=

⎧⎪⎨
⎪⎩
supy∈V τ(y, x), for x ∈ I+(V )

− supy∈V τ(x, y), for x ∈ I−(V )

0 otherwise.

(3.1)

Note that τV is lower semi-continuous, as supremum of (lower semi-)continuous
functions.
In order for these suprema to be attained, global hyperbolicity and the geodesic prop-
erty of X alone are not sufficient; here the additional FTC and PTC assumptions on
V are very useful.

Proposition 3.7 Let (X ,d,	,≤, τ ) be a globally hyperbolic Lorentzian geodesic
space and let V ⊂ X be an achronal FTC (resp. PTC) subset. Then, for all x ∈ I+(V )

(resp. for all x ∈ I−(V )) there exists yx ∈ V with τV (x) = τ(yx , x) > 0 (resp.
τV (x) = −τ(x, yx ) < 0).

We refer the reader to [25, Lemma 1.8] for the proof.

3.2 Disintegration and synthetic mean curvature bounds

In order to introduce a weak notion of mean curvature, it is useful to define normal
variations to the achronal set V . As a consequence of Proposition 3.7 and of the reverse
triangle inequality (1.3), it holds

τV (y)− τV (x) ≥ τ(x, y), for all x, y ∈ I+(V ), x ≤ y, (3.2)

that is “τV is (reverse) 1-Lipschitz with respect to τ”. Relying on Proposition 3.7 one
can consider, even in the non-smooth setting, integral lines γ of τV saturating the
“reverse 1-Lipschitz inequality” (3.2), i.e. timelike geodesics γ such that

τV (γt )− τV (γs) = τ(γs, γt ), for all s ≤ t .

This will provide, up to a set of measure zero, a (non-smooth) “foliation” of I+(V )

by timelike geodesics that will suffice for our purpose.
Indeed, removing sets of measure zero (here the synthetic curvature bound

TMCPe(K , N ) is crucially used), the following disintegration formula for the reference
measure m holds true (see [25, Sec. 4] for the details):

m�I+(V )=
∫
Q
h(α, ·)L1�Xα q(dα), Xα timelike geodesic for every α ∈ Q
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• Q is a (typically uncountable) set of indices, that can be obtained as aBorel quotient
set from X under the equivalence relation that identifies points lying on the same
integral line of τV saturating the 1-Lipschitz (w.r.t. τ ) inequality;

• q is a probability measure over the set of indices Q (in case the ambient measure
m is finite, this is obtained as push forward of m via the aforementioned quotient
map after normalization; the case when m is not finite can be treated by a cut-off
argument);

• h(α, ·) ∈ L1
loc(Xα,L1�Xα ) for q-a.e. α ∈ Q;

• (Xα, | · |, h(α, ·)L1) verifies MCP(K , N ), i.e.

(
sK/(N−1)(b − τV (x1))

sK/(N−1)(b − τV (x0))

)N−1
≤ h(α, x1)

h(α, x0)
≤

(
sK/(N−1)(τV (x1)− a)

sK/(N−1)(τV (x0)− a)

)N−1
,

(3.3)

for all x0, x1 ∈ Xα , with 0 ≤ a < τV (x0) < τV (x1) < b < π
√

(N − 1)/(K ∨ 0).
Here (a, b) ⊂ R denotes the segment corresponding to the geodesic Xα via the
map τV , i.e. (a, b) = τV (Xα) (note that the interval can also be closed, or half
closed, depending on the geometry of X ), and sK/(N−1)(·) was defined in (2.3).

By a Fubini-Tonelli argument, one can obtain the following coarea-type formula:

m�I+V =
∫ ∞

0
Ht dt, (3.4)

meaning that for each measurable set A ⊂ I+V ∪V withm(A) < ∞, the map [0,∞) �
t �→ Ht (A) is measurable and

m(A) =
∫ ∞

0
Ht (A) dt =

∫ ∞

0
Ht (A ∩ {τV = t}) dt .

Moreover, by construction, Ht is concentrated on the level set {τV = t} and H0 is
concentrated on V . We refer to [25, Sec. 5.1] for the precise definition of the family
of measures Ht and all the other missing details.

We now review how (3.4) is sufficient to give ameaning to synthetic mean curvature
bounds for V at least in the smooth setting. In particular we will analyse the disinte-
gration formula and the measuresHt and their relation to mean curvature bounds.

Let (Mn, g) be a 2 ≤ n-dimensional smooth globally hyperbolic space-time and
V ⊂ M be a smooth compact achronal spacelike hypersurface without boundary.
Then, the signed time-separation function τV from V is smooth on a neighbourhood
U of V and ∇τV is the smooth timelike past-pointing unit normal vector field along
V . More precisely,

∇τV (x) ⊥ TxV , g(∇τV (x),∇τV (x)) = −1, for all x ∈ V .

Denote by volg the volume measure of (Mn, g) and by volV the induced (n − 1)-
dimensional volume measure on V . By compactness of V , there exists δ > 0 such that
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the g-geodesic [0, δ] � t �→ expx (−t∇τV (x)) is a future pointing maximal geodesic,
for every x ∈ V . Define

U := V × [0, δ] ⊂ V × R, � : U → M, �(x, t) := expx (−t∇τV (x)).

For δ > 0 small enough it is a standard fact (tubular neighbourhood theorem) that �
is a diffeomorphism onto its image and that the following integration formula holds
true:

∫
M

ϕ volg =
∫
V

∫ δ

0
ϕ ◦�(x, t) det D�(x,t)|Tx V dt volV (dx), for all ϕ ∈ Cc(�(U)).

(3.5)

In the smooth setting, we can identify the set of indices (which in general is a Borel
quotient set) Q with V , and the quotient measure q with ψ volV defined as follows:

q := ψ volV 	 volV , where ψ(x) :=
(∫ δ

0
det D�(x,t)|Tx V dt

)
, for all x ∈ V .

The integration formula (3.5) can thus be rewritten as

∫
M

ϕ volg =
∫
V

1

ψ(x)

∫ δ

0
ϕ ◦�(x, t) det D�(x,t)|Tx V dt q(dx), for all ϕ ∈ Cc(�(U)).

(3.6)

By the uniqueness of the disintegration formula, (3.6) gives:

hα(t) = 1

ψ(α)
det D�(α,t)|TαV , hα(0) = 1

ψ(α)
, for all α ∈ V and all t ∈ [0, δ].

Moreover, it follows that the measure Ht can be written as

Ht := �(·, t)�
(
det D�(α,t)|TαV volV (dα)

)
, for all t ≥ 0,

in particular, H0 = volV and Ht is the (n − 1)-volume measure on the hypersurface
{�(x, t) : x ∈ V }.

Given any φ ∈ C∞(V ;R≥0), one can consider the region Vt,φ as the domain
trapped between V and the normal graph of φ. The first variation of the volume is
thus

d

dt
volg(Vt,φ) = Hn−1({�(x, tφ(x)) : x ∈ V }),

whereHn−1 is the standard (n−1)-volumeof the hypersurface {�(x, tφ(x)) : x ∈ V };
in particular, d

dt

∣∣
t=0 volg(Vt,φ) = volV (V ) = H0(V ). Taking a further variation, we
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get

∫
V

φ2 g(HV ,∇τV ) volV = d

dt2

∣∣∣∣
t=0

volg(Vt,φ) = lim
t↓0

m(Vt,φ)− t
∫
V φH0

t2/2
.

The right hand side, corresponding to the second variation of volume, is thus the first
variation of the area which gives the mean curvature HV of V . The right hand side
can therefore be chosen as a starting point for defining bounds on the mean curvature.
Still we need to make precise in the non-smooth setting the definition of variation set
Vt,φ . We will use the “initial-point projection map” a : I+V → V assigning to each
x ∈ I+V the point given by Proposition 3.7. It is not hard to check it is m-measurable
(see [25] for details).

Definition 3.8 (Synthetic mean curvature bounds) The Borel achronal FTC subset
V ⊂ X has forward mean curvature bounded below by H0 ∈ R if H0 is a non-
negative Radon measure with (a)�q	 H0 and such that for any normal variation

Vt,φ := {x ∈ TV : 0 ≤ τV (x) ≤ tφ(a(x))},

the following inequality holds true:

lim sup
t↓0

m(Vt,φ)− t
∫
V φH0

t2/2
≥ H0

∫
V

φ2H0,

for any bounded Borel function φ : V → [0,∞) with compact support. Analogously,
V has forward mean curvature bounded above by H0 ∈ R if H0 is a non-negative
Radon measure and for any normal variation Vt,φ as above the following inequality
holds true:

lim inf
t↓0

m(Vt,φ)− t
∫
V φH0

t2/2
≤ H0

∫
V

φ2H0, (3.7)

for any bounded Borel function φ : V → [0,∞) with compact support.

Remark 3.9 (Example of a surface with a conical singularity) The notion of forward
mean curvature bound of Definition 3.8 should be compared with the recent related
definition proposed by Ketterer [56]. In the notation of [56], in order to have finite
bound H0 one needs an interior and exterior ball condition on V (equivalently, in the
smooth setting, to a local L∞ bound on the full second fundamental form), see [56,
Remark 5.9]. The notion proposed above in Definition 3.8 instead works well even if
the set V has corners or conical singularities.
For example, one can check that the set

V = {(x, t) ⊂ R
n,1 : t = α|x |}, for α ∈ (0, 1),

in the (n + 1)-dimensional Minkowski space-time R
n,1 is an achronal topological

hypersurface, smooth outside of the origin (where it is Lipschitz) and having forward
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mean curvature bounded above by H0 = 0 in the sense of Definition 3.8. Notice that
for any compact subset, one could choose the upper bound on the mean curvature to
be strictly negative, but such an upper bound approaches zero as |x | → ∞.

3.3 The results

Let us define DH0,K ,N > 0 as follows:

DH0,K ,N :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

π
2

√
N−1
K if K > 0, N > 1, H0 = 0√

N−1
K cot−1

( −H0√
K (N−1)

)
if K > 0, N > 1, H0 ∈ R \ {0}

− N−1
H0

if K = 0, N > 1, H0 < 0√
− N−1

K coth−1
( −H0√−K (N−1)

)
if K < 0, N > 1, H0 < −√−K (N − 1).

(3.8)

Then the following synthetic version of the Hawking’s singularity theorem holds
true.

Theorem 3.10 (Hawking’s singularity theorem for TMCPep(K , N ) spaces) Let (X ,d,

m,	,≤, τ ) be a timelike non-branching, locally causally closed, K-globally hyper-
bolic, Lorentzian geodesic space satisfying TMCPe(K , N ) for some p ∈ (0, 1), K ∈
R, N ∈ [1,∞) and assume that the causally-reversed structure satisfies the same
conditions.
Let V ⊂ X be a Borel achronal FTC subset having forward mean curvature bounded
above by H0 in the sense of Definition 3.8. If

1. K > 0, N > 1 and H0 ∈ R, or
2. K = 0, N > 1 and H0 < 0, or
3. K < 0, N > 1 and H0 < −√−K (N − 1) < 0,

then for every x ∈ I+(V ) it holds that τV (x) ≤ DH0,K ,N . In particular, for every
timelike geodesic γ ∈ TGeo(X) with γ0 ∈ V , the maximal (on the right) domain
of definition is contained in

[
0, DH0,K ,N

]
. In case N = 1, H0 < 0, it holds that

I+(V ) = ∅.
Sketch of the proof The proof of Theorem 3.10 follows the following argument:

from the assumption on themean curvature of V one can deducewith some effort some
estimates on the logarithmic derivative of the densities of the disintegration formula
log h′. Then, from the disintegration formula and the localization of the curvature
bounds, we obtain that (Xα, | · |, h(α, ·)L1) verifiesMCP(K , N ). Putting together this
two facts yields bounds on the length of Xα and giving the claim. � 

For completeness, we also report the direct application of Theorem 3.10 to the case
of continuous, causally plain metrics. Recall that causally plain metrics are a subclass
(detected by Chrúsciel-Grant [28]) of the space of continuous metrics, introduced to
avoid pathological causal behaviours (such as null curves emanating from a point
covering a set with non-empty interior, a phenomenon called “bubbling” and that may
happen for Hölder continuous metrics).
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Corollary 3.11 (Hawking’s singularity theorem for aC0-Lorentzianmetric)Let (M, g)
be a 2 ≤ n-dimensional timelike non-branching, globally hyperbolic, causally
plain spacetime with a C0-Lorentzian metric satisfying TMCPe(K , N ) for some
p ∈ (0, 1), K ∈ R, N ∈ (1,∞). Assume the causally-reversed structure to satisfy the
same conditions.
Let V ⊂ M be a Borel achronal FTC subset (or, more strongly, let V be a Cauchy
hypersurface) having forward mean curvature bounded above by H0 < 0 (in the
synthetic sense). If

1. K > 0, N > 1 and H0 ∈ R, or
2. K = 0, N > 1 and H0 < 0, or
3. K < 0, N > 1 and H0 < −√−K (N − 1) < 0,

then for every x ∈ I+(V ) it holds τV (x) ≤ DH0,K ,N . In particular, for every
timelike geodesic γ ∈ Geo(M) with γ0 ∈ V , the maximal (on the right) domain
of definition is contained in [0, DH0,K ,N ]. Hence (M, g) is not timelike geodesically
complete.

Remark 3.12 (Literature about Hawking’s singularity theorem) Hawking’s singularity
theorem was established in [50, Thm. 4, p. 272] for smooth space-times (the proof
works for C2 metrics) assuming that V is a compact spacelike slice. The result was
extended to C1,1 metrics in [60] and to C1 metrics in [41], by approximating the
metric of low regularity with smoother metrics. The extension to non-compact future
causally complete V was achieved in [37, Thm. 3.1] (see also [43]) in the smooth
setting, and extended toC1,1 metrics in [40]. Theorem3.10 andCorollary 3.11, already
in the smooth setting, relax the future causal completeness with the weaker future
timelike completeness (in addition to extending the results to a synthetic framework,
including C0 metrics). The Hawking (as well as the Penrose and Hawking-Penrose)
singularity theorem was also extended to (smooth) closed cone structures [74] and
smooth weighted Lorentz-Finsler manifolds [67].

A first synthetic singularity theorem was recently shown in [2] under the stronger
assumptions that the space is a synthetic warped product with lower bounds on the
sectional curvature in the sense of comparison triangles (á la Alexandrov). Few weeks
after we announced our work [25], we learnt of [20], proving a Riemannian version of
Hawking’s singularity theorem in the framework ofmetric measure spaces with Ricci
curvature bounded below in synthetic sense via optimal transport.

Remark 3.13 (Recovering the classical Hawking’s singularity theorem in the smooth
setting)

• Causality condition.A smoothglobally hyperbolic space-time (and its time-reverse
structure) enters in the framework of timelike non-branching, locally causally
closed, K-globally hyperbolic, Lorentzian geodesic spaces (see Section 1.1).
Moreover, if V is a compact achronal spacelike hypersuface in classical terms then
it is achronal and future timelike complete in the sense of the present survey.

• Strong energy condition. The classical strong energy conditions amounts to requir-
ing that the timelike Ricci curvature is non-negative, which in turns implies that
TMCPep(0, N ) is satisfied both by the space and by its time-reverse structure.
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• Positive initial expansion of timelike geodesics emanating from V . This condition
amounts to requiring that the mean curvature of V in the future pointing direction
is positive. Our synthetic notion of positive mean curvature recovers the classical
one in the smooth setting (see discussion before Definition 3.8).

Combining the discussion above with Theorem 3.10, one obtains the classical version
of Hawking’s singularity theorem for smooth globally hyperbolic spacetimes.

With similar techniques and ideas one can also obtain some important geometric
inequalities. We report, only in the case of continuous metrics, the Bishop-Gromov
inequality and the Bonnet-Myers Theorem, the very same statements (as well as other
comparison results) hold more generally for timelike non-branching, locally causally
closed, K-globally hyperbolic, Lorentzian geodesic spaces satisfying TMCPe(K , N )

for some p ∈ (0, 1), K ∈ R, N ∈ [1,∞) and whose causally-reversed structure
satisfies the same conditions (see [25, Sec. 5.3]).

In order to state the results precisely, let us introduce some notation. Given x ≤
y ∈ X we set

I(x, y, t) := {γt : γ ∈ Geo(X), γ0 = x, γ1 = y}.

Fix x0 ∈ X and let

Bτ (x0, r) := {x ∈ I+(x0) ∪ {x0} : τ(x0, x) < r}

be the τ -ball of radius r and center x0. Since typically the volume of a τ -ball is infinite
(e.g. in Minkowski space it is the region below a hyperboloid), it is useful to localise
volume estimates using star-shaped sets. To this aim, we say that E ⊂ I+(x0) ∪ {x0}
is τ -star-shaped with respect to x0 if I(x0, x, t) ⊂ E for every x ∈ E and t ∈ (0, 1].
Denote by

v(E, r) := m(Bτ (x0, r) ∩ E)

the volume of the τ -ball of radius r intersected with the compact subset E ⊂ I+(x0)∪
{x0}, τ -star-shaped with respect to x0.

Corollary 3.14 (Timelike Bishop–Gromov and Bonner-Myers Theorems) Let (M, g)
be a 2 ≤ n-dim. timelike non-branching, globally hyperbolic, causally plain space-
time with C0-metric satisfying TMCPe(K , N ). Assume the causally-reversed structure
satisfes the same conditions. Then the following hold:

• Timelike Bishop–Gromov inequality: for every x0 ∈ M, every compact subset

E ⊂ I+(x0)∪{x0} τ -star-shaped with respect to x0 and every r < R ≤ π

√
N−1
K∨0 ,

it holds

v(E, r)

v(E, R)
≥

∫ r
0 sK/(N−1)(t)N−1dt∫ R
0 sK/(N−1)(t)N−1dt

.
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• Timelike Bonnet-Myers upper bound: if K > 0, then supx,y∈X τ(x, y) ≤
π
√

(N − 1)/K . In particular, for any causal curve γ it holds Lτ (γ ) ≤
π
√

(N − 1)/K and (M, g) is not timelike geodesically complete.

4 A synthetic formulation of Einstein’s vacuum equations

The goal of this section is to review the synthetic formulation of Einstein’s vacuum
equations (i.e. zero stress-energy tensor T ≡ 0 but possibly non-zero cosmological
constant�) proposed in [76, App. B], as a natural outcome of the combination of [76]
and [25].
The basic idea is that the Einstein vacuum equations (say with zero cosmological
constant for convenience of presentation) can be characterised by the condition

Ricg(v, v) = 0 for every timelike vector v ∈ T M . (4.1)

Of course, (4.1) is equivalent to requiring both the timelike Ricci lower bound

Ricg(v, v) ≥ 0 for every timelike vector v ∈ T M (4.2)

and the timelike Ricci upper bound

Ricg(v, v) ≤ 0 for every timelike vector v ∈ T M . (4.3)

The idea is to characterise both bounds separately in a synthetic way, and to ask
the validity of both the corresponding synthetic characterizations in the non-smooth
setting.

The synthetic timelike Ricci lower bound (4.2) was already characterised in a syn-
thetic way via optimal transport in Sect. 2. Below we treat the upper bound (4.3).

4.1 Synthetic time-like Ricci upper bounds

The following definition is inspired by Sturm’s approach to Riemannian/metric Ricci
curvature upper bounds [90] and by the characterization of smooth Lorentzian of
timelike Ricci upper bounds obtained in [76, Thm 4.7, Rem. 4.8]. We denote the
metric ball in (X ,d) with center x and radius r by Bd

r (x).

Definition 4.1 (Synthetic time-like Ricci upper bounds) Fix p ∈ (0, 1), K ∈ R. We
say that a measured Lorentzian pre-length space (X ,d,m,	,≤, τ ) has time-like
Ricci curvature bounded above by K in a synthetic sense if there exists r0 > 0 and a
function ω : [0, r0) → [0,∞) with limr↓0 ω(r) = 0 such that for every r ∈ [0, r0)
the following holds.

• For every x, y ∈ X with d(x, y) = r > 0 and such that Bd
r4

(x)× Bd
r2

(y) ⊂ X2	,

• for every μ0 ∈ Dom(Ent(·|m)) with suppμ0 ⊂ Bd
r4

(x),

there exists an 
p-geodesic (μt )t∈[−1,1] satisfying
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• suppμ1 ⊂ Bd
r2

(y),

• suppμ−1 × suppμ1 ⊂ X2≤,

• ⋃
t∈[−1,1] suppμt ⊂ Bd

10r0
(x),

• Ent(μ−1|m)− 2Ent(μ0|m)+ Ent(μ1|m) ≤ (K + ω(r)) r2.

A key property of the above notion of time-like Ricci bounded above is the stability
under weak convergence of measured Lorentzian pre-length spaces. The stability of
Riemannian/metric Ricci upper bounds via optimal transport was proved by Sturm
[90]. The notion of convergence we use below is a slight reinforcement (we ask that
the immersion maps are isometries with respect to the metric structures instead of
merely topological embedding maps) of the weak convergence used in Sect. 2.2 to
show stability of synthetic timelike Ricci lower bounds; in any case it is a natural
adaptation to the Lorentzian setting of the mGH convergence used for metric measure
spaces (see for instance [39, Sec. 3] for an overview of equivalent formulations of
convergence for metric measure spaces).

Theorem 4.2 (Stability of time-like Ricci curvature upper bounds) Let {(X j ,d j ,m j ,

� j ,	 j ,≤ j , τ j )} j∈N∪{∞} be a sequence of pointed measured Lorentzian geodesic
spaces satisfying the following properties :

1. There exists a locally causally closed, globally hyperbolic Lorentzian geodesic
space (X ,d,	,≤, τ ) such that each (X j ,d j ,m j ,	 j ,≤ j , τ j ), j ∈ N ∪ {∞}, is
isomorphically embedded in it, i.e. there exist inclusion maps ι j : X j ↪→ X such
that for every x1j , x

2
j ∈ X j , for every j ∈ N ∪ {∞}, the following holds:

• d(ι j (x1j ), ι j (x
2
j )) = d j (x1j , x

2
j );

• x1j ≤ j x2j if and only if ι j (x1j ) ≤ ι j (x2j );

• τ(ι j (x1j ), ι j (x
2
j )) = τ j (x1j , x

2
j ).

2. The measures (ι j )�m j converge to (ι∞)�m∞ weakly in duality with Cc(X) in X,
i.e.

∫
ϕ (ι j )�m j →

∫
ϕ (ι∞)�m∞, for all ϕ ∈ Cc(X), (4.4)

where Cc(X) denotes the set of continuous functions with compact support.
3. Convergence of reference points: ι j (� j ) → ι∞(�∞) in X.
4. Volume non-collapsing: there exists a function v : (0,∞) → (0,∞) such that for

every x j ∈ X j it holds m j (B
d j
r (x j )) ≥ v(r) > 0.

5. There exists a function ω : [0,∞) → [0,∞) with limr↓0 ω(r) = 0 and there
exist p ∈ (0, 1), K ∈ R such that (X j ,d j ,m j ,	 j ,≤ j , τ j ) has time-like Ricci
curvature bounded above by K with respect to p ∈ (0, 1), r0 > 0 and with
remainder function ω in the synthetic sense of Definition 4.1.

Then also the limit space (X∞,d∞,m∞,	∞,≤∞, τ∞) has time-like Ricci curvature
bounded above by K with respect to p ∈ (0, 1), r0 + 1 and with remainder function
ω in the synthetic sense of Definition 4.1.
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The proof can be performed in the same spirit as the proof of Theorem 2.6, the
interested reader is referred to [76, Thm B.6].

4.2 Synthetic Einstein’s vacuum equations

Combining the synthetic upper and lower bounds on the time-like Ricci curvature,
i.e. Definitions 2.1 and 4.1, the following synthetic version for the vacuum Einstein
equations (with possibly non-zero cosmological constant) is rather natural.

Definition 4.3 (Synthetic vacuum Einstein’s equations) Fix p ∈ (0, 1), � ∈ R, N ∈
(0,∞]. We say that the measured Lorentzian pre-length space (X ,d,m,	,≤, τ )

satisfies the (resp.weak) synthetic formulation of the vacuumEinstein equationsRic ≡
� with cosmological constant � ∈ R and has synthetic dimension ≤ N if

• (X ,d,m,	,≤, τ ) satisfies the TCDe
p(�, N ) (resp. wTCDe

p(�, N )) condition;
• There exists r0 > 0 and a function ω : [0, r0) → [0,∞) with limr↓0 ω(r) = 0
such that (X ,d,m,	,≤, τ ) has time-like Ricci curvature bounded above by �,
with respect to p ∈ (0, 1), r0 and ω.

Combining the stability of time-like Ricci lower and upper bounds (i.e. Theorems
2.6 and 4.2) gives the stability of the synthetic vacuum Einstein equations under the
aforementioned natural Lorentzian variant of measured Gromov-Hausdorff conver-
gence.

Theorem 4.4 (Weak stability of synthetic vacuum Einstein’s equations) Let {(X j ,d j ,

m j , � j ,	 j ,≤ j , τ j )} j∈N∪{∞} be a sequence of pointed measured Lorentzian geodesic
spaces satisfying the following properties:

1. There exists a locally causally closed, K-globally hyperbolic Lorentzian geodesic
space (X ,d,	,≤, τ ) such that each (X j ,d j ,m j ,	 j ,≤ j , τ j ), j ∈ N ∪ {∞}, is
isomorphically embedded in it (as in (1) of Theorem 4.2).

2. The measures (ι j )�m j converge to (ι∞)�m∞ weakly in duality with Cc(X) in X,
i.e. (4.4) holds.

3. Convergence of reference points: ι j (� j ) → ι∞(�∞) in X.
4. Volume non-collapsing: there exists a function v : (0,∞) → (0,∞) such that for

every x j ∈ X j it holds m j (B
d j
r (x j )) ≥ v(r) > 0.

5. There exist p ∈ (0, 1),� ∈ R, N ∈ (0,∞], r0 > 0 and ω : [0, r0) → [0,∞)

with limr↓0 ω(r) = 0 such that (X j ,d j ,m j ,	 j ,≤ j , τ j ) satisfies the synthetic
formulation of the vacuumEinstein equationsRic ≡ �with cosmological constant
� ∈ R, with synthetic dimension ≤ N with respect to p ∈ (0, 1), r0 and ω as in
Definition 4.3.

Then the limit space (X∞,d∞,m∞,	∞,≤∞, τ∞) satisfies theweak synthetic formu-
lation of the vacuum Einstein equations Ric ≡ � with cosmological constant � ∈ R,
with synthetic dimension≤ N with respect to p ∈ (0, 1), r0+1 and ω as in Definition
4.3.

Remark 4.5 By [76, Thm 4.7, Rem. 4.8] and Theorem 1.16, if (X ,d,m,	,≤, τ )

is a (for simplicity say a compact subset in a) smooth Lorentzian manifold, then
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(X ,d,m,	,≤, τ ) satisfies the Einstein equations Ric ≡ � in the smooth classical
sense if and only if (X ,d,m,	,≤, τ ) satisfies the Einstein equations in the synthetic
sense of Definition 4.3. Therefore, Theorem 4.4 gives that the corresponding limits
of smooth solutions to Einstein’s equation Ric ≡ � satisfy the weak synthetic Ein-
stein’s equations Ric ≡ � in the sense of Definition 4.3. In other words, the vacuum
Einstein equations are stable under the conditions (and with respect to the notion of
convergence) of Theorem 4.4.

Let us mention that the stability of the Einstein equations under various notions of
(weak) convergence is a subject of high interest in general relativity.
Classically, the problem is stated in terms of convergence of a sequence of Lorentzian
metrics g j converging to a limit Lorentzian metric g∞, on a fixed underlying manifold.
If g j solve the vacuum Einstein equations, g j → g∞ in C0

loc and the derivatives of g j

converge in L2
loc, then it is well known that the limit g∞ satisfies the vacuum Einstein

equations as well.
However, if the g j → g∞ in C0

loc and the derivatives of g j converge weakly in
L2
loc, explicit examples have been constructed (see [19, 44] for examples in symmetry

classes) where the limit g∞ may satisfy the Einstein equations with a non-vanishing
stress energy momentum tensor. Burnett [19] conjectured that, if there exist C > 0
and λ j → 0 such that

|g j − g∞| ≤ λ j , |∂g j | ≤ C, |∂2g j | ≤ Cλ−1j ,

then g∞ is isometric to a solution to the Einstein-massless Vlasov system for some
suitable Vlasov field. Such a conjecture remains open, although there has been recent
progress [47, 52, 53] under symmetry conditions. We also mention the recent work
[68] where concentrations (at the level of ∂g j ) are allowed in addition to oscillations.

Theorem 4.4 gives a new point of view on the stability of the vacuum Einstein
equations. Indeed, while in the aforementioned results the metrics g j are converging
on a fixed underlying manifold, in Theorem 4.4 also the underlying space X may
vary (along the sequence and in the limit), allowing change in topology in the limit,
as one may expect in case of formation of singularities. Moreover, the notion of
convergence is quite different in spirit:while in the aforementioned results g j → g∞ in
a suitable functional analytic sense, in Theorem4.4 the spaces are converging in amore
geometric sense (inspired by the pointed measured Gromov-Haudorff convergence).

5 Some possible research directions and open problems

Due to the richness of the theory of metric measure spaces satisfying the Lott-Sturm-
Villani Curvature-Dimension condition CD(K , N ), it is natural to expect that the
Lorentzian counterpart surveyed here will enjoy a rich theory as well. In this sec-
tion we propose some possible research directions and open problems, without any
attempt to be exhaustive; on the contrary, we believe that Poincaré’s famous sentence
“surprising results shall be obtained” is as appropriate as ever.
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Convergence of spaces and pre-compactess

A fundamental property of the class of CD(K , N ) spaces (say with a bound on the
diameter for simplicity) is the compactness undermeasuredGromov-Hausdorff (mGH
for short) convergence. This is a consequence of two deep results: the Gromov pre-
compacteness theorem [46] and the stability of the CD(K , N ) condition under mGH
convergence [66, 88, 89].

In Sects. 2.2, 4.1, 4.2, we proposed possible notions of convergence for Lorentzian
synthetic spaces and proved stability results for synthetic Ricci bounds (and for a
synthetic characterization of the Einstein vacuum equations), thus ticking the latter
key property.

It is an open problem whether the class of TCDe
p(K , N ) spaces (say with bounded

diameter) satisfy some (pre)-compactness result in the spirit of the Gromov pre-
compactness theorem (with respect to the convergence proposed in Definition 2.6,
or some other suitable notion of convergence).

A key difficulty is that while the CD/MCP conditions for metric measure spaces
imply a control on the volume growth of metric balls (more precisely a local volume
doubling property), in our setting the τ -balls typically have infinite volume (e.g.,
in Minkowski space, τ -spheres are hyperboloids). Thus we cannot expect to have
compactness in classical pointed-measured-Gromov-Hausdorff topology (which is
thus not anymore the clearly natural notion for weak convergence of spaces).

Eulerian versus Lagrangian approach

The point of view on synthetic Ricci bounds employed in this presentation has been
Lagrangian, i.e. we analysed the convexity/concavity properties of the entropy along
suitable Lorentz-Wasserstein geodesics. In the smooth setting (as well in the met-
ric measure setting, though the non-smoooth framework is more delicate) such a
Lagrangian point of view is equivalent to an Eulerian approach based on the Bochner
inequality (which is also known as Bakry-Émery �-calculus), see [5–8, 32]. It would
be very interesting to develop an Eulerian approach to timelike Ricci curvature bounds,
and possibly prove the equivalence with the Lagrangian point of view (under suitable
assumptions, for instance a natural Lorentzian counterpart of the assumption that the
Cheeger energy is a quadratic form).

Building such a bridge betweenEulerian andLagrangian approacheswill very likely
open the door to a Lorentzian theory for gradient flows, which has been very rich in
the smooth Riemannian (and non-smooth metric-measure) setting (see for instance
the monograph [4], the aforementioned [5–8, 32] and the more recent survey [3]).

Compatibility with synthetic sectional curvature lower bounds

In the smooth setting, it is clear that non-negative (or more generally a lower bound
on the) sectional curvature implies non-negative (or more generally a lower bound on
the) Ricci curvature, as the latter is obtained as a trace of the former.
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Synthetic lower bounds on the timelike sectional curvature in terms of comparison
triangles (á la Alexandrov) for Lorentzian synthetic spaces have been proposed and
studied in [59] (see also themore recent [10]). It is a natural open problemwhether such
synthetic lower bounds on the timelike sectional curvature imply the synthetic lower
bounds on the timelike Ricci curvature surveyed here. Note that while the former
is purely metric, the latter needs to fix a reference volume measure in order to be
formulated. Natural candidates are the canonical volume measures on Lorentzian
(pre-) length spaces constructed in [73].

Null synthetic Ricci curvature lower bounds

In the present survey, we only treated timelike Ricci curvature lower bounds. This
was motivated by the applications we had in mind, namely Hawking’s singularity
theorem, time-like Bishop-Gromov, time-like Bonnet Myers (see Sect. 3, or [25] for
a more complete list) as well as a synthetic formulation of Einstein’s equations (see
Sect. 4, or [76] for an optimal transport characterization of the full Einstein equations
possibly with a non-zero stress-energy tensor).

It is however also an interesting direction to find a synthetic characterization of null
Ricci curvature lower bounds, i.e. Ricg(v, v) ≥ K for all null vectors v ∈ T M . Indeed
this is at the heart of Penrose’s work in general relativity: it is one of the assumptions
of his celebrated singularity theorem [80] which was awarded the Nobel prize, as well
as in much of his work (see for instance [61, Sec. 1.9, 6.3, 6.4] or [62]).

Independence of the theory on p ∈ (0, 1]

Note that the definition of the TCDe
p(K , N ) condition (Definition 2.1) depends on the

exponent p ∈ (0, 1] chosen to fix the optimal transport cost and hence the geodesic
structure on the space of probability measures. In the metric measure setting (for
essentially non-branching metric measure spaces) it was recently proved in [1] that
the CD(K , N ) theory is independent of the exponent chosen to metrize the space of
probability measures. Arguing along the lines of [1], which in turns builds on [15, 22–
24], it should be possible to prove the analogous independence of p in the Lorentzian
synthethic setting (under suitable timelike non-branching and causality assumptions).
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