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Abstract
Out of several possible extensions of general relativity, the scalar–tensor theory is
the most popular for several reasons. Since the quantum description of gravity is
yet to be formulated properly, the understanding of a gravitational theory remains
incomplete until the study of thermodynamic and fluid-gravity aspects, which provides
an alternative viewpoint to understand the gravitational theory. In this review, we study
these features (thermodynamics and the fluid gravity analogy) in a rigorous and yet in
a concise manner for the scalar–tensor gravity, which has been revealed in our recent
works. In addition, the issue of conformally connected frames (i.e. whether the two
frames, which are conformally related are physically equivalent) has been explored in
an explicit manner at the action level as well as from the viewpoint of thermodynamics
and fluid-gravity correspondence.
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1 Introduction

Among the four forces existing in the nature, the gravitational force is the oldest one
to be discovered. However, the realization of the gravitation has been changed and
has been modified with the course of time. The old Newtonian idea of gravitation was
given in terms of “inverse-squared” law, where the gravitation was identified in terms
of force acting upon two massive objects. This idea (of gravitation) lasted for several
centuries until in 1916whenEinstein (alongwith due credit toHilbert and others) came
up with the idea of general relativity (GR), which paved a complete shift of paradigm
to understand the gravity. The present understanding of gravity (provided by GR) is
premised upon the the idea of interplay of the spacetime geometry due to influence
of the matter. Although, GR has been proven as highly accurate and consistent with
the observational data [1–3], it is not quite compatible with another foundation of
physics, i.e the quantum mechanics. In other words, the quantum theory of gravity is
not yet developed. Meanwhile, it has been found that the dynamical equations of GR
show tantalizing similarity of the system of thermodynamics and fluid-dynamics. In
the absence of a proper quantum theory of gravity, the thermodynamic and the fluid-
dynamic aspects of gravity provide us with an alternative viewpoints to understand
gravity.

In spite of huge success of GR, which we have discussed above, there are sev-
eral motivations (both from theoretical and observational viewpoints) to look beyond
gravity. So far, the gravity has been tested in the weak field limit. It is argued that, in
the strong gravity regime, the gravity can deviate substantially from GR and can be
described by a modified theories of gravity. Among several modifications of GR, the
scalar–tensor (ST) gravity is, probably, the most popular among the physicists for vari-
ous reasons [4–9]. This theory can be described in the two frames. In the original frame,
which is also known as the Jordan frame, the gravity is described in therms of both
the metric tensor and the scalar-field φ, which is non-minimally coupled to the Ricci
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scalar R in the action. The action of the Jordan frame can be written equivalently in a
form (via the conformal transformation) which looks similar to the Einstein–Hilbert
action along with the external scalar field. The latter action is known as the action of
the Einstein frame. The physical equivalence of the Jordan and the Einstein frame has
been a matter of debate over the years [10–35].

The main purpose of this review is providing the complete understanding of ST
gravity from the alternative viewpoints i.e. from the viewpoints of thermodynamics
and fluid-gravity analogy. As we discuss later, the formulation of a consistent ther-
modynamic description in the two frames has been challenging and not been studied
thoroughly earlier until our recent works [32, 33, 35, 36]. In addition, recently we also
have established the fluid-gravity analogy in ST gravity [34]. Thus, we can now safely
say that we now have a broader picture regarding the alternative ways of understanding
scalar–tensor gravity than earlier. In this review, we tie up all the bits and pieces of
information (which have been obtained in the course of time in several of our earlier
works [32–36]) to provide the complete picture of thermodynamics and fluid-gravity
analogy in ST gravity. In establishing these, it will be found that the validity of Pad-
manabhan’s “holographic relation” (which was originally obtained for GR [37–41]
and Lanczos–Lovelock gravity [42–44]) in ST gravity will provide a major clue to
find the actual path. Moreover, providing a conformal transformation, a theory can
be presented in infinite conformal frames. Therefore, the present analysis will help
us to understand how (if at all!) the expression of thermodynamic and fluid param-
eters change under the conformal transformation. In addition, the understanding of
thermodynamic and fluid-gravity aspects of ST gravity will also help us to properly
understand those features of GR itself.

The notations, which we follow here are the following: Any quantity with a tilde
overhead (such as Ã) will correspond to the quantity of the Einstein frame. The quan-
tities without a tilde will correspond to the same in the Jordan frame (such as A).

2 The scalar–tensor gravity: how, what and why

The attempt to describe gravity in terms of the scalar field can be traced back as early
as 1913, whenG. Nordström came upwith the idea of the scalar gravity [45–47]. Later,
this attempt was overshadowed by the seminal work of Einstein’s general relativity
(GR), where the interaction of gravity is carried by the second-ranked symmetric
tensor field (gab, known as the metric tensor). A few years later, Kaluza [48] and Klein
[49] proposed the classical unified field theory of gravitation and electromagnetism
(known as KK theory), which was built in five dimension where the fifth dimension
was considered to be a compact one. Among the fifteen independent components of
the five-dimensional metric tensor, ten components were identified as the 4D metric
tensor, four components were identified as the electromagnetic vector potential and the
other one as the scalar field. With the assumption of the “cylinder condition” (i.e. no
component of the 5D metric depends upon the fifth dimension), it was shown that the
5D Einstein’s equation yields the Einstein’s equation in 4D along with the Maxwell’s
equation and the scalar field equation. Later, Jordan adopted the similar idea of KK
theory and considered the four dimensional carved manifold to be embedded in a five-
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dimensional flat spacetime. He identified the fifteenth field variable of KK in terms
of the gravitational constant, which fits nicely with the Dirac’s idea of “large number
hypothesis” [50]. Later, in order to make Einstein–Hilbert gravity to be compatible
with Mach’s principal, Brans and Dicke took Jordan’s idea of variable cosmological
constant. Their proposed theory is known today as the Brans–Dicke theory [51], which
is a prototype of a more generalized scalar–tensor (ST) theory.

Unlike Einstein’s gravity, the interplay of gravity in the spacetime in ST gravity is
described not only in terms of the metric but also in terms of the scalar field, which
is non-minimally coupled. The gravitational action of the ST theory in the original
frame (a.k.a. the Jordan frame) is given as

A =
∫

d4x
√−gL =

∫
d4x

√−g
1

16π

(
φR − ω(φ)

φ
gab∇aφ∇bφ − V (φ)

)
. (1)

In the above action (1), the scalar field φ is non-minimally coupled with the Ricci-
scalar R. In addition, the coupling parameter ω, which is known as the Brans–Dicke
(BD) parameter, is kept as an arbitrary function of the scalar field. When the BD
parameter is constant, the ST theory boils down to thewell-knownBrans–Dicke theory.
Furthermore, V (φ) is the arbitrary scalar field potential in the ST theory.

There is another representation of the above action (1), which is known as the
Einstein frame representation where the non-minimal coupling of the scalar field is no
longer present. This is obtained by the following sets of transformation in the metric
tensor and the scalar field. These are given as

gab → g̃ab = �2gab, � = √
φ , (2)

and

φ → φ̃ with dφ̃ =
√
2ω(φ) + 3

16π

dφ

φ
. (3)

The transformation relation, as described in Eq. (2), is known as the conformal trans-
formation, where � is the conformal factor. Due to this conformal transformation
along with the rescaling of the scalar field φ (as mentioned in Eq. (3)), the Jordan
frame action (1) can be written equivalently as

Ã =
∫

d4x
√−g̃ L̃ =

∫
d4x

√−g̃[ R̃

16π
− 1

2
g̃ab∇̃a φ̃∇̃bφ̃ −U (φ̃)] , (4)

with U (φ̃) = V (φ)

16πφ2 . The above action (4) corresponds to the Einstein frame repre-
sentation of the ST gravity. Note, in the Einstein frame, the non-minimal coupling is
no longer present and the scalar field appears as the external field.

Before proceeding towards the main objective of this review let us mention briefly
few observational aspects and recent progress of this theory. As we have discussed
earlier, ST theory is very popular from the observational viewpoints as well.Moreover,
the ST gravity provides us with more free parameters, which can be fixed from the
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various observations; solar system tests, gravitational waves and from cosmology.
Some important constraints in the parameters are discussed as follows.

Following the parametrized post-Newtonian (PPN) prescription (perturbative treat-
ment of weak field gravity, for details about this formalism, see [52]), it is said that
in the limit ω(φ) → ∞, the ST theory boils down to the general relativity [53] and it
has been a conviction for long that for strong coupling (ω), the ST theory boils down
to GR [54–57]. However, there are counterexamples of non-convergence in several
cases [60–67] and for the presence of scale-invariant matter fields (i.e. for T i

i = 0)
[58, 59]. Nevertheless, recent work agrees upon the convergence with GR even for
T i
i = 0 at the quantum level [68]. From the observation of the time delay of radio sig-

nal from the Cassini spacecraft, the constraint on the coupling parameter turns out as
ω ≥ 40,000 [69]. It is also known that the scalar–tensor gravity predicts the velocity of
gravitational wave as different from the velocity of light [70]. Interestingly, the recent
observation of gravitational wave due to the binary neutron star merger (GW170817)
is one with an electromagnetic counterpart (i.e. GRB 170817A) and it was found that
the electromagnetic signal was observed 1.7 s after the gravitational wave signal [71].
This event has provided stringent constraints on scalar–tensor gravity [72–74]. Thus,
constraining the parameters in the scalar–tensor theory has been a subject of intense
research over the years.

Apart from setting the constraints on the ST gravity (which arises from differ-
ent avenues as discussed above), there are two other thriving directions which have
recently surged attention among several researchers. These are, the study of scalar
hairs and spontaneous scalarization, along with finding their observational implica-
tions. The usual “no-hair theorem” [75] of the black hole suggests that the black
holes are characterized only by three physical quantities: mass, charge and the angular
momentum. Thus, it does not matter what is the matter source, the final outcome of the
gravitational collapse is always a Kerr–Newman black hole. However, while proving
the no-hair theorem the focus is upon the dynamical end point of the gravitational
collapse and not upon the existing black holes with arbitrary mass sources. Therefore,
for existing black holes with non-trivial matter fields, later people found several other
global charges or new non-trivial fields [76–78]. These charges are categorized in two
parts: (1) primary hairs, which are subject to the Gauss’ law and are the global charges.
These charges include mass, charge etc. (2) secondary hairs, which are not the global
charges and are not subject to theGauss’ law.However, irrespective of themass source,
the scalar hair, which are secondary hairs, was not found for the black holes. This lead
Bekenstein to prove the “no-scalar-hair theorems of black holes” [79–81]. However,
while proving these theorem, Bekenstein have considered a few crucial assumptions
[82]. One such assumption was that the theorem is limited to those cases where the
scalar field is canonical and is minimally coupled. However, this crucial assumption
can be relaxed for various models of scalar–tensor gravity. Therefore, in that case,
the scalar hairs are supposed to exist. During the last few years, the observational
phenomena like the gravitational waves, observation of black hole shadow by Event
Horizon Telescope (EHT) etc. have provided new windows to test the gravity in the
strong-field regime. Thus, checking validity of no-hair theorem from the observational
phenomena has been one of the most important aspect to test gravity [83]. These has
raised new interests on finding scalar hairs [84], and thereby have raised interest in

123



112 Page 6 of 50 K. Bhattacharya, B. R. Majhi

the theories where the scalar field is non-minimally coupled (such as the ST gravity
[85–87]).

Depending on the coupling, one can obtain solutions in ST gravity which are indis-
tinguishablewithGR in theweak gravity region but, they can predict radically different
phenomenology in the strong gravity region, such as for the neutron stars and black
holes. One such phenomenology is referred to as the spontaneous scalarization. Orig-
inally this phenomena was found in the cosmological model introduced by Damour
and Esposito-Farèse [88, 89], where it was shown that a tachyonic instability triggers
the spontaneous scalarization and, at the end, the neutron star is dressed with a scalar
configuration. This phenomenology has later explored in several cases [90–100] and
currently plays a crucial role from the observational viewpoints to obtain the deviation
from Einstein’s GR in the strong gravity region [101–106].

Let us now come back again to our theoretical study. Note that from the discussions
presented in literature it seems that the two actions are exactly equivalent under the
conformal transformation. However, a careful analysis shows [32] that the two actions
(1) and (4) are equivalent only upto a total derivative term i.e.

√−g̃ L̃ = √−gL − 3

16π

√−g�φ . (5)

The origin of this total derivative term can be traced back from the following trans-
formation relation of the Ricci scalar under (2), which is provided as

R̃ = 1

φ

[
R + 3

2φ2 (∇iφ)(∇ iφ) − 3

φ
�φ

]
. (6)

Since the�φ term is a total derivative term, one can discard this term as removal of this
term does not alter the dynamics of the system (follows from the fact that the equation
of motion is unchanged irrespective of addition or removal of a total derivative term).
This is why, for a long time�φ has not been paid any attention and has been discarded.
Therefore although there is an “apparent physical equivalence” at the dynamical level,
the actions are indeed suffering from“mathematical in-equivalence”. In the subsequent
analysis, we shall show that this neglected term plays a crucial role in this theory and,
therefore, it should be hailed high for its immense significance.

The conundrum of conformally connected frames

The issues with the conformal frames is, probably, the oldest one which has lingered
with the theory ever since its formulation and has not been resolved yet. Providing the
conformal transformation in themetric, a theory can be presented in infinitely different
conformal frames among which the Jordan frame and the Einstein frame stand out.
Now, there are the following issues related to the theory presented in two different
conformal frame (say Jordan and Einstein frame).

1. Whether these different conformal frames, which are mathematically equivalent,
are physically equivalent in every aspects.
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2. If the answer to the previous question (1) is negative then which frame is more
physical than the others?

3. If answer to the previous question (1) is positive then what should be the expression
of the thermodynamic energy? In literature, there are several prescriptions of the
definition of energy, which plays the role of thermodynamic energy in GR. There
are Misner-Sharp energy, Hawking–Hayward quasi-local energy etc. But, all these
are not conformally invariant. Thus, if one agrees to the equivalent picture, one
has to define the thermodynamic energy properly in a conformally invariant way
and has to show the procedure to obtain the thermodynamic laws in a consistent
manner.

In the following analysis, we shall shed light on these issues. We shall show that
the two frames are thermodynamically equivalent. In addition, at the action level, we
shall show that in both the frames the surface terms and the bulk term are related by
a special relation, known as the holographic relation. However, as we point out later
on, the �φ term plays the crucial role in both the cases.

3 Bulk and the surface terms: the holographic relation

In search of a well-posed action principal

The dynamics of a physical system is believed to be obtained via a well-posed action
principle. However, in general relativity, there are several issues regarding the proper
formulation of the action principle. Einstein’s equation can be obtained from the
Einstein–Hilbert (EH) Lagrangian, where the dynamical variable is usually consid-
ered as the metric tensor. Now, the EH Lagrangian contains the first order as well
as the second order differentiation of the dynamical variable (i.e. the metric tensor).
Therefore, one has to fix both the metric as well as its first derivative on the bound-
ary, which is inconsistent. To get rid of such trouble and to make the action principal
well-posed, two routes are prescribed in the literature: (1) Addition of a boundary
term which, on the boundary, cancels the term containing the first derivative of the
metric. The most popular boundary term in the literature is the Gibbons–Hawking–
York (GHY) boundary term, which is dependent on the extrinsic curvature of the
boundary surface under consideration. Therefore, this method is foliation dependent
though generally covariant. (2) The Einstein–Hilbert action is peculiar as the action
as well as the derived field equation both contains up to the second derivative of the
metric, which is against the general consensus (one expects the equation of motion to
include the third derivative of the dynamic variable when the action itself contains its
second derivative). This peculiarity is there because, all the second order derivatives
in the Einstein–Hilbert action can be written as a total derivative as a whole. Thus, the
action can be decomposed into two parts: the bulk part (which contains up to the first
derivative of the metric tensor) and the surface part (which is a total derivative term
and contains the second order derivatives). The equation of motion can be obtained
only from the bulk part of the action. However, this method is not generally covariant.
Furthermore, from the work of Padmanabhan et al. [37, 38, 42] a deeper significance
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of this decomposition was revealed as it was shown that the bulk part and the surface
part are not independent. Instead, they are related via a relation which is call as the
holographic relation (named by T. Padmanabhan). Therefore, if one of either bulk or
the surface part is known, one can obtain another. In addition, it also suggests that
Einstein’s gravity is intrinsically holographic, where the surface degrees of freedom
are related to the dynamics of the spacetime [107].

The above discussion has been presented under the framework of Einstein’s gravity
[37–41] and extended to Lanczos–Lovelock gravity [42–44]. However, the above two
routes are required to be adopted for a well-defined action principle in ST gravity
as well. Like the Einstein–Hilbert action, the actions of the ST gravity (in both the
frames) contains the second derivative of the metric. In addition, the field equations
also contain up to the second derivative of the fields. Thus the above arguments of the
two routes are valid for ST gravity as well. In spite of the apparent similarity in the
structure in the metric, the holographic relation, however, is not guaranteed especially
due to the non-minimal coupling of φ in the action. In the following, we briefly discuss
the two routes in the context of ST gravity. Finally, it will be shown that the holographic
principle can be obtain for the ST gravity. However, for that, it will be shown that the
�φ term (of Eq. 5) is required to be incorporated in the action of the Jordan frame.

The suitable GHY term for the actions (1 and 4) are similar as of the Einstein’s GR.
The expression of the GHY terms in the two frames are provided as follows. In the
Jordan frame, the GHY term is given as

AGHY = − 1

8π

∮
d3x

√
hφK . (7)

Here K = −∇aNa = 1√−g
∂a(

√−gNa) is the trace of the extrinsic curvature tensor

and Na is the unit normal to the boundary surface. Also, h is the determinant of
the induced metric corresponding to the boundary surface. Similarly, in the Einstein
frame, the GHY term is provided as

ÃGHY = − 1

8π

∮
d3x

√
h̃ K̃ . (8)

Interestingly, although the gravitational actions in the two frames (given by the Eqs. 1
and 4) are equivalent only up to a total derivative term (see Eq. 5), it can be shown
that the sum of the gravitational action along with the GHY term, as a whole, are
conformally invariant [32].

We discuss the second route (for a well-posed action principal in ST gravity) in a
more robust manner in the following as it caters crucial informations regarding the
conformal equivalence of the two frames. First, we provide the decomposition of the
Lagrangians (into bulk and surface terms) in the two frames. The detail result has been
obtained in [32], and we quote those in the following. The Lagrangian in the Jordan
frame, as described in Eq. (1), can be written as decomposed into the bulk and surface
part as

√−gL = √−gLbulk + Lsur where
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Lbulk

= (1/16π)
[
�2gab[�i

ja�
j
ib − �i

ab�
j
i j ] − 2�2gab�i

ab(∂i ln�) + 2�2�i
i j (∂

j ln�)
]

− 4

16π
ω�2(∂i ln�)(∂ i ln�) − V (φ)

16πφ2 , (9)

and

Lsur = 1

16π
∂c(�

2√−gV c) = (1/16π)∂c[�2√−g(gik�c
ik − gck�m

km)] , (10)

where one can identify V c = gik�c
ik − gck�m

km . Similarly, the Lagrangian in the
Einstein frame, as provided in the Eq. (4), can be decomposed into the bulk and the
surface parts as

L̃bulk = 1

16π
g̃ab(�̃i

ja�̃
j
ib − �̃i

ab�̃
j
i j ) − 1

2
g̃ab∇̃aφ̃∇̃bφ̃ −U (φ̃) ; (11)

and the surface term is given as

L̃sur = −∂c P̃
c , (12)

with

P̃c = − 1

16π

√−g̃Ṽ c =
√−g̃

16π
(g̃ck�̃i

ki − g̃ik�̃c
ik) , (13)

and Ṽ c = g̃ik�̃c
ik − g̃ck�̃m

km .
The decomposition of the actions (of the two frames) in terms of the bulk and the

surface part, which we have discussed above, has been done with the motivation to
obtain a well-defined action principle. The surface terms of the decompositions in the
two frame can be removed from the gravitational actions and one can safely obtain the
equations of motion from the bulk part only (see our earlier work [32] for details). One
serious drawback in this approach (to obtain the dynamical equations from the bulk
part only) is that this approach is not a covariant one as both the bulk and the surface
part in the two frames are not covariant scalars. Nonetheless, this can be considered as
a useful way to define a well-posed action principle. Then the question arises: Is there
any importance of the surface part of the action? Apparently, it seems that the surface
term of the decomposition has no significance and it just creates trouble in defining the
well-posed action principal. However, the surface term is very significant and discloses
the holographic nature of gravity. In the Einstein frame, it can be shown that the bulk
and the surface part of the action are connected by the holographic relation, which is
given as

L̃sur = −∂c

[∂
√−g̃ L̃bulk

∂ g̃i j,c
g̃i j

]
. (14)
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The above relation shows that the bulk and the surface part are not independent to
each other. This relations also suggests that the surface degrees of freedom are related
to the dynamical degrees of freedom, implying the holographic nature of gravity in
the Einstein frame. The above relation (14), which implies the holographic nature of
gravity, also suggests that the gravitational action in the Einstein frame (given by Eq.
4) can be described as the action in the momentum space for the following reasons.
Let us consider a pair of Lagrangians of the following forms: L1 ≡ L1(q A, ∂q A) and
L2 ≡ L2(q A, ∂q A, ∂2q A). If L1(q A, ∂q A) and L2(q A, ∂q A, ∂2q A) are connected to
each other by the relation L2(q A, ∂q A, ∂2q A)=L1(q A, ∂q A) − ∂i (q A piA), it can be
shown that both L1(q A, ∂q A) and L2(q A, ∂q A, ∂2q A) yields the same equation of
motion; where in the first case (i.e. for L1(q A, ∂q A)) one has to fix the coordinates
q A on the boundary and in the second case, one has to fix the conjugate momenta
(piA = ∂L1/∂(∂i q A)) on the boundary. Thus, under the light of the above discussions,
L̃bulk can be interpreted as the Lagrangian of the coordinate space and, on the other
hand the total Lagrangian in the Einstein frame can be interpreted as the Lagrangian
of the momentum space.

In spite of the fact, that the actions in the two frames are equivalent to each other, it
can be shown that the holographic principle does not hold in the Jordan frame and the
total Lagrangian in the Jordan frame cannot be interpreted as one of the momentum
space. In the Jordan frame, the bulk part and the surface part of the Lagrangian are
related to each other by the following relation:

Lsur = −∂c

[∂
√−gLbulk

∂gab,c
gab

]
+ 3

16π

√−g�φ . (15)

Therefore, it can be said that the holographic relation does not hold for the Jordan
frame, described by the Lagrangian (1). Furthermore, in this case, the Lagrangian L
cannot be interpreted as the action of the momentum space. Since the holographic
relation breaks down in the Jordan frame of ST gravity, there lies an in-equivalence
even at the classical level. Later, we shall see, this in-equivalence will transcend at
the thermodynamic level as well, making the thermodynamic parameters not to be
exactly equivalent in the two frames. However, the reason for this in-equivalence can
be traced back to the earlier relation (5), where it has been shown that the actions in the
two frames are equivalent only upto a total derivative term. To ward off this in-built
in-equivalence in the two frames, we incorporate the �φ term in the Lagrangian and
define the Lagrangian in the Jordan frame as

L ′ = L − 3

16π
�φ . (16)

Now, it is quite straightforward to show that the actions in the two frames are exactly
equivalent i.e., A′ = ∫

d4x
√−gL ′ = ∫

d4x
√−g̃ L̃ = Ã . Let us now check whether

we can now establish the holographic relation. Note that the Lagrangian L ′ can also be
decomposed in terms of the bulk part and the surface part i.e.

√−gL ′ = √−gL ′
bulk +

L ′
sur , where the bulk part L ′

bulk = Lbulk , is given by the relation (9) and the surface
term will be given as

123



Scalar–tensor gravity from thermodynamic... Page 11 of 50 112

L ′
sur = Lsur − 3

√−g

16π
�φ = 1

16π
∂c

[√−g
{
φ(gik�c

ik − gck�m
km) − 3gcd∂dφ

}]
.

(17)

One can check that the holographic relation in this frame can be established as the
bulk part and the surface part of the Lagrangian are related to each other as

L ′
sur = −∂c

(∂
√−gL ′

bulk

∂gab,c
gab

)
. (18)

Thus, with the modification of the Lagrangian in the Jordan frame, we have now
removed the inequivalence of the two frames and have established the holographic
relation in the Jordan frame. In addition, the above relation (18) helps us to identify
the bulk part of the Lagrangian (i.e. L ′

bulk or Lbulk) as the Lagrangian of the coordinate
space and the Lagrangian L ′ as the same of the momentum space.

Before proceeding further, we clarify again that the surface terms discussed in Eq.
(12) and in Eq. (13) are not the same as theGibbons–Hawking–York (GHY) term.Also
see section 6.2.3 of the Ref [108] where the difference of these two has been explicitly
shown for a generic metric. In order to obtain a well-posed action principle, two roots
are adopted. In one route, a total derivative term, such as the GHY terms is added
along with the gravitational action (such as the EH action). In the second route, the
problematic part of the gravitational action, i.e. the surface pert [defined in Eqs. (12)
and in (13), which contains second order derivative of the metric] is discarded from
the gravitational action and the equation of motion is obtained from the bulk part only
(for details, see [108]). Also, note that there are numerous surface terms which can be
added with the EH action instead of the GHY term, which most popular among those
several alternatives (see Ref [109] for a detail discussion). Furthermore, the GHY term
crucially depends on the foliation of the spacetime and acts as a surface term only for
the timelike or for the spacelike boundaries and does not work for a null surface (for
the prescription on the null surface, see [110–114]). On the other hand, the surface
term of the action (discussed in Eqs. 12 and 13) works in every of those cases, though
the second method is not a covariant one. Thus, the surface part of the EH action and
the GHY term are significantly distinct from one another.

Nowwe clarify another terminology, which we have referred to as the “holographic
principle/relation”. This terminology of “holographic principle/relation” implies dif-
ferent meaning compared to the “holographic principle” arising from the AdS-CFT/
string theory. The terminology which we use, was coined by Padmanabhan when he
had shown that the bulk part and the surface part of the EH action (as described in the
context of the second method) are not independent. Instead, these two are intrinsically
connected to each other, which he termed as the “holographic principle/ relation” (see
ref [38]). We know that the bulk part of the EH action contributes to the dynamics of
the gravitational system as one can obtain the Einstein’s equation from the bulk part
alone (following the second method which we have discussed above). Now, since the
bulk part of the action is connected to the surface part via a relation, the surface degrees
of freedom contributes to the dynamics of the gravitational system. Moreover the bulk
information can be achieved from the surface. In this sense the obtained relation was
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initially called as holographic relation (see [38] for his comments on this “holographic
principle”). We also have used the same nomenclature here as well. In this regard it
may be noted that Padmanabhan’s (as well as ours) discussion on holographic prin-
ciple is not the same as the concept of holographic principle provided by the string
theory or AdS/CFT.

In the following section, it will be shown that the thermodynamic parameters,
obtained from the Lagrangian L ′ are exactly equivalent to the same of the Einstein
frame. Thus, from now on, we shall consider the Lagrangian of the Jordan frame as
L ′ instead of L .

4 Conserved noether and ADT currents

In thermodynamic structure of gravitational theories, the conserved currents play a
crucial role in defining the thermodynamic parameters. In addition, the conserved
currents like the Noether current due to diffeomorphism symmetry of gravity and the
Abbott-Deser-Tekin (ADT) current provide the thermodynamic laws in a covariant
way. In the following, it will be shown that the Wald’s formalism [115] and the ADT
formalism [116–119], which are based upon the Noether current and the ADT current
respectively, will be useful in order to obtain the 1st law in a covariant way. Also, it
will be shown that the thermodynamic parameters are equivalent in the two frames.
Since we already have the ambiguity regarding the potential candidate for the internal
energy in thermodynamics of ST gravity, this Wald’s formalism (or equivalently the
ADT formalism) will be proved to be highly useful in defining the thermodynamic
energy, which is also conformally invariant and fits nicely with other thermodynamic
parameters to provide the first law. In the following, we show the procedure to obtain
the Noether and the ADT currents in the two frames. To obtain the Noether current, we
firstly obtain the variation of the Lagrangians in the two frames. Thereby we obtain the
equations of motion and the boundary terms. Later we specify this arbitrary variation
as the change due to the diffeomorphism. Therefore, the arbitrary variations in the
Lagrangians will be changed to the Lie variation. This will yield the expression of the
Noether current due to the diffeomorphism invariance.

4.1 Variation of the actions in the two frames, equations of motion and the
boundary terms

The arbitrary variation of the Lagrangian in the Jordan frame yields

δ(
√−gL ′) = √−g

(
Eabδg

ab + E(φ)δφ + ∇a	
′a(q, δq)

)
, (19)

where q ∈ {gab, φ} and

Eab = 1

16π
[φGab + ω

2φ
∇iφ∇iφgab − ω

φ
∇aφ∇bφ + V

2
gab − ∇a∇bφ + ∇i∇iφgab] ;

E(φ) = 1

16π
[R + 1

φ

dω

dφ
∇iφ∇iφ + 2ω

φ
�φ − dV

dφ
− ω

φ2 ∇aφ∇aφ] ;
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and

	′a(q, δq) = 	a(q, δq) − 1

16π

{3
2
gi j δgi j ∂

aφ − 3gia∂bφδgib + 3∂a(δφ)
}

, (20)

with 	a(q, δq) can be identified as the surface term corresponding to the variation of
Lagrangian L , which is given as

	a(q, δq) = 1

16π
[−2gab

ω

φ
(∇bφ)δφ + φδva − 2(∇bφ)piabdδgid ] . (21)

Here Eab = 0 and E(φ) = 0 corresponds to the equations of motion for the fields
gab and φ, respectively. However, our goal is to obtain the conserved currents (both
Noether and ADT currents) off-shell. Therefore, while obtaining those currents, we
do not use the equations of motion i.e. we nowhere put Eab = 0 or E(φ) = 0.

In the Einstein frame, the arbitrary variation of the Lagrangian yields

δ(
√−g̃ L̃) = √−g̃ Ẽabδg̃

ab + √−g̃ Ẽ(φ̃)δφ̃ + √−g̃∇̃a	̃
a(q̃, δq̃) , (22)

where q̃ ∈ {g̃ab, φ̃}. The exact expressions of Ẽab, Ẽ(φ̃) and 	̃a(q̃, δq̃) are given as

Ẽab = G̃ab

16π
− 1

2
∇̃a φ̃∇̃bφ̃ + 1

4
g̃ab∇̃ i φ̃∇̃i φ̃ + 1

2
g̃abU (φ̃) ;

Ẽ(φ̃) = ∇̃a∇̃a φ̃ − dU

dφ̃
;

and

	̃a(q̃, δq̃) = δṽa

16π
− (∇̃a φ̃)δφ̃ . (23)

Again, in this case Ẽab = 0 and Ẽ(φ̃) = 0 corresponds to the equations of motion of

the fields g̃ab and φ̃.
Here we clarify that, while obtaining the equation of motion from the action, we

have not considered the externalmatter source. The externalmatter action in the Jordan
frame will be defined as A(m) = ∫

d4x
√−gL(m) whereas, the same in the Einstein

frame will be given as Ã(m) = ∫
d4x

√−g̃ L̃(m). Under the conformal transformation
relation (2), we have

L̃(m) = �−4L(m) . (24)

Now, the energy-momentum tensor is defined as

T̃ (m)
ab = − 2√−g

δ

δgcd

(√−g L(m)
)

. (25)
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Thus, the energy-momentum tensor in the two frames will be related as

T̃ (m)
ab = �−2T (m)

ab , T̃ (m)a
b = �−4T (m)a

b , T̃ (m)ab = �−6T (m)ab . (26)

Finally, when the externalmatter source is present, the equation ofmotion of themetric
tensor will be changed as Eab = Tab/2 and Ẽab = T̃ab/2 (instead of Eab = 0 and
Ẽab = 0 respectively).

In the following we discuss one important relation, which will help us to obtain the
conserved Noether current off-shell.

4.2 Generalized Bianchi identity in scalar–tensor theory of gravity

In Einstein’s GR, the (contracted) Bianchi identity ensures the (local) conservation of
energy. In addition, it is also used to obtain the off-shell expression of the Noether
current due to the diffeomorphism invariance. Now here we show the corresponding
analogue of the Bianchi identity in the ST gravity, which is known as the generalized
Bianchi identity or the Noether identity. We provide the expression of generalized
Bianchi identity or the Noether identity in each frame

Jordan frame: In the Jordan frame, it can be proved that [33]

∇bE
ab = −1

2
(∇aφ)E(φ) , (27)

which is known as the generalized Bianchi identity of the Jordan frame. We shall
see that, similar to GR, the above expression (27) will help us to obtain the Noether
current off-shell. Note, when external matter is present, the equation of motion of the
metric tensor is given by Eab = 8πT ab

(m), where T
ab
(m) is the energy-momentum tensor

of the external matter field. Thus, the above relation (27) suggests that the (local)
conservation of energy-momentum tensor takes place on-shell i.e. when E(φ) = 0 .
This is a stark difference of GR and ST gravity.

Einstein frame: In the Einstein frame, the generalized Bianchi identity is provided as

∇̃b Ẽ
ab = −1

2
(∇̃a φ̃)

[
�̃φ̃ − dU

dφ̃

]
= −1

2
(∇̃a φ̃)Ẽφ . (28)

Again, while obtaining the off-shell Noether current, this generalized Bianchi identity
(28) will be shown to play a crucial role. In addition, as was the case in the Jordan
frame, the local energy conservation takes place on-shell (when Ẽφ = 0).

4.3 Diffeomorphism invariance and conserved Noether current

The scalar–tensor gravity is diffeomorphism-invariant theory in both the frames. In
Sect. 4.1, we have obtained the change in the Lagrangian due to the arbitrary variation.
When the change in the Lagrangian is due to the diffeomorphism, δ is replaced by
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the Lie-derivative. Thereby, one can obtain the expression of the conserved Noether
current and the expression of two-ranked anti-symmetric Noether potential in both the
frames. Here, we briefly provide the outline of the procedure to obtain Noether current
and potential in each frame.

Jordan frame: Due to the diffeomorphism xa −→ xa + ξa , the change in the
Lagrangian can be obtained from (19) by replacing δ to £ξ , which yields

£ξ (
√−gL ′) = −2

√−g∇a(E
abξb) + 2

√−gξb∇a E
ab + √−gE(φ)ξ

a∇aφ

+ √−g∇a	
′a(q, £ξq) . (29)

Now, the LHS of (29) can be straightforwardly obtained as £ξ (
√−gL ′) =√−g∇a(L ′ξa) and by using the generalized Bianchi/Noether identity (27) on the

RHS of (29), one obtains ∇a Ja = 0, where the conserved off-shell Noether current
(J ′a) can be identified as

J ′a = L ′ξa + 2Eabξb − 	′a(q, £ξq) . (30)

The above expression ofNoether current can be furtherwritten in terms of a two-ranked
anti-symmetric Noether potential (i.e. J ′a = ∇b J ′ab), where the anti-symmetric
Noether potential can be obtained as (see [33] for details)

J ′ab = 1

16π
[∇a(φξb) − ∇b(φξa)] . (31)

Note that the above expressions of Noether current and potential, as provided by
Eqs. (30) and (31) are obtained from the Lagrangian L ′ of Eq. (16). For a curious
reader, we provide the expressions of Noether current and potential corresponding to
the Lagrangian L (as defined in Eq. 1), which are given as (see derivation in [33])

Ja = Lξa + 2Eabξb − 	a(q, £ξq) . (32)

and

Jab = 1

16π

[
φ(∇aξb − ∇bξa) + 2ξa(∇bφ) − 2ξb(∇aφ)

]
. (33)

In the following section, when we obtain the 1st law using the Wald’s formalism,
we show that the thermodynamic parameters obtained from the current J ′a are more
appropriate as the thermodynamic parameters, defined by the Noether current J ′a are
conformally equivalent. On the contrary, if one defines the thermodynamic parameters
in terms of Ja , the thermodynamic parameters can be shown to be equivalent only
when one incorporates several assumptions, such as the asymptotic flatness of the
spacetime etc. [18]. Thus, it can be argued that the current J ′a is more appropriate
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than Ja , which also imply that the Lagrangian L ′ is more appropriate than L in the
Jordan frame.

Einstein frame: In the Einstein frame, one can similarly obtain the conserved Noether
current and potential due to the diffeomorphism invariance. The expression of Noether
current is provided as (for details, see [33])

J̃ a = L̃ ξ̃a + 2Ẽab ξ̃b − 	̃a(q̃, £ξ q̃) , (34)

and, the Noether potential is given as

J̃ ab = 1

16π
[∇̃a ξ̃b − ∇̃b ξ̃a] . (35)

Thus, we have obtained the Noether current and potential in the two frames. Note,
that the obtained Noether currents, in the two frames, are valid for any arbitrary
diffeomorphisms (ξa and ξ̃a). In the following, we discuss the procedure of obtaining
another conserved current which is widely used i.e. the ADT current and potential.

4.4 The ADT current

Unlike Noether current due to the diffeomorphiam, the ADT current is not obtained
using the symmetry arguments. In Einstein’s GR, it can be shown (details follows
from the arguments provided in [116–119]) that on-shell (i.e. Gab = 0), using the
Bianchi-identity (i.e. ∇bGab = 0), we obtain ∇aδGab = 0, where δGab (known as
the linearization tensor) is the first order change inGab due to the arbitrary perturbation
gab −→ gab + hab. Therefore, δGab is a conserved quantity, albeit a tensor. Since
conserved charge is defined in terms of a vector, δGab is contracted with the Killing
vector (χ ) and the conserved current is defined as δGabχb, which is known as the ADT
current. Thus, the on-shell conservation of δGabχb requires two major inputs: not
only the Killing vector, but also the conservation of δEab (obtained from the Bianchi
identity and the equation of motion). The off-shell extension has been formulated
by constructing a two-ranked anti-symmetric potential (JabADT ) in such a way that its
divergence (i.e.∇b JabADT ) is equal to δGabχb added upto terms which are proportional
toGab (for details see [120]). On-shell, the terms proportionalGab vanish and∇b JabADT
boils down to δGabχb . Thus, the conservation of JaADT originates from geometrical
arguments and not from the symmetry arguments. Here we have followed the same
procedure, and have obtained the expression of the ADT currents in the two frames.
For detail mathematical approaches, we refer to our paper [33].

Jordan frame: In the Jordan frame, it can be proved that (for details, see [33])

J iADT |on−shell = δEi jχ j , (36)

is a conserved quantity on-shell. In this case, δEi j corresponds to the linearized tensor
i.e. the first order change in Ei j due to the perturbation in the perturbation in the
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metric gab → gab + δgab. The conservation of the J iADT follows from the fact that
∇bδEab = 0 on-shell (which can be proved using eq (27)) and the property of the
Killing vector (i.e. ∇aχb = −∇bχa). Thus, the expression of on-shell ADT current is
provided by the Eq. (36). We call it as the on-shell current as its conservation can be
proved using the equation of motion. In the case of off-shell, it can be proved that (for
details see [33]):

δEi jχ j = ∇ j J
i j
ADT − Eikhk jχ

j + 1

2
χ i E jkh jk − 1

2
χ j Ei

j h , (37)

where

J i jADT [χ ] = 1

32π

[
φ
(
χ j∇kh

ki − χ i∇kh
k j + χk∇ i hk j − χk∇ j hki + χ i (∇ j h)

−χ j (∇ i h) + h jk∇kχ
i − hik∇kχ

j + h∇[iχ j]) + (∇kφ)
(
χ j hik − χ i h jk

)]
.

(38)

and hab = δgab or equivalently hab = −δgab. Note that last three terms on the RHS
of (37) is proportional to Eab, which vanish on-shell. Thus, one can identify J i jADT as
the off-shell ADT potential. The off-shell ADT current can be identified as

J iADT |of f −shell = δEi jχ j + Eikhk jχ
j − 1

2
χ i E jkh jk + 1

2
χ j Ei

j h . (39)

Now that we have obtained the ADT current and potential in the Jordan frame, we
now move on to obtain the corresponding counterpart in the Einstein frame.

Einstein frame:As was the case for the Jordan frame, off-shell δ Ẽ i j χ̃ j can be written
as [33],

δ Ẽ i j χ̃ j = ∇̃ j J̃
i j
ADT − Ẽ ik h̃k j χ̃

j + 1

2
χ̃ i Ẽ jk h̃ jk − 1

2
χ̃ j Ẽ i

j h̃ , (40)

where, the two-ranked anti-symmetric ADT potential J̃ i jADT can be obtained as

J̃ i jADT [χ̃] = 1

32π

[
χ̃ j ∇̃k h̃

ki − χ̃ i ∇̃k h̃
k j + χ̃k∇̃ i h̃k j − χ̃k∇̃ j h̃ki

+ χ̃ i (∇̃ j h̃) − χ̃ j (∇̃ i h̃) + h̃ jk∇̃k χ̃
i − h̃ik∇̃k χ̃

j + h̃∇̃[i χ̃ j]] , (41)

where h̃ab = δg̃ab, h̃ab = −δg̃ab. Thus the off-shell ADT current can be identified as

J̃ iADT |of f −shell = δ Ẽ i j χ̃ j + Ẽ ik h̃k j χ̃
j − 1

2
χ̃ i Ẽ jk h̃ jk + 1

2
χ̃ j Ẽ i

j h̃ . (42)

On-shell, Ẽa
b = 0. Therefore, the on-shell expression of ADT current in the Einstein

frame is given by the first term on the RHS of Eq. (42) i.e. J̃ iADT |on−shell = δ Ẽ i j χ̃ j .

123



112 Page 18 of 50 K. Bhattacharya, B. R. Majhi

As it is apparent from the analysis, the ADT currents and the potentials, in the two
frames, are defined for the Killing vectors (χa and χ̃a) only.1

Again, we emphasize that the ADT current (either on-shell or off-shell) has not
been obtained using the symmetry argument i.e., identifying those symmetries which
leave the action invariant (or change upto a total derivative) and obtaining conserved
current using the Noether’s theorem. Instead, a quantity has been defined under linear
perturbation from the equation of motion and then contracted with the timelike Killing
vector (assuming it exists for the spacetimeunder study). This process yields a first rank
tensor. Interestingly, it has beenobserved that suchone is covariantly conserved and it is
called ADT current. It shows that ADT current does not have origin through Noether
prescription due to a particular symmetry of spacetime. Moreover in the original
approach [116–119] the construction of it and its covariant conservation greatly depend
upon the use of equation of motion for gravity. In that sense such is called as on-shell
ADT current.

On the other hand Noether current for gravity has been obtained through Noether
prescription, arising due to the diffeomorphism invariance of the theory. Now diffeo-
morphism is a local gauge symmetry and hence the corresponding current is off-shell
conserved. In literature the nomenclature, off-shell, is usually reserved for this kind of
analysis. In the case of ADT current, it has been observed that one can construct a first
rank tensor which is covariantly conserved even without use of equation of motion
(see [120] for details). Therefore this new construction does not depend on the use
of equation of motion of gravity and, in this sense, the new construction is called as
off-shell ADT current in literature (e.g. see [120]). Here we also followed the same.
However, as the Noether current and ADT current are different by construction, they
can not be treated in the same footing. Therefore, the word off-shell has been used for
ADT current in a different sense, unlike what it is used for conserved Noether current.

4.5 Connection between Noether and ADT current

Although the Noether current and the ADT current formalism has been developed
independently, it can be shown that they are connected to each other. As a matter of
which, it can be argued that the two covariant formalisms to obtain the first law i.e.
the Wald’s approach (that incorporates the Noether current) and the ADT approach
(which incorporates the ADT current) are equivalent. In the following, we show the
connection of the Noether and the ADT current in each frame.

Jordan frame: In the Jordan frame, the Noether and the ADT currents are related as
[33]

√−gJ i jADT [χ ] = 1

2
δ(

√−gJ ′i j [χ ]) − √−gχ [i	′ j](q, δq) . (43)

In (43), J ′i j [χ ] is the Noether potential corresponding to the Killing diffeomorphism
and not of any arbitrary diffeomorphism. On the other hand, ADT current is defined

1 Recentlywe have obtained a generalisedADT-like current,which is obtained for arbitrary diffeomorphism
in GR and Lanczos–Lovelock gravity [121].
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only for the Killing vectors. Thus, we can say, the above relation (43) expresses the
connection of the ADT current with the conserved Noether current corresponding to
Killing diffeomorphism.

Einstein frame: In the Einstein frame, the relation between the Noether current (cor-
responding to the Killing diffeomorphism) and the ADT current is provided as [33]

√−g̃ J̃ i jADT [χ̃] = 1

2
δ(

√−g̃ J̃ i j [χ̃]) − √−g̃χ̃ [i 	̃ j](q̃, δq̃) . (44)

Now that we have obtained the expressions of the conserved currents and have
shown the connection of the Noether and the ADT currents, we have set the stage
nicely to obtain the thermodynamic laws in a covariant way. In the following section,
we obtain the thermodynamic laws in the two frames.

5 Thermodynamics in scalar–tensor gravity

Black hole thermodynamics has been one of the key aspects of general relativity. Inci-
dentally this thermodynamic concept can be extended on any null surface (e.g. Killing
horizon) which provides the idea of the thermodynamic structure of gravitational the-
ories. In the absence of a proper quantum theory of gravity, such thermodynamic
interpretaion provides an alternative viewpoint i.e. gravity can be interpreted as an
emergent phenomena and not any fundamental force. Several studies [13, 37, 122–
126] suggest that the thermodynamic aspect of GR should transcend well-beyond GR
and can be found inmodified theories of gravity as well. In the context of scalar–tensor
theory (or Brans–Dicke theory), it has been found that the Bekenstein–Hawking area
law of entropy does not hold. Instead, the black hole entropy in this theory is propor-
tional to the area of the black hole horizon as well as the scalar field φ [20, 127–129].
However, a systematic formulation of black hole thermodynamics in scalar–tensor
gravity has not been obtained earlier until recently [32, 33, 35]. In one work of Koga
and Maeda [18], the thermodynamic laws were obtained only after incorporating cer-
tain assumptions. These demonstrate that a proper formulation of thermodynamics in
ST gravity has always been challenging. As we discuss later, several non-trivial issues
arise while formulating the thermodynamic laws in scalar tensor theory, which are not
there in GR. In the following, we briefly discuss the problems which one encounters
during the formulation of thermodynamics in scalar–tensor gravity. Then we move
on to discuss how those problems can be overcome and the thermodynamic laws can
be established in the two frames. Moreover, it will be shown that the thermodynamic
parameters in the two frames are equivalent in the two frames.

5.1 Challenges to obtain thermodynamic description in scalar–tensor gravity

The main issue while formulating thermodynamic descriptions in the two frames
stems from the fact that the ST gravity is described in the two frames which are
conformally connected. As a matter of which, not only one has to formulate the
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thermodynamic laws, but also one has to worry about whether the defined thermo-
dynamic parameters are equivalent in the two frames. Moreover, from the work of
Kang [20], it was found that the black hole entropy in the Jordan frame is given as
S = φA/4, where A is the area of the BH horizon (i.e. A = ∫

H
√

σd2x , where σ

is the determinant of the induced metric on the BH horizon). However, for a long
time, it is known that the BH entropy is conformally invariant. The null geodesics are
left unchanged due to the conformal transformation. Therefore, a black hole, which
is also a null surface, remains unchanged under the conformal rescaling. On the con-
trary, the area/length changes under the conformal transformation. In Einstein frame,
the entropy (S̃) is given only by the area ( Ã) of the BH horizon. However, one can
obtain Ã = ∫

H
√

σ̃d2x=
∫
H φ

√
σd2x = φA , which imply that the entropy in the

two frames are equivalent. Although we have this straightforward proof regarding the
equivalence of the black hole entropy, major problem arises in defining the thermo-
dynamic energy. In literature, there are several prescriptions of energy, most of which
are not conformally invariant (such as the Misner-Sharp energy, Hawking–Heyward
quasilocal energy etc.). Thus, it becomes challenging to find a suitable candidate of
energy which can play the role of internal energy in ST gravity.

In the following, we obtain the thermodynamic relations of the two frames in a
covariant way and, thereby, we show that all ther thermodynamic parameters are
equivalent. Firstly, we perform our analysis for the Killing horizon as it is relatively
simpler. Then we obtain the first law for a generic null surface.

5.2 Thermodynamic description for the Killing horizon

In black hole thermodynamics, the Killing horizon has played a pivotal role. As it was
shown by Hawking (in the context of GR), the event horizon of a static spacetime is a
Killing horizon [130]. In addition, assumption of theKilling symmetry in the spacetime
largely simplifies the analysis. Therefore, for simplicity, we start the analysis for the
Killing horizon. Moreover, here we adopt the Wald’s formulation to obtain the first
law, which is a powerful way to obtain the first law and to define the thermodynamic
parameters in a covariant manner. Another reason to consider the Killing horizon at
first is that Wald’s formulation is defined for the Killing horizon only. Thus, here we
consider that the black hole horizon is a Killing horizon in both the frames. Before
moving on, we mention one important comment. Note that the rigidity theorem [130],
which ensures that the event horizon of a stationary black hole is also aKilling horizon,
has not been proved in the context of the scalar–tensor theory yet and it is an important
subject to work in future. Therefore, we claim that our analysis is valid only for the
Killing horizon. Since the proof of the rigidity theorem is still missing for scalar–
tensor theory, it is not sure whether it will be valid for an event horizon in scalar–tensor
gravity.

Firstly, we consider a Killing vector χ̃ in the Einstein frame (M, g̃ab, φ̃) , which
is also the generator of the Killing horizon H̃(K ) (in Einstein frame). Thus, from the
Killing vector condition, we have

£χ̃ g̃ab
(M, g̃,φ̃)= 0 , (45)
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Using the conformal transformation relation (2), we arrive at the Jordan frame
(M, gab, φ) and we obtain

£χ̃ gab
(M,g,φ)= − 1

φ

(
£χ̃ φ

)
gab . (46)

Thus, we find that χ̃ is a conformal Killing vector unless £χ̃ φ
(M,g,φ)= 0. Therefore,

we impose the condition

£χ̃ φ
(M,g,φ)= 0 , (47)

Using Eq. (3), one can obtain the analogous condition in Einstein frame as

£χ̃ φ̃
(M,g̃,φ̃)= 0 . (48)

Now, according to our notational convention, we define the Killing vector, which is
the generator of the Killing horizon H(K ) (in the Jordan frame) is χ . Thus, we have

χ̃a (M,gab,φ)= χa . (49)

Although the above expression shows that the contravariant components of the Killing
vectors are the same (under the assumption (47) or equivalently (48)), the covariant
components of the Killing vectors in the two frames are not exactly the same, they
are related by the conformal factor due to the transformation relation (2). Also note
that the relation (49) (which is consequence of the imposed condition (47) or (48)) are
followed from [19] and has also been imposed in [18] in the context of ST gravity.
Due to these imposed condition, the Killing horizon in one frame (say H(K )) maps
to the Killing horizon of the other frame (H̃(K )). With these preliminary discussions
about the Killing horizons, we obtain the thermodynamic laws for H(K ) and H̃(K ) in
the following.

5.2.1 The zeroth law

As we have discussed earlier, the Killing vectors (χ and χ̃) are the generators of the
of the Killing horizons (H(K ) and H̃(K ) respectively), which becomes null on the
horizon. Therefore, on the horizon, the Killing vectors also satisfy the null geodesic
conditions, which are given as

χ̃b∇̃bχ̃
a H̃(K )= κ̃χ̃a (50)

and

χb∇bχ
a H(K )= κχa . (51)
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Here κ and κ̃ are the non-affinity parameters of the null surface, which can also be
identified as the surface gravity of the Killing horizon. Under the condition (47) (or
equivalently (48)), we obtain κ and κ̃ are equivalent i.e. κ̃ = κ [19].

Here, we shall prove that κ (or κ̃) is constant on the horizon H(K ) (or H̃(K ) in
the Einstein frame). Later, when we prove the first law, we shall see that the same κ

(or κ̃) appears as the conjugate term of the black hole entropy. This will provide the
justification for identifying κ/2π (or κ̃/2π ) as the black hole temperature in the two
frames.Although,while proving the constancyofκ (or κ̃),we shall use thewell-defined
formalisms Riemannian manifold, the earlier approaches (which are formulated in the
context of GR), does not guarantee the constancy of κ (or κ̃) as the proof of the zeroth
law involves the dynamical equations of ST gravity in the two frames. In the following,
we prove the zeroth law in the two frames. The method which we adopt here has been
followed from [131]. The proof of the zeroth law, in this approach, relies on two crucial
considerations:

1. Null dominant energy condition: It states that, in addition to the weak energy
condition (T (m)

ab kakb ≥ 0, where ka is a future pointing null vector and T (m)
ab

corresponds to the energy-momentum tensor of external matter field), −T (m)
ab ka

(which, roughly, corresponds to the momentum measured by the observer) must
be a future pointing causal vector field (i.e. either timelike or null) as the flow of
mass-energy cannot be faster than the speed of light.

2. Topology of the horizon being R×J : It implies that the cross-section of the black
hole horizon is a spacelike compact two-surface (J ). Thus, the tangent space of
the horizon is either null or spacelike.

Jordan frame: In order to show that the surface gravity (κ) is unchanged on the
horizon, we need to define the directional derivative which lies on the tangent plane
ofH(K ). It is found that εabcdχa lies on the tangent plane ofH(K ) as εabcdχaχb = 0,
where εabcd is the spacetime volume form. Therefore, one can argue that εabcdχa∇b is
the derivative on the tangent plane of H(K ). Accounting the anti-symmetric property
of εabcd , the defined directional derivative εabcdχa∇b can be equivalently written as
χ[a∇b] . Therefore, our goal is proving χ[a∇b]κ = 0 . However, on the Killing horizon
H(K ) it can be proved [131]

χ[a∇b]κ
H(K )= −χ[a R f

b] χ f , (52)

where Rab is the Ricci tensor. Thus, our final goal boils down to prove χ[a R f
b] χ f = 0

on the horizon, which will prove the constancy of κ on H(K ) . Using the equation of
motion Eab = T (m)

ab /2, where Eab is defined in (20), one can obtain

−χ[a R f
b] χ f

(M,gab,φ)=
− 1

φ

(
8πχ[aT (m) f

b] χ f − ω

2φ
χ[aδ f

b] χ f (∇iφ∇ iφ) + ω

φ
χ[a∇b]φ (χ f ∇ f φ)

−1

2
χ[aδ f

b] χ f V (φ) + (χ[a∇b]∇ f φ)χ f − χ[aδ f
b] χ f (∇i∇ iφ)

)
− 1

2
χ[aδ f

b] χ f R.

(53)
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Using the imposed condition in the Jordan frame (47) the above result can be further
simplified as

χ[a R f
b] χ f = 1

φ

(
8πχ[aT (m) f

b] χ f + χ f (χ[a∇b]∇ f φ)
)

. (54)

Using Frobenius’ hypersurface orthogonality condition (i.e. χ[a∇bχc] = 0) and using
£χ (∇aφ) = 0 (which can be proved straightforwardly from the condition (47)), one
can prove that the last term of (54) vanishes on the horizon H(K ) and, thereby, (54)
yields

χ[a R f
b] χ f

H(K )= 1

φ
8πχ[aT (m) f

b] χ f . (55)

We now use another geometric condition: null Raychaudhuri equation (NRE). For the
Killing horizon, the expansion scalar, shear tensor and the deformation tensor—all
vanish. Therefore, the NRC on H(K ) yields

Rabχ
aχb H(K )= 0 . (56)

In the above relation (56), one can replace Rab using the equation of motion Eab =
T (m)
ab /2, where Eab is defined in (20). This imply

T (m)
ab χaχb H(K )= 0 , (57)

as all the terms containing φ vanish due to the condition (47) and also by using
£χ (∇aφ) = 0. Since χb is normal toH(K ), it implies that T (m)

ab χa lies on the tangent

plane of the Killing horizonH(K ), which means T (m)
ab χa is either null or spacelike. On

the other hand, we have accounted the null dominant energy condition, which imply
T (m)
ab χa can be either timelike or null. Since the option of being a timelike vector has

been ruled out earlier, the only option one left with is: T (m)
ab χa is null on H(K ) and,

hence, collinear to χb. Thus, one can obtain

T (m)a
b χb H(K )= αχa , (58)

where α is the proportionality factor. The straightforward use of Eq. (58) in (55), yields
χ[a R f

b] χ f = 0, which implies the constancy of κ on the Killing horizon H(K ) and,
thereby, the zeroth law is proven in the Jordan frame.

Einstein frame: In the Einstein frame, we can prove the constancy of κ̃ following
the similar arguments as of the Jordan frame. In this frame, we have the following
geometric identity

χ̃[a∇̃b]κ̃
H̃(K )= −χ̃[a R̃ f

b] χ̃ f . (59)
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As the arguments provided in the Jordan frame, proving the condition χ̃[a R̃ f
b] χ̃ f will

prove the constancy of κ̃ on H̃(K ) . Using the field Eq. (23), we obtain

χ̃[a R̃ f
b] χ̃ f = 16π

[1
2
χ̃[a T̃ (m) f

b] χ̃ f + 1

2
χ̃[a∇̃b]φ̃ (∇̃ f φ̃χ̃ f ) − 1

4
χ̃[aδ f

b] χ̃ f (∇̃ i φ̃∇̃i φ̃)

−1

2
χ̃[aδ f

b] χ̃ f U (φ̃) + 1

32π
χ̃[aδ f

b] χ̃ f R̃
]

. (60)

Using the condition imposed on φ̃ (48), one can simplify the above equation as

χ̃[a R̃ f
b] χ̃ f

H̃(K )= 8πχ̃[a T̃ (m) f
b] χ̃ f . (61)

The null Raychaudhuri equation (NRE) on the horizon H̃(K ) yields

R̃abχ̃
aχ̃b H̃(K )= 0 , (62)

as, for the Killing horizon, the expansion scalar and the shear tensor vanish. Now, in
(62), we replace R̃abχ̃

aχ̃b using the field Eq. (23) (along with 48) and, thereby, we
obtain

T̃ (m)
ab χ̃aχ̃b H̃(K )= 0 . (63)

Since χ̃a is normal to H̃(K ), the above relation (63) imply that T̃ (m)
ab χ̃a lies on the

tangent plane of the Killing horizon H̃(K ). Therefore, it can be concluded that T̃ (m)
ab χ̃a

is either normal or spacelike tensor. Now, we assume that the matter source obeys
the null dominant energy condition (NDEC) in the Einstein frame, which imply that
T̃ (m)

ab χ̃a has to be causal (i.e. either timelike or null). Since T̃ (m)
ab χ̃a cannot be timelike

as argued above, the only option left is: T̃ (m)
ab χ̃a is null on the horizon(i.e. collinear to

the Killing vector on the horizon). Thus, we have

T̃ (m)a
b χ̃b H̃(K )= α̃χ̃a , (64)

where α̃ is the proportionality factor. Using (64) in (61), we finally obtain

χ̃[a∇̃b]κ̃
H̃(K )= 0 , (65)

which implies the constancy of κ on the horizon H̃(K ) and, hence, the zeroth law is
proven in the Einstein frame.

We end up the discussion on the zeroth law with the following comments. From the
discussion presented here, it might seem to the reader that the null dominant energy
condition has been imposed twice as we have individually accounted NDEC in the
two frames. However, it is not the case. Since the energy momentum tensor in the
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two frames are connected to each other by the relation (26), the NDEC in one frame
corresponds to the NDEC of the other.

5.2.2 First law on the Killing horizon

In the earlier section, we have established the constancy of κ (or κ̃) on the Killing
horizon. In this section, we shall establish the first law in a covariant manner. Firstly we
obtain the first lawon theKilling horizon. Then,we generalize the first law for a generic
null surface. Moreover, we shall show that the thermodynamic parameters, which are
defined in these approaches are conformally invariant. In addition, this will also allow
us to interpret κ and κ̃ as the temperatures in the two frames. The proof of the first law
using the Wald’s formalism depends crucially on two important considerations: (1)
the Killing symmetry of the spacetime, (2) presence of a bifurcation Killing horizon
(which is two-dimensional spacelike cross-section of two Killing horizons generated
by the same Killing vector χa ; as a result, χa = 0 on the bifurcation surface). The
procedure of obtaining the first law, following the Wald’s formalism, are discussed as
follows.

Jordan frame: The proof of the first law using the Wald’s formalism is provided
using the conserved Noether current, which we have obtained earlier. Here we take an
arbitrary variation (due to the change in the dynamic fields gab and φ) of the conserved
Noether current on the Killing horizon with the on-shell condition and we show that
this variation leads to the first law. The Noether current in the Jordan frame is defined
in (30). The variation of Noether current corresponding to the Killing diffeomorphism
J ′a[χ ] (as our aim is to obtain the thermodynamic law on the Killing horizon) yields

δ(
√−gJ ′a[χ ]) = δ(

√−gL ′)χa − δ[√−g	′a(q, £χq)] . (66)

Here δχa = 0 as, in this case, δ represents the variation due to the change in the
variables q ∈ {gab, φ}. Using Eq. (19) (along with the on-shell conditions i.e. Eab = 0
and E(φ) = 0) it yields

δ(
√−gJ ′a[χ ]) = √−g[∇i	

′i (q, δq)]χa − δ[√−g	′a(q, £χq)] . (67)

Now, from a straightforward computation one can obtain the following identity

£χ [√−g	′a(q, δq)] = √−gχa∇i [	′i (q, δq)] − 2
√−g∇b[χ [a	′b](q, δq)] , (68)

where A[a Bb] = (1/2)(AaBb − AbBa). Using the above identity in (67), one can
obtain

δ(
√−gJ ′a[χ ])
= £χ [√−g	′a(q, δq)] − δ[√−g	′a(q, £χq)] + 2

√−g∇b[χ [a	′b](q, δq)] .

(69)
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One can now identify

ωa = −£χ [√−g	′a(q, δq)] + δ[√−g	′a(q, £χq)] , (70)

as the variation of the symplectic Hamiltonian density with the following arguments.
Remember, in classical mechanics, the variation of the Lagrangian L(xi , ẋi ) is given
as δL(xi , ẋi ) = [( ∂L

∂xi
) − dt (

∂L
∂ ẋi

)]δxi + dt [piδxi ] where xi corresponds to the gen-

eralized coordinate and pi = ∂L
∂ ẋi

corresponds to the generalized momentum. The
Euler-Lagrange’s equation ofmotion vanishes on-shell and, the variation of theHamil-
tonian (H(xi , pi ) = pi (dt xi )−L(xi , ẋi )) under the arbitrary variation of xi is provided
as

δH(xi , p
i ) = δ[pi (dt xi )] − dt [pi (δxi )] . (71)

Comparing (70) and (71) and with the following analogous correspondence
√−g	′a

(q, δq) ≡ pi (δxi ) and
√−g	′a(q, £ξq) ≡ pi (dt xi ), one can argueωa as the variation

of the symplecticHamiltoniandensity.Now,with the identification (70),Eq. (69) yields

ωa = −δ(
√−gJ ′a[χ ]) + 2

√−g∇b[χ [a	′b](q, δq)]. (72)

Thus, the total change in the Hamiltonian is provided as

δH [χ ]=
∫
c
d�a

ωa

√−g
=−δ

∫
c
d�a∇b(J

′ab[χ ]) + 2
∫
c
d�a∇b[χ [a	′b](q, δq)],

(73)

where, c symbolizes the Cauchy hypersurface, upon which the integration is been
performed. In addition the elemental surface area of the three-dimensional Cauchy
hypersurface has been defined as d�a = na

√
hd3x where na is the normal and h is

the determinant of the inducedmetric defined on c. Since, each term on theRHSof (73)
is a total derivative term, one can apply Stoke’s law and, thereby, the three integrations
can be written as two-surface integration. Now, this two-surface is not a compact one,
and it has two edges. The inner surface of c is considered as the bifurcation surface
i.e H which is the cross-section of the Killing horizon H(K ). As a result, χa = 0 on
H. One the other hand, the outer two-surface lies on the asymptotic infinity (i.e ∂c∞).
Therefore, from (73) one can obtain,

δH [χ ]=−1

2
δ

∫
H
d�ab J

′ab[χ ]+ 1

2
δ

∫
∂c∞

d�ab J
′ab[χ ]−

∫
∂c∞

d�abχ
[a	′b](q, δq).

(74)

Since χa = 0 on H, the contribution coming from the term χ [a	′b](q, δq) vanishes
onH. Moreover, it can be proved that the symplectic Hamiltonian (as defined in (70))
corresponding to a Killing vector always vanish. Therefore, the LHS of (74) also
vanish. Now, we consider the spacetime to be stationary and axisymmetric. Therefore,
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theKilling vectorχa can bewritten asχa = χa
(t)+�Hχa

(φ), whereχa
(t) andχa

(φ) are the
components of the Killing vector χa along time and azimuthal directions respectively.
With these considerations, the above Eq. (74) yields as the first law in the Jordan frame
i.e.

δM = T δS + �H δ J , (75)

where the temperature has been identified asT = κ/(2π) and the other thermodynamic
parameters are identified as [33]

δS = π

κ
δ

∫
H
d�ab J

′ab[χ ] ;

δM = 1

2

∫
∂c∞

[δ(d�ab J
′ab[χ ]) − 2d�abχ

[a	′b](q, δq)]
∣∣∣
χ=χ(t)

;

δ J = −1

2

∫
∂c∞

[δ(d�ab J
′ab[χ ]) − 2d�abχ

[a	′b](q, δq)]
∣∣∣
χ=χ(φ)

.

(76)

We end up the discussion on the first law in the Jordan frame with the following
discussions. Earlier, we have provided several arguments on why L ′ serves as more
appropriate Lagrangian than L in the Jordan frame. Therefore, while obtaining first
law, we have considered the Lagrangian in the Jordan frame as L ′. However, if we
had considered the Lagrangian in the Jordan frame as L , the thermodynamic 1st law
could still be obtained in the form of Eq. (75). However, in that case, the thermody-
namic parameters (such as S, M , J ), which are defined in the Eq. (76), would have
been obtained in terms of Jab[χ ]) and 	a(q, δq) instead of J ′ab[χ ]) and 	′a(q, δq).
However, in that case, the thermodynamic parameters will not be exactly equivalent
in the two frames (we shall discuss this in a greater detail later).

Einstein frame: In the Einstein frame, one can follow the same procedure i.e. one
can take the variation (due to the change of the field variables i.e. g̃ab and φ̃) of the
conserved Noether current on-shell on the Killing horizon. Then, following the same
algebraic steps as of the Jordan frame, one can obtain the first law in the Einstein frame
as

δM̃ = T̃ δ S̃ + �̃H δ J̃ , (77)

where, the thermodynamic parameters in this frame will be defined as

δ S̃ = π

κ̃
δ

∫
H
d�̃ab J̃

ab[χ̃] ;

δM̃ = 1

2

∫
∂c∞

[δ(d�̃ab J̃
ab[χ̃]) − 2d�̃abχ̃

[a	̃b](q̃, δq̃)]
∣∣∣
χ̃=χ̃(t)

;

δ J̃ = −1

2

∫
∂c∞

[δ(d�̃ab J̃
ab[χ̃ ]) − 2d�̃abχ̃

[a	̃b](q̃, δq̃)]
∣∣∣
χ̃=χ̃(φ)

.

(78)
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Thus, we have obtained the first law in the two frames. In addition, we also have
provided the covariant definition of the thermodynamic parameters in the two frames.
In the following, we show how the thermodynamic parameters are related in the two
frames.

Comparison of the thermodynamic quantities in the two frames: Earlier we have
discussed that the imposition of the constraint (47) (or equivalently 48), which ensure
that the Killing horizon in one frame is also a Killing horizon on the other, essentially
means that the contravariant components of the Killing vector are the same in the two
frames (as given by Eq. (49)). As χ̃a = χa , we obtain χ̃a = φχa and, the relation
between the complementary null vectors in the two frames are given as ka = k̃a . Thus,

d�̃ab = √
σ̃ (χ̃ak̃b − χ̃bk̃a)d

2x = φ2d�ab , (79)

where σ and σ̃ = φ2σ denotes the determinant of the induced metric of the two-
surfaces in the two frames (Jordan and Einstein) respectively. Furthermore, one can
prove

J̃ ab[χ̃] = J ′ab[χ ]
φ2 . (80)

and,

	̃a(q̃, δq̃) = 	′a(q, δq)

φ2 . (81)

Using the above relations in (76) and (78), one can straightforwardly obtain that
the thermodynamic parameters (entropy, internal energy and angular momentum) are
equivalent in the two frames. The equivalence of surface gravity has been discussed
earlier while obtaining the zeroth law. Proof of the equivalence of the angular velocity
is straightforward, which can be followed from [18].

As we have mentioned earlier, if we had considered the Lagrangian in the Jordan
frame as L instead of L ′ (as it has been done in the work of Koga and Maeda [18]),
we had obtained the thermodynamic parameters (S, M and J ) in terms of Jab[χ ]
and 	a(q, δq), in that case, the thermodynamic parameters (S, M and J ) cannot be
shown to be exactly equivalent. In that case, the equivalence of these thermodynamic
parameters are subject to some additional assumptions, such as the asymptotic flatness
of the spacetime [18]. However, in our approach no such assumptions are required.
Therefore, it can be said that the �φ term which restores the relation (18) in the
Jordan frame, plays a crucial role in establishing the equivalence of the thermodynamic
parameters in the two frames. Thus, the significance of the �φ term has been missed
earlier in the literature.

Finally, let us note that here we have obtained the thermodynamic laws using the
Wald’s formalism, and have defined the thermodynamic parameters in therms of the
Noether current. On the other hand, in the ADT approach one can also obtain the
thermodynamic law in a covariant manner, where one defines the thermodynamic
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parameters in terms of the ADT current. Earlier, we have shown that the Noether
and the ADT currents are related by Eqs. (43) and (44). Although the ADT and
Wald’s formalisms (to obtain the first law in a covariant manner) have been developed
independently, the relations (43) and (44) show these two approaches are essentially
the same. The proof of the first law in the ADT approach is established with the
argument that the on-shell variation of the ADT current vanishes. This statement is
equivalent to the Eq. (73), which has been obtained using Wald’s approach.

Note that for Killing horizon, the second law cannot be obtained as the black hole
entropy, which is given by the area of the Killing horizon (or the φA in the Jordan
frame) does not change. In the following, we will discuss another approach to obtain
thermodynamic interpretation ofSTgravity. Particularly one canfind a thermodynamic
structure of equation of motion for metric tensor on a generic null surface, where we
shall discuss about the second law.

5.3 Thermodynamic structure on a generic null surface

In the earlier section,wehaveobtained the thermodynamic laws for theKillinghorizon.
In this section, we show that, like in GR, the gravitational equation of ST theory has a
thermodynamic structure on a generic null surface. In conventional thermodynamics,
the constancy of thermodynamic temperature (i.e. the zeroth law) is obtained for a
system in thermodynamic equilibrium. In black hole thermodynamics it corresponds
to the system of Killing horizon. Therefore, for a generic null surface, we abstain from
proving the zeroth law as we cannot argue how the idea of thermal equilibrium is
justified for such system (i.e. for the generic null hypersurface). Therefore, here we
first describe the geometry of a null surface and then we move on to discuss about the
first law and the second law in the two frames.

5.3.1 Null geometry and the (1+3) foliation of a null surface

We consider that the whole (1 + 3) dimensional spacetime manifold is (M, gab).
The null surface (denoted by H(N )), which is a three-dimensional hypersurface
(H(N ), γαβ), is a submanifold lying inside (M, gab). Now, the null surface is char-
acterized by the fact that its tangent space is degenerate i.e. if a vector vα lies on the
tangent plane ofH(N ), one obtains γαβvα = 0. For this reason (that the tangent space
is degenerate), it is impossible to define a projection operator, which projects every
vector onto its tangent plane. In addition, the null surface is generated by the null
geodesic congruences. Therefore, we denote the normal toH(N ) as la (that generates
the null surface), which is a null vector and obeys the geodesic equation la∇alb = κlb

[132]. Here κ is the non-affinity parameter. For black hole horizon, it can be identified
as the surface gravity of the black hole. Since the null surfaceH(N ) is self-orthogonal,
it will be useful to introduce the auxiliary null vector ka , which is defined by the
condition laka = −1.

Although we cannot define a projection tensor (or induced metric) for H(N ), we
can foliateH(N ) in terms of a family of two-dimensional spacelike hypersurfaces and
can define a projection vector onto it. We consider the whole manifold (M, gab) is
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foliated in terms of t =const. hypersurfaces, which are denoted by�t . The intersection
of �t andH(N ) will be a two dimensional hypersurface St (i.e. St = H(N ) ∩�t ). The
induced metric on St can be given in terms of la and ka as

qab = gab + lakb + lbka . (82)

As we have discussed earlier, the conformal transformation maps a null surface
H(N ) (Jordan frame) to a null surface H̃(N ) (Einstein frame). The null surface of the
conformal frame (or the Einsten frame) will be will be generated by the null vector l̃a ,
which obeys the geodesic equation l̃a∇̃al̃b = κ̃ l̃b. Furthermore, the induced metric on
the spatial cross-section of H̃(N ) (i.e. on S̃t ) will be given as

q̃ab = g̃ab + l̃a k̃b + l̃bk̃a . (83)

The components of null vectors are connected in the two frames as [34]

l̃a = la, l̃a = φla

k̃a = 1

φ
ka, k̃a = ka . (84)

Now we move on to obtain the first law of a generic null hypersurface in the two
frames

5.3.2 Thermodynamic structure of ST gravity

It has been found earlier (in the context of GR [125, 133, 134] and Lanczos–Lovelock
gravity [135–137]) that the dynamic equation projected on the horizon provides the
equilibrium version provides the expression of first law. In that case, the change in
thermodynamic parameters are arises due to the virtual change of the of the horizon
radius (say from rH to rH + δrH ). Later, for a generic null surface, the same law has
been obtained by taking a proper projection of the dynamical equation on the horizon
surface [133, 135, 138, 139]. In that case, the change in thermodynamic parameters
arise due to the virtual displacement of the horizon along the affine parameter (λ(k)).

In this case, the dynamical equation in the Jordan frame is given as Eab = T (m)
ab /2 (in

the Einstein frame, it is Ẽab = T̃ (m)
ab /2) . It can be shown, the projection of Eab on

H(N ) provides several interesting implications.

• Eablalb (i.e. the projection of Eab along the normal of the H(N )) is related to the
second law of black hole thermodynamics. Later, when we prove the generalized
second law, it will be shown that this projection will play the crucial role to prove
the entropy increase theorem.

• Eablaqbc is related to the fluid-gravity correspondence in scalar tensor gravity [34].
• Eablakb is related to the thermodynamic description of a generic null surface in
scalar tensor gravity. Thus, in the present case, this projectionwill be used to obtain
the first law.
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Although we have discussed about projection of Eab only, the same comments are
valid for Ẽab as well. In the following, we discuss the procedure to obtain the first
law like structure of a generic null hypersurface using the projections Eablakb and
Ẽabl̃a k̃b in the two frames.

The finding of the 1st law like structure in the two frames largely depends upon the
following geometrical identity (see [139], where this identity has been obtained).

−κθ(k) = −Da�
a − �a�

a + θ(l)θ(k) + li∇iθ(k) + 1

2
(2)R − Rabl

akb − 1

2
R ,

(85)

where Da is the covariant derivative operator defined on the manifold (St , qab) and
(2)R denotes the Ricci scalar associated with the operator Da . The proof of the 1st law
in the Einstein frame is comparatively simpler than the Jordan frame. Therefore, for
simplicity, first we start the analysis in the Einstein frame.

Einstein frame: In the Einstein frame, the expression of the above identity (85) is
essentially the same, albeit defined in terms of the tilde variables

−κ̃ θ̃
(k̃) = −D̃a�̃

a − �̃a�̃
a + θ̃

(l̃)θ̃(k̃) + l̃ i ∇̃i θ̃(k̃) + 1

2
(2) R̃ − R̃abl̃

a k̃b − 1

2
R̃ . (86)

One can replace the last two terms of (86) using the projection Ẽabl̃a k̃b and can obtain
the 1st law in the following manner. We consider a virtual displacement of the null
surface along the direction of the auxiliary null vector k̃a . Firstly, let us consider k̃a is
parametrized by λ

(k̃), which implies k̃i = −dxi/dλ
(k̃). Here, we put the extra negative

sign in the definition of k̃i for the following reasons. Remember, that the auxiliary null
vector k̃i also corresponds to the ingoing null vector ( xi decreases for the increase of
λ

(k̃)). Therefore, in order to make the change of the thermodynamic quantities positive

along the virtual displacement along k̃i , we defined k̃i with the negative sign. The
virtual displacement along k̃i can be explained in the following manner. We consider
two null surfaces are located at λ

(k̃) = 0 and at λ
(k̃) = δλ

(k̃). A virtual displacement

along k̃i implies a shift from one solution of null hypersurface (located at λ
(k̃) = 0) to

the other (located at λ
(k̃) = δλ

(k̃)). Under this virtual displacement, the above identity
(86) can be identified as the 1st law of thermodynamics for the generic null surface.
For that, we multiply both sides of the Eq. (86) with δλ

(k̃) (accounting an overall

factor of 1/8π ) and integrate it over the two-surface S̃t . Also, we use the projection
Ẽabl̃a k̃b = T̃ (m)

ab l̃a k̃b/2 and finally obtain

−
∫
S̃t
d2x

√
q̃ δλ

(k̃)
κ̃

2π

1

4
θ̃
(k̃)

=
∫
S̃t
d2x

√
q̃ δλ

(k̃)
1

8π

[1
2
2 R̃ + l̃ i ∇̃i θ̃(k̃) + θ̃

(l̃)θ̃(k̃) − �̃a�̃
a − D̃A�̃A

]

−
∫
S̃t
d2x

√
q̃ δλ

(k̃)

[
T̃ (φ̃)
ab + T̃ (m)

ab

]
l̃a k̃b . (87)
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Here, T̃ (φ̃)
ab corresponds to the Energy-momentum tensor of the scalar field φ, which

is given as

T̃ (φ̃)
ab = ∇̃a φ̃∇̃bφ̃ − 1

2
g̃ab∇̃ i φ̃∇̃i φ̃ − g̃abU (φ̃) . (88)

The above expression of Eq. (87) can be expressed as the 1st law on the null surface
of the following form

∫
S̃t
d2x T̃ δ

λ(k̃)s̃ = δ
λ(k̃) Ẽ + F̃δλ

(k̃) , (89)

Here, the thermodynamic parameters are identified as follows. The temperature T̃ is
identified as T̃ = κ̃/2π , the entropy density s̃ is identified as s̃ = √

q̃/4 (thus, the
total entropy is quarter of the horizon area i.e. S̃ = ∫

S̃t
d2xs̃ = 1

4

∫
S̃t

√
q̃d2x). Here

δ
λ(k̃)s̃ corresponds to the change of entropy density due to the virtual displacement

along k̃, which is explicitly given as

δ
λ(k̃)s̃ = ds̃

dλ
(k̃)

δλ
(k̃) = 1

4

d
√
q̃

dλ
(k̃)

δλ
(k̃) = −1

4

√
q̃ θ̃

(k̃)δλ(k̃) . (90)

Similarly, δ
λ(k̃) Ẽ (in 89) implies the change of energy due to the mentioned virtual

displacement, which is given as

δ
λ(k̃) Ẽ = 1

8π

∫
S̃t
d2x

√
q̃ δλ

(k̃)

[1
2
2 R̃ + l̃ i ∇̃i θ̃(k̃) + θ̃

(l̃)θ̃(k̃) − �̃a�̃
a − D̃A�̃A

]
.

(91)

The expression of energy Ẽ (associated with the two surface St ) can be obtained
performing an indefinite integration over the affine length δλ

(k̃), which is given as

Ẽ = 1

8π

∫
S̃t

∫
d2x

√
q̃ dλ

(k̃)

[1
2
2 R̃ + l̃ i ∇̃i θ̃(k̃) + θ̃

(l̃)θ̃(k̃) − �̃a�̃
a − D̃A�̃A

]
. (92)

Note that the above expression of energy resembles significantly to the expression of
Hawking–Heyward quasi-local energy [140, 141]. In addition, the identification of the
above expression (92) as energy because it indeed provides the expression of energy
for the well-known spacetimes [133, 139].

Finally, we identify the thermodynamic pressure (P̃) as P̃ = −(T̃ (φ̃)
ab + T̃ (m)

ab )l̃a k̃b,
which is inspired from the earlier work [140] and recently been defined in [133, 135,
138] in a similar way. The work term (W̃ ) due to the virtual displacement δλ

(k̃) is,
thus, obtained as

W̃ = F̃δλ
(k̃) =

∫
S̃t
d2x

√
q̃ δλ

(k̃) P̃ = −
∫
S̃t
d2x

√
q̃ δλ

(k̃)(T̃
(φ̃)
ab + T̃ (m)

ab )l̃a k̃b , (93)
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where F̃ , which is the pressure integrated over the two-surface St , can be interpreted
as the generalized force conjugate to the virtual displacement δλ

(k̃).

Thus, in this section we show that the relevant projection of Ẽab on to the null
surface (i.e. Ẽabl̃a k̃b), give rise to the expression of the first law. In the following, we
aim to establish the similar thermodynamic interpretation in the Jordan frame. Before
that, let us note that here the thermodynamic parameters are are defined in terms of
several parameters like κ̃ θ̃

(l̃), θ̃(k̃), �̃a etc., which are related to the parameters of the
Jordan frame (κ , θ(l), θ(k), �a etc.) as [34, 36]

θ̃
(l̃) = θ(l) + li∇i ln φ ,

θ̃
(k̃) = 1

φ

[
θ(k) + ki∇i ln φ

]
,

κ̃ = κ + li∇i ln φ ,

ω̃a = ωa + 1

2

[
lak

i∇i ln φ + ∇a ln φ − kal
i∇i ln φ

]
,

�̃a = �a + 1

2
qba∇b ln φ . (94)

With these, we now move forward to obtain the first law of a generic null surface in
the Jordan frame.

Jordan frame:As we have mentioned earlier, the major challenge which arises in the
formulation of thermodynamic law in the scalar–tensor gravity, is taking the stand on
whether the thermodynamic parameters in the two frames are conformally invariant.
Earlier, for theKillinghorizon,wehave established that the thermodynamicparameters
are exactly equivalent in the two frames. Therefore, we expect the same to hold for
the generic null surface as well. The thermodynamic 1st law and the thermodynamic
parameters are consistently obtained for a generic null surface in the Einstein frame.
Therefore, here our goal is obtaining the first law in such a way that the defined
thermodynamic parameters becomes conformally equivalent to that of the Einstein
frame. This is done in the following manner. Inspired by the method which we earlier
developed to obtain fluid-gravity correspondence [34], we defined the thermodynamic
parameters of the Jordan frame in terms of the parameters of the Einstein frame (such
as θ̃

(l̃), θ̃
(k̃), �̃a etc.) in the background of the Jordan frame (gab, qab , ∇a , DA etc.).

The relevant relation in the Jordan frame can be obtained as [36]

−κ̃ θ̃
(k̃) = −Da�̃

a − �̃i∇i (ln φ) − �̃a�̃
a + θ̃

(l̃)θ̃(k̃) + li∇i θ̃(k̃)

+ 1

2φ
(2)R − 1

2φ
Di Di (ln φ)

−
( Rablakb

φ
+ R

2φ
+ 3

2φ
lakb∇a(ln φ)∇b(ln φ) − lakb

φ2 ∇a∇bφ − 1

φ2∇ i∇iφ

+ 3

4φ
∇i (ln φ)∇ i (ln φ)

)
.

(95)
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Now, using the projection of Eab (i.e. Eablakb = T (m)
ab lakb/2) one obtains

−φκ̃θ̃
(k̃) = −φDa�̃

a − �̃i∇i (ln φ) − φ�̃a�̃
a + φθ̃

(l̃)θ̃(k̃) + φli∇i θ̃(k̃) + 1

2
(2)R

−1

2
Di Di (ln φ)

−lakb
[(2ω + 3

2

){
∇a(ln φ)∇b(ln φ) − 1

2
gab∇ i (ln φ)∇i (ln φ)

}
− V

2φ
gab

]

−8π

φ
T (m)
ab lakb . (96)

Now, we have obtained earlier the expression of T̃ (φ̃)
ab in Eq. (88), which under the

transformation relations (2) and (3) can be written equivalently as

T̃ (φ̃)
ab ≡

(2ω + 3

16π

){
∇a(ln φ)∇b(ln φ) − 1

2
gab∇ i (ln φ)∇i (ln φ)

}
− V

16πφ
gab (97)

In addition, the virtual displacement by a small amount of affine length is related to
the virtual displacement in the spatial coordinates as

δxa = −k̃aδλ
(k̃) = −ka

φ
δλ

(k̃) = −kaδλk . (98)

This implies that the virtual displacement by an amount δλ
(k̃) is equivalent to the

displacement φ δλk in the Einstein frame. Therefore, we multiply the both sides of
Eq. (96) by φ δλk and integrate over the two-surface St , which yields

−
∫
St
d2x

√
q δλ(k)φ

2 κ̃

2π

1

4
θ̃
(k̃) = −

∫
St
d2x

√
q δλ(k)φ

[
T̃ (φ̃)
ab + T (m)

ab
φ

]
lakb

+
∫
St
d2x

√
q δλ(k)

φ2

8π

[ 1

2φ
(2)R + li∇i θ̃(k̃) + θ̃

(l̃)θ̃(k̃) − �̃a�̃
a − D̃A�̃A − �̃i∇i (ln φ)

− 1

2φ
Di Di (ln φ)

]
. (99)

The above relation (99) can be interpreted as the 1st law in the Jordan frame, which
is given as

∫
St
d2xT δλ(k)s = δλ(k)E + Fδλ(k) . (100)

In this frame, the thermodynamic parameters are identified as follows. The temperature
in this frame is identified as T = κ/2π , which have been proven to be equivalent to
T̃ for the Killing horizon. The entropy density is identified as s = φ

√
q/4, so that the
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total entropy is defined as

S =
∫
St
sd2x =

∫
St

φ

√
q

4
d2x =

∫
S̃t

√
q̃

4
d2x = S̃ , (101)

as
√
q̃ = φ

√
q . The change of entropy density due to the virtual displacement of the

null surface is defined as δλ(k)s, which can be explicitly obtained as

δλ(k)s = ds

dλ(k)
δλ(k) = δλ(k)

4

(
φ
d
√
q

dλ(k)
+ √

q
dφ

dλ(k)

)
= −δλ(k)

√
qφ

4

(
θ(k) + ki∇i (ln φ)

)

= − 1

4
φ2√q θ̃

(k̃)δλ(k) = −1

4

√
q̃ θ̃

(k̃)δλ(k̃) = δ
λ(k̃)s̃ , (102)

The change in energy E (due to the virtual displacement) can be obtained as

δλ(k)E = 1

8π

∫
St
d2x

√
q δλ(k)φ

2
[ 1

2φ
(2)R + li∇i θ̃(k̃) + θ̃

(l̃)θ̃(k̃) − �̃a�̃
a − D̃A�̃A

−�̃i∇i (ln φ) − 1

2φ
Di Di (ln φ)

]
,

(103)

and the total energy associated to St can be obtained as

E = 1

8π

∫
St

∫
d2x

√
q dλ(k)φ

2
[ 1

2φ
(2)R + li∇i θ̃(k̃) + θ̃

(l̃)θ̃(k̃) − �̃a�̃
a − D̃A�̃A

−�̃i∇i (ln φ) − 1

2φ
Di Di (ln φ)

]
.

(104)

Thus, due to the presence of the scalar field φ (which is non-minimally coupled), the
expression of energy and its variation has a bit different expression as compared to
that of the Einstein frame. However, using the conformal transformation relations, one
can obtain that both the energy and its variation is equivalent in the two frames (i.e.
E = Ẽ and δλ(k)E = δ

λ(k̃) Ẽ).
The work term is defined in the following manner. Firstly, the pressure (P) is

identified as P = −(φT̃ (φ̃)
ab + T (m)

ab )lakb (thus, P = φ2 P̃). The expression of work
done (under the virtual displacement) is obtained in the same way as of the Einstein
frame, which is given as

W = Fδλ(k) = −
∫
St
d2x

√
q δλ(k)

(
φT̃ (φ̃)

ab + T (m)
ab

)
lakb , (105)

where the generalized force term F (which is conjugate to the virtual displacement
δλ(k)) is identified as F = ∫

St
d2x

√
qP (which implies F = φ F̃). Thus, one can find

that the work done due to the virtual displacement are the equivalent i.e. W = W̃ .
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Thus, in this section, we have obtained the first law in the two frames and have
obtained the fact that the thermodynamic parameters are equivalent in the two frames,
which have been a major challenge for long. In the following, we obtain the entropy
increase theorem (i.e. the second law) in the two frames.

There are two well known ways of obtaining the first law for black holes: (1) The
physical process version, in which the black hole parameters actually change by a
physical process (such as the increase of the black hole mass by absorbing more mass)
(2) the equilibrium version/ stationary state version, in which black hole parameters
do not change but we just compare two (stationary) black holes with parameters being
infinitesimally close to each other. The method which we have adopted (originally
developed by Padmanabhan et al. [133]) evolves around the concept of virtual dis-
placement and it resembles to the equilibrium version. Here, we compare two null
surfaces, locations of which are separated by δxi = −kiδλ(k). Due to this virtual
displacement in the location, we observed that the equation of motion projected on the
null surface has a thermodynamic structure which has resemblance with the first law of
thermodynamics. By comparing with the usual law of thermodynamics we identified
the change in thermodynamic quantities.

Another important comment is as follows. As we know, there are no unique way
of identifying energy in general relativity. As a result, several prescriptions are pro-
vided in the literature such as ADMenergy,Misner–Sharp energy, Hawking–Hayward
energy, Brown–York energy etc. Our definition of energy (in Eq. 92) looks very sim-
ilar to the Hawking–Hayward energy. However, the Hawking–Hayward energy is not
conformally invariant (and therefore cannot be the probable candidate of energy in
our case for the reasons described in the manuscript), whereas, the energy which we
have defined, is conformally invariant. Furthermore, for the metric in Gaussian null
coordinates (GNC), our definition of energy boils down to the expression of energy
defined in the work of Padmanabhan [133].

5.3.3 The second law

Earlier, we have obtained the expression of entropy in the two frames. Here, it will
be proved that the change in entropy (either by any physical process or any near-
equilibrium change) is always positive quantity, i.e. entropy always increases. The
proof of the entropy increase theorem crucially depends on the following three aspects:
(1) The null Raychaudhuri equation (NRE), (2) The projection Eablalb (or Ẽabl̃al̃b)
and (iii) Null energy condition i.e. T (m)

ab l
alb ≥ 0 (or equivalently T̃ (m)

ab l̃
al̃b ≥ 0;

as T̃ (m)
ab and T (m)

ab are related by (26), where as l̃a and la are related by (84)). In the
following, we establish the entropy increase theorem in the two frames. For simplicity,
we first do our analysis in the Einstein frame, then the same analysis is performed for
the Jordan frame.

Einstein frame:Thenull horizon is generated by the null geodesic congruences,where
the generator of the null surface l̃a satisfies the geodesic condition l̃a∇̃al̃b = κ̃ k̃b. Thus,
the change in entropy along the null generator (l̃a) is measured by
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d S̃

dλ
(l̃)

= 1

4

∫
S̃t

√
q̃

dλ
(l̃)

d2x = 1

4

∫
S̃t

√
q̃ θ̃

(l̃)d
2x (106)

Thus, from (106), it can be concluded that the entropy can decrease only when θ̃
(l̃) is

negative. Now, the null Raychaudhuri equation (NRE ) is given as

d θ̃
(l̃)

dλ
(l̃)

= κ̃ θ̃
(l̃) − σ̃abσ̃

ab − 1

2
θ̃2
(l̃)

− R̃abl̃
al̃b . (107)

Using the projection of Ẽabl̃al̃b in (107), one can obtain

d θ̃
(l̃)

dλ
(l̃)

= κ̃ θ̃
(l̃) − σ̃abσ̃

ab − 1

2
θ̃2
(l̃)

− 8π(T̃ φ̃
ab + T̃ (m)

ab )l̃a l̃b . (108)

One can find that T̃ φ̃
abl̃

al̃b = (l̃a∂a φ̃)2, which is a positive definite. Now, we consider

that the external matter source obeys the null energy condition T̃ (m)
ab l̃

al̃b ≥ 0 . There-
fore, all the terms on the RHS of (108) is negative except the term κ̃ θ̃

(l̃) . Now, if θ̃
(l̃)

is initially negative, then it implies
d θ̃

(l̃)
dλ

(l̃)
< 0, which means θ̃

(l̃) will further decrease

and become −∞ within finite λ
(l̃). Thus, ultimately it will lead to the formation of

caustic. Hence, in order to assure that there is no caustic in future θ̃
(l̃) will have to be

positive always. This, in Eq. (106) implies that the entropy cannot decrease and we
have

d S̃

dλ
(l̃)

≥ 0 , (109)

which is the second law in the Einstein frame.

Jordan frame: In the Jordan frame, the entropy increase theorem can be proven
following the similar steps as of the Einstein frame. In this frame, the entropy is given

as S = ∫
St

φ
√
q
4 d2x . Thus, the change in entropy along la is given as

dS

dλ
= 1

4

∫
St

√
q
(
φθ + li∇iφ

)
d2x = 1

4

∫
St

√
qφθ̃

(l̃)d
2x . (110)

Thus, the change of entropy in the Jordan frame is determined in terms of the parameter
θ̃
(l̃) and not θ(l) . The fact that θ̃

(l̃) cannot be negative, has been proven earlier in the

Einstein frame. Nevertheless, the positivity of θ̃
(l̃) can be proven independently using

the null Raychaudhuri equation (NRE) of the Jordan frame, the projection Eablalb

and the null energy condition of the Jordan frame (i.e. T (m)
ab lalb > 0) [33, 34]. This

is possible because (1) NRE is a geometric identity and the similar expression holds
in both the frames (either written in terms of tilde variables of the Einstein frame or
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in terms of non-tilde variables of the Jordan frame), (2) The dynamical equations Eab

and Ẽab are equivalent (i.e. Eab = φ Ẽab) and (3) The null energy condition in one
frame implies the same of another frame (as the energymomentum tensor in one frame
in related to the same in the other frame by Eq. (26) and the null vectors are related
by (84)). In any case, one can finally obtain

dS

dλ
≥ 0 , (111)

which is the entropy increase theorem in the Jordan frame.
Finally, it is worth to point out that no caustic is one of the key argument to prove

the second law. In this regard we mention that the argument of no caustic is valid for
event horizon and for a generic null surface with the generators having no future end
points (as in general caustics may appear for a null surface). Thus, the proof of the
second law can be attributed to those null surfaces, the generators of which do not
have any future end points (such as the event horizon of a black hole).

6 Fluid-gravity correspondence

In the earlier section, we have extensively discussed about the thermodynamics in the
two frames of the scalar–tensor gravity. In that case, we have explicitly mentioned
how, in addition to the proper formulation of thermodynamics, one has to worry about
whether the thermodynamic parameters are conformally invariant. The analogy of
gravity with fluid dynamics is quite an old finding. It was shown byDamour [142, 143]
that the Einstein’s equation, when projected on the null surface (Gablaqbc ), provides
an analogous equation of the non-relativistic Navier–Stokes equation. This work was
in consistent with the idea of the black hole sear viscosity proposed by Hawking
and Hartle [144–146]. This finding by Damour later paved the idea of the membrane
paradigm of black hole horizon. Here we briefly discuss that the fluid-gravity analogy
can be established in scalar–tensor gravity as well following the footsteps of Damour.
However, in this case, one can draw two pictures of fluid-gravity connection: (1) The
equivalent picture, where the thermodynamic parameters are equivalent but, it may
violate the well-known Kovtun–Son–Starinets (KSS) bound and (2) The inequivalent
picturewhere theKSSbound ismaintainedbut thefluid parameters are not conformally
invariant. In the following, we provide fluid-gravity correspondence in scalar–tensor
gravity and discuss these two pictures in more detail.

Before going to the main discussion let us pointed out that there are two radically
different approaches of fluid-gravity, one is via AdS/CFT and the other one via projec-
tion of the Einstein’s equation on the null surface, which is inspired by the membrane
paradigm. However, in literature, both the approaches are known as the “fluid-gravity
correspondence”. This is why we also call it “fluid-gravity correspondence in the
scalar–tensor gravity”, while our method follows from the second approach (projec-
tion of dynamical equation). In the AdS/CFT approach, the bulk metric geometry
is constructed by using the fluid data living at the asymptotic boundary such that
the Brown-York stress tensor of the geometry yields the required fluid equation on
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this boundary. Whereas the second approach, which we followed here, is completely
different from the earlier one and implies different significance

Note that the approach, which we discuss in the following, has an enormous sig-
nificance in the context of interpreting gravity as an emergent phenomenon (which
has been advocated in the work of T. Padmanabhan as well, such as [147]). Earlier
it was shown that the Einstein’s equation, when it is projected on the null surface,
takes the form of fluid-dynamic equation (i.e. the Navier–Stokes equation), which
implies as Einstein’s equation has the same status as of the equations of fluid dynam-
ics. Therefore, gravity can be interpreted as an emergent phenomenon like, say, fluid
mechanics. In addition, although these two approaches are different, they converge to
the same expression of the viscosity coefficients and the KSS bounds. Thus both of
these approaches are the well-accepted formalisms in the literature. In our manuscript,
we have extended the second approach for the scalar–tensor and f (R) gravity.

The fluid-gravity analogy in the present context is established from the following
geometrical identity [147]

Rmnl
mqna = qna £l�n + θ(l)�a − Da

(θ(l)

2
+ κ

)
+ Diσ

i
a , (112)

In the following, we obtain the fluid-gravity correspondence in the two frames. In
Einstein frame, the fluid-gravity correspondence can be obtained following the same
steps as of the Einstein’s gravity and there is no ambiguity in it i.e. the Damour–
Navier–Stokes equation can be obtained straightforwardly and there is no alternative
picture like the Jordan frame. Therefore, we start our analysis in the Einstein frame
and, thereafter, we move on to discuss the two alternative pictures in the Jordan frame.

Einstein frame: As we have mentioned earlier, the fluid-gravity correspondence can
be obtained from the geometric identity (112), which can be written in the Einstein
frame as (i.e. with the tilde variables)

R̃mnl̃
mq̃na = q̃na £l̃�̃n + θ̃ (l̃)�̃a − D̃a(

θ̃ (l̃)

2
+ κ̃) + D̃i σ̃

i
a . (113)

The LHS of (113) can be replaced using the projection Ẽmnl̃mq̃na and, thereby, one
can obtain

8π T̃ (φ̃)
mn l̃

mq̃na = q̃na £l̃�̃n + θ̃ (l̃)�̃a − D̃a

(
θ̃ (l̃)

2
+ κ̃

)
+ D̃i σ̃

i
a , (114)

where, the matter source has been disregarded (i.e. the dynamical equation is given as
Ẽmn = 0) . The above Eq. (114) can be identified as the gravitational Navier–Stokes
equation or the Damour–Navier–Stokes equation with the following identifications:

F̃a = T̃ (φ̃)
ab l̃b corresponds to the external force term; π̃a = −�̃a/8π corresponds to

the momentum density; the bulk and the shear viscosity coefficients can be identified
as ξ̃ = −1/16π and η̃ = 1/16π respectively (note the total viscous tensor is given as
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2η̃σ̃ a
b +ξ̃ δab θ̃

(l̃), where ξ̃ corresponds to the bulk viscosity coefficient and η̃ corresponds
to the shear viscosity coefficient); the pressure is identified as P̃ = κ̃/8π .

If we had considered the external matter source, the energy-momentum tensor
would have appeared into the picture (as the equation of motion, in that case, would
be Ẽab = T̃ (m)

ab /2 and, therefore, it would have appeared when one replaces R̃mnl̃mq̃na
of Eq. (113) by the projection of Ẽmnl̃mq̃na ). In that case only the external force

term gets modified as F̃a = (T̃ (φ̃)
ab + T̃ (m)

ab )l̃b . Also, note that in the obtained DNS
equation (114), there is a Lie derivative of the momentum density. If we change the
Lie-derivative by the convective derivative, an extra θ̃ ia�̃i appears on the RHS of(114),
which does not have any fluid-dynamic correspondence. This makes DNS equation
different from the classical Navier–Stokes equation. This issue has been highlighted
in the literature [132, 147, 148].

Finally, here we define the entropy density as S̃ = S̃/ Ã = 1/4 (note the difference
between s̃ (which has been defined earlier) and S̃, though we loosely call both as the
“entropy density”). Thereby, we obtain the shear viscosity coefficient to the entropy
density ratio as

η̃

S̃
= 1

4π
. (115)

which is the same as of the general relativity and is consistent with the KSS bound
(i.e. η̃

S̃
≥ 1

4π ).
In the following section, we discuss about the fluid-gravity correspondence in the

Jordan frame.

Jordan frame: Due to the presence of non-minimal coupling in the Jordan frame,
the formulation of the fluid-gravity correspondence is a bit non-trivial. As we have
mentioned earlier, in this frame, the DNS equation can be obtained in the two different
ways and these two ways represents two different representations (1) the equivalent
picture and (2) the inequivalent picture. In the following, we discuss about the both
the pictures and their significance.

6.1 The inequivalent picture

The DNS equation in the inequivalent picture can be obtained from the identity (112),
which does not contain any scalar field φ. From a straightforward calculation, one can
obtain (incorporating φ)

φRmnl
mqna

= qna £l(φ�n) + θ(l)(φ�a) − φ

2
Daθ

(l) − Da(φκ) + φDiσ
i
a + 2lmqna

(
ω[m∇n]φ

)
.

(116)
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The LHS of the above Eq. (116) can be replaced by using the projection Emnlmqna and,
thereby, one can obtain

8πTmnl
mqna

= qna £l(φ�n) + θ(l)(φ�a) − φ

2
Daθ

(l) − Da(φκ) + φDiσ
i
a + 2lmqna

(
ω[m∇n]φ

)
,

(117)

where Tmn is given as

Tmn = ω

8πφ

(
∇mφ∇nφ − 1

2
gmn∇ iφ∇iφ

)
− Vgmn

16π
+ 1

8π

(
∇m∇nφ − gmn∇i∇ iφ

)
.

(118)

The above Eq. (117) has the structure of the DNS-like equation in the Jordan frame.
From (117), the fluid parameters can be identified as the following: The external force
term Fa is identified as Fa = Tablb (for the presence of the external matter field, the
force term gets modified as Fa = (Tab + T (m)

ab )lb); the momentum density (πa) can
be obtained as πa = −φ�a/8π ; the pressure term (P) is identified as P = φκ/8π ;
the bulk viscosity coefficient (ξ ) is obtained as ξ = −φ/16π and the shear viscosity
coefficient (η) can be found as η = φ/16π . Finally, the last term of Eq. (117) can be
identified as Coriolis-like force term and Eq. (117) can be interpreted as the Navier–
Stokes equation of a fluid system in a rotating frame, angular velocity of which is
provided as Wa = ∇aφ/2. In this case, the ratio of shear viscosity (η) to the entropy
density (S = φ/4) is given as

η

S
= 1

4π
, (119)

which saturates theKSSbound and is the same as of theEinstein frame. In addition, this
equivalent picture is also consistent with the realization of the non-minimal coupling
in terms of the rescaling of the Newtonian constant G −→ Gef f = G/φ in Einstein’s
GR [34] 2.

As the title implies, the fluid parameters of the Jordan frame, as identified in the
inequivalent picture, are not conformally equivalent (as it is explicitly shown by Eq.
94). Nevertheless, its importance lies in the fact that it is, indeed, a valid way of
obtaining fluid-gravity correspondence in the Jordan frame. In addition, it obeys the
saturation value of the KSS bound and is consistent with the interpretation of the
non-minimal coupling in terms of the rescaling of the Newtonian constant G. In the
following, it will be shown that an equivalent picture can also be obtained, where

2 Here we have considered the geometrized unit and have put G = 1 throughout. Otherwise, G would have
appeared in the expressions of fluid parameters in both the frames. Then it could be shown that the expression
of fluid parameters in the Jordan frame, in the inequivalent picture, are identical as of the Einstein’s GR
except G is replaced by Gef f = G/φ. One way of interpreting the non-minimal coupling (in the Jordan
frame) is given in terms of the rescaling of the Newtonian constant G −→ Gef f = G/φ i.e. the change of
the Einstein–Hilbert Lagrangian LEH = √−gR/16πG −→ √−gR/16πGef f = √−gφR/16πG. Our
inequivalent picture is consistent with this interpretation. For details see [34].
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the thermodynamic parameters are conformally equivalent. However, in that case, the
KSS bound can get violated for some values of φ. In addition, the equivalent picture
does not uphold the argument of non-minimal coupling in terms of the rescaling of
G .

6.2 The equivalent picture

In the previous analysis we have described one way of establishing the fluid-gravity
analogy in the Jordan frame and have discussed its theoretical consistency. However
the major set back for the inequivalent picture is that the fluid parameters are not
conformally equivalent. Therefore, according to the inequivalent picture, there is a
frame-dependence in the fluid-gravity correspondence, which is against our general
consensus. After all, the entire analysis of obtaining the fluid-gravity analogy is in the
classical regime and it is expected that the two frames are classically equivalent (though
the two frames can be inequivalent at the quantum level [25, 26, 28]). In addition, our
analysis for BH thermodynamics in ST gravity also support the equivalence of the
two frames. Therefore, the question arises, whether there is any equivalent picture in
the fluid-gravity correspondence of the ST gravity. In the following, we show that an
equivalent formalism can also be obtained, where the fluid parameters can be shown
to be exact equivalent in the two frames.

The method, which we adopt to obtain the equivalent picture, resembles to that of
the Sect. 5.3.2 . In this case, we obtain the DNS equation in terms of the parameters
of the Einstein frame (i.e. in terms of �̃a , θ̃ (l̃), σ̃ b

a ) in the background of the Jordan
frame (gab, la , qab , ∇a , DA, Rab, etc.). This requires some involved calculations (for
details see [34]), by which one can obtain

qna £l�̃n − Da

(
θ̃ (l̃)

2
+ κ̃

)
+ θ̃ (l̃)�̃a + Dbσ̃

b
a + σ̃ i

a(∇i ln φ)

=
(
Rmn − ∇m∇n ln φ + 1

2
(∇m ln φ)(∇n ln φ)

)
lmqna . (120)

The RHS of (120) can be replaced by the projection Emnlmqna and, thereby, one can
obtain

qna £l�̃n − Da

(
θ̃ (l̃)

2
+ κ̃

)
+ θ̃ (l̃)�̃a + 1

φ
Db�

b
a = 8π T̃ (φ̃)

mn l
mqna , (121)

where the expression of T̃ (φ̃)
mn is given by the Eq. (97) (which, is equivalent to the

expression provided by the Eq. 88). The above Eq. (121) can be identified as the DNS
equation of the Jordan frame with the following identifications: the external force term

is identified as Fa = T̃ (φ̃)
ab lb; πa = −�̃a/8π corresponds to the momentum density;

the bulk and the shear viscosity coefficients can be identified as ξ = −1/16π and
η = 1/16πφ respectively and the pressure is identified as P = κ̃/8π . Here �b

a
corresponds to the shear tensor, which can be identified as �b

a = φσ̃ b
a .
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With the above identifications, it can be shown that all the fluid parameters are
exactly equivalent in the two frames (i.e. F̃a = Fa, π̃a = πa , P = P̃ , ξ = ξ̃ ,
�̃ab = σ̃ab ... etc.) except for the shear viscosity coefficient, which is connected as
η = η̃/φ. Thus, in this case, the ratio of shear viscosity coefficient to the entropy
density is given as

η

S
= 1

4πφ2 , (122)

Thus, the above relation suggests that, in the equivalent picture, the KSS bound ( η
S

≥
1
4π ) might be violated for φ > 1.

Using AdS-CFT correspondence, it has been argued in literature [149] that if any
theory, after field redefinition, can be written in terms of Einstein’s gravity, the ratio
η/S will always be equal to 1/4π . Since the ST gravity/ f (R) gravity, after field
redefinition, can be written in terms of Einstein’s gravity (in the Einstein frame), the
argument in the literature [149] also implies that the bound should be valid in the ST
gravity aswell. However, the the aforementioned bound (η/S = 1/4π ) in the literature
[149] has been obtained in the specific context of AdS-CFT, whereas our approach
is different. Although both the approaches disclose the fluid-gravity correspondence
and provides η/S ratio, the concrete connection between the two approaches are not
well-defined. Therefore, in future, one needs to explore further along this direction,
especially in the context of AdS-CFT, and see which of these two pictures is more
accurate. For more discussions, along this line, see [34].

7 Conclusions

As it has been discussed earlier, the thermodynamic interpretation of gravity and the
fluid-gravity correspondence provide us with an alternative viewpoint to understand a
gravitational theory. In the absence of a proper quantum theory of gravity, these alter-
native viewpoints turn out to be significantly important. The thermodynamic nature
of gravity led the foundation of understanding gravity as “an emergent phenomena”.
Moreover, the fluid-gravity analogy, which was found by Damour led to interpret the
2-dimensional spacelike section of the event horizon as a fluid bubble. This “fluid
bubble” viewpoint paved the way for the development of the “membrane paradigm”
for black holes. Over the years, these topics have been the subject of intense research
and have revealed several interesting facts on the nature of gravity. Thus, the anal-
ysis of both the thermodynamic and the fluid-gravity analogies have the paramount
importance to understand a gravitational theory.

In this review, we discussed these two alternative viewpoints (i.e. thermodynamic
interpretation and fluid-gravity correspondence) for the scalar–tensor gravity, which
is considered as one of the most potential candidates among several extensions of
GR. The study is highly non-trivial for two main reasons, (1) the presence of the
non-minimal coupling in the action of the Jordan frame and (2) the issue of physical
equivalence/in-equivalence of the Jordan and Einstein frames, which has been debated
over the years. Here we have provided a complete picture of both thermodynamic and
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fluid-gravity correspondence analogies, which has been obtained in fragments in our
previous works.

Here, the scalar–tensor theory of gravity has been studied extensively starting from
the action level. It has been shown that the action in the two frames are equivalent
only up to a total derivative term (i.e. the �φ term). Later, it has been found that the
the holographic nature of the Einstein–Hilbert action is missing in the Jordan frame,
albeit present in the Einstein frame. This makes the two frames in-equivalent at the
action level itself, which has been found later to culminate in the in-equivalence of the
two frames at the thermodynamic level (which is, of course, removed by incorporating
several assumptions into the account [18]). To obtain the holographic relation in the
Jordan frame, it has been found that the �φ term is required to be incorporated in the
action of the Jordan frame, which has been left out in literature. In addition, it has been
found that the condition, which restore the holographic nature in the Jordan frame (i.e.
the inclusion of the �φ term) also establishes the thermodynamic equivalence in the
two frames. Thus, the holographic relation plays a pivotal role in establishing the exact
thermodynamic equivalence in the two frames, which went unnoticed in the earlier
works.

Although the entire thermodynamic description approve the equivalence of the
two frames, the fluid-gravity analogy presents both the equivalent as well as the in-
equivalent picture. Therefore, further investigation is required along this line to obtain
a concrete understanding. We hope to contribute soon in this direction.
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