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Abstract
To formulate gravity in spacetimes bounded by a null boundary, an arbitrary hypo-
thetical null surface, boundary degrees of freedom (d.o.f) should be added to account
for the d.o.f and dynamics in the spacetime regions excised behind the null boundary.
In the D dimensional example, boundary d.o.f are labelled by D charges defined at
D − 2 dimensional spacelike slices at the null boundary. While boundary modes can
have their own boundary dynamics, their interaction with the bulk modes is governed
by flux-balance equations which may be interpreted as a diffusion equation describing
“dissolution” of bulk gravitons into the boundary. Fromboundary viewpoint, boundary
d.o.f obey local thermodynamical equations at the boundary. Our description suggests
a new “semiclassical” quantization of the system in which boundary d.o.f are quan-
tized while bulk is classical. This semiclassical treatment may be relevant to questions
in black hole physics.
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1 Introduction

We typically face formulating physics problems in some specified regions of space-
time. The boundary which is a codimension one surface in D dimensional spacetime
may have null, timelike or spacelike sections. Boundaries may be hypothetical regions
in spacetime or physical surfaces; they may be at asymptotic regions of spacetime
where spacetime is naturally limited to one side of the boundary or may be hypersur-
faces dividing the spacetime into “inside and outside” or “front and behind” regions. In
the latter case one may excise the region behind the boundary and try to formulate the
problem in this excised spacetime. In this note we describe physics from the viewpoint
of the “front observer” who does not have access to the behind region. This is essen-
tially an update on “Horizon 2020” essay [1], which itself was a continuation of [2].

2 Null boundary

Among different choices for the boundary, we consider a null boundary N , which
we take to be r = 0 surface, cf. Fig. 1. Any accelerated observer finds such a null
boundary, its Rindler horizon. This choice is also motivated by the questions regarding
black holes, where the boundary models the black hole horizon. The null boundary is
special as it only allows for a one-way passage of the null rays to the behind (r < 0)
region.

N is a null surface which is topologicallyRv �Nv . In what followswe view v as the
“time” coordinate for the boundary observers,Dv denotes the covariant time derivative
along N and xi span Nv . Being a null surface, the metric on N is degenerate and N
may be specified by the metric on Nv �i j and a vector lμ which is null. Moreover,
we also need to define the covariant derivatives onN ; we denote covariant derivative
along the null direction v by Dv and covariant derivative along xi directions by ∇i .
We choose ∇i to be compatible with the metric onNv , �i j .N can be locally obtained
as speed of light to zero limit of a D− 1 Minkowski space, i.e. a Carrollian spacetime
[3–9].

Any two points (v1, xi1), (v2, x
i
2) onN are out of relativistic causal contact, unless

xi1 = xi2. So, information on these points can’t be connected by a causal dynamics and
the theory on N does not have a relativistic description; it is a Carrollian local field
theory, see [10–16] and references therein.

3 Null boundary symmetries

Choosing the null boundary N as described above, partially fixes D dimensional
diffeomorphisms to D−1 diffeomorphisms onN plus local scaling of the r coordinate,
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Fig. 1 N is a null boundary at
r = 0. v is the null coordinate
alongN and the D − 2
dimensional “transverse” space
Nv , constant v surfaces onN , is
spanned by coordinates
xi , i = 1, 2, · · · , D − 2. The
null boundaryN does not
necessarily have an initial or
endpoint. We excise the r < 0
region and formulate physics in
r ≥ 0. Ni j , also called (Bondi)
news, parameterize infalling null
rays. The passage of Ni j
throughN is interpreted as
dissolution of gravitons onto the
boundary from the viewpoint of
observers in r ≥ 0 region

v

N ij

r
=
0

N v

N

r > 0

r < 0

r → W (v, xi )r . Explicitly, the symmetry generators are specified by

v → v + T (v, xi ),

r → W (v, xi )r ,

xi → xi + Y i (v, x j ).

(1)

The above are D−1 foliation preserving diffeomorphisms, local translations in v and
xi , plus W (v, xi ). Since ∂r is a null direction, W generates local boosts onN . Boosts
along xi directions do not keep N null and are not among our symmetry generators.
Therefore, the boundary theory is expected to have “D − 1 dimensional conformal
Carrollian” symmetry [10] as a local symmetry. Here, we focus on the physical picture
emerging from recent papers [16–18] and in particular [19, 20], without delving into
interesting technicalities of the analyses. For a detailed analysis one may look at those
papers. For analysis of boundary symmetries and charges for null boundaries, see also
[21–26].

4 Boundary degrees of freedom

Front observers, observers in r > 0 region, may see things falling in, but not coming
out. We are going to excise r < 0 region and only focus on r ≥ 0 region. Front
observers interpret an infalling flux as something “dissolving” into the null boundary.
In order this picture to physically make sense one should add appropriate boundary
degrees of freedom (b.d.o.f) which reside on N . Their role is to compensate for the
d.o.f. in behind the boundary r < 0 region which has been excised from the spacetime,
such that the front observer can provide a unitary description. That such a description
exists, is implied by the Einstein’s equivalence principle and that different observers
should have access to the complete description of the events in their causally accessible
region. (Recall that as discussed above, N can be viewed as Rindler horizon of a
congruence of locally accelerated observers.)
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To perform the role they are supposed to, b.d.o.f should readjust themselves as a
response to the dissolution of the flux onto the boundary. This readjustment is governed
by the flux-balance equations which are simply (Einstein) field equations projected
along and computed at N , the Raychaudhuri and Damour equations at N . There
are D − 1 such equations [19, 20]. One should note that while the details of these
equations do depend on the gravity theory we are considering, their existence and that
they are just first order differential equations in time v, is merely a consequence of
diffeomorphism invariance of the theory and do not depend on the theory.

5 Null boundary solution space

One may construct space of all solutions to Einstein GR withN as the null boundary
through a perturbative expansion in r [19]. This solution space is specified by D
functions over N , namely D arbitrary functions of v and transverse coordinates xi ,
plus the bulk graviton modes which can propagate in the bulk.

• Boundary modes The D b.d.o.f may be labeled by the set of D charges
QA(v, xi ), A = 1, 2, · · · , D, associated with and in one-to-one correspondence
to, the D residual diffeomorphisms in (1). QA consist of two “scalar” modes
�(v, xi ),P(v, xi ) and a “vector” mode Ji (v, xi ). �(v, xi ) := √

det�i j is the
charge associated with the local boosts at N (local Carrollian scaling) W (v, xi ),
P associated with “supertranslations” along v, and Ji (v, xi ) with the “superrota-
tions” Y i (v, x j ).

• Bulk modes The graviton modes fall into two classes, parametrized by symmetric
traceless tensors Ni j = Ni j (v, xi ), Li j = Li j (r , xi ) [19], cf. Fig. 1. Ni j is the
trace-free part of Dv�i j and Li j modes vanishes at r = 0 boundary and are
v independent, therefore Li j are not a part of boundary data and do not affect
boundary dynamics.

The flux-balance equations involve first order v derivatives of the boundary modes
and Ni j , and not Li j . These equations from the boundary observer viewpoint are
like an ordinary diffusion equation, describing how the news Ni j dissolves/diffuses
as it reaches the boundary. The same equations can be interpreted as “null boundary
memory effect” as they tell us how the news Ni j is encoded into the b.d.o.f after
its dissolution. The boundary memory is a local effect on Nv , while it involves an
integration over v. See [19] for the details of analysis.

6 Null boundary phase space

Solution space is a phase space equipped with a symplectic two-form �. One may
workout this symplectic form using covariant phase space formalism, see [27] for a
detailed review. The result of the analysis is [20]

� = 1

16πG

∫

N

D∑

A=1

δQA ∧ δμA + δ(�Ni j ) ∧ δ�i j . (2)
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where G is the Newton constant, δX ,∀X is a one-form over the solution space and
�i j is inverse of metric �i j . μA = μA(v, xi ) are canonical conjugates to the charges
QA and are related toQA and the graviton modes Ni j through the balance equations.1

The canonical conjugate to P is Dv� = �(v, xi )�(v, xi ) where � is the expansion
of the null surface, the canonical conjugate to � is local acceleration of null rays
generating N , which we will denote by �(v, xi ) and canonical conjugate to Ji are
angular velocity of the same null rays which we will denote by U i . Therefore, in this
conventions for any X, DvX = ∂vX + LU X , where LU denotes Lie derivative along
U i .

7 Boundary symplectic form

As discussed the boundary and bulk modes are distinct, as the former are in scalar and
vector representation of the Nv diffeomorphisms, while the latter is in (symmetric-
traceless) tensor mode. The distinction between the two and the name boundary and
bulk, can be made more explicit. Let us turn off the bulk modes and set Ni j = 0. For
this case, Raychaudhuri and Damour equations simplify to [20]

DvP = �(v, xi ), DvJ i = 0, J i := Ji + ∇i (�P), (3)

where ∇i is the covariant derivative onNv compatible with metric �i j . We stress that
while we have taken Ni j = 0, the expansion � = Dv�/� is taken to be non-zero.

The symplectic form (2) for this case takes the form

�Ni j=0 = 1

16πG

∫

N

[
δ(Dv�) ∧ δP + δ� ∧ δ� + δU i ∧ δJi

]

= 1

16πG

∫

N
Dv

[
δ� ∧ δP + δωi ∧ δJ i

] (4)

where we integrated by part, used (3) and ωi = ∫
γ
dv U i where γ (v) is an arbitrary

path such thatDvω
i = U i . Based on the above, we can define the boundary symplectic

form,

�b’dry = 1

16πG

∫

Nv

[
δ� ∧ δP + δωi ∧ δJ i

]
. (5)

The important point in (5) is that the symplectic form takes the form of a codimension
2 integral, an integral over the constant time v slice, Nv . That is, in Ni j = 0 sector,
�b’dry may be viewed as the symplectic form of a boundary theory which resides on
N .

The above analysis has several interesting implications, some of which we discuss
here.

1 The flux-balance equations are algebraic equations for the canonical conjugates to �,Ji charges.
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1. In the absence of external flux, Ni j = 0, the boundary system is a closed system
with a conserved symplectic form �b’dry.

2. There are D − 1 b.d.o.f �,ωi and their canonical conjugates are P,J i .
3. The canonical equal time Poisson brackets of the system are

{�(v, xi ),�(v, yi )} = 0 = {P(v, xi ),P(v, yi )},
{�(v, xi ),P(v, yi )} = 1

4G
δD−2(x − y), (6)

{ωi (v, xi ),J j (v, yi )} = 1

4G
δi j δD−2(x − y). (7)

and a closer inspection reveals that the Poisson bracket {Ji (v, xi ),J j (v, yi )} takes
the form of the algebra of D − 2 dimensional diffeomorphisms for any v [19, 20].
To see this we note that (3) implies, ωi = ωi (�,P,J j ).

4. That these Poisson brackets have the same form for any given v is a manifestation
of the fact the b.d.o.f can be defined at any given v, on the codimension two surface
Nv; explicitly, the d.o.f of the boundary theory are defined on corners, resonating
the viewpoint advocated in some recent papers [28, 29].

5. We restress again thatwhile Ni j = 0 in this sector,� �= 0.Thevanishing expansion
� = 0 implies Ni j = 0 [19], but the converse is not true. For the � = 0 case,
we are in a “stationary phase space” in which P is fixed and the phase space is
reduced to the one specified by only D − 1 charges, �(xi ),J j (xi ).

6. As argued, the b.d.o.f can be governed by a well defined dynamics in v which
cannot be a relativistic one, it should be a Carrollian evolution.

7. Our analysis specifies the phase space and symplectic form of the boundary theory
but the dynamics (Hamiltonian) of this system is not specified through the boundary
symmetry analysis we reviewed here. At this level it is free to be chosen; it may
be fixed through some other physical requirements/criteria.

8. When Ni j �= 0 the boundary theory is an open system due to the passage of
the flux of gravitons through N . In this case � = �(�,P,Ji ; Ni j ) and ωi =
ωi (�,P,J j ; Ni j ) and the symplectic form (2) does not localize on a given v, it
will have a boundary part (integral overNv) and a bulk part (integral overN ). Put
differently, the boundary symplectic form �b’dry will not remain conserved and
there is a symplectic flux proportional to Ni j .

8 Null surface thermodynamics

The above description of the solution space, especially noting that � is the charge
associated to boosts on N and its canonical (thermodynamical) conjugate variable �

is local acceleration, suggests that there should be a thermodynamical interpretation.
In this thermodynamical description, entropy density at any constant v onN is 4G�,
extending seminal Wald’s result [30, 31], and its conjugate variable � is the local
temperature (times 4π ), extending seminal Unruh’s analysis [32]. The other terms,
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too, have a natural thermodynamic description, with local first law, local Gibbs-Duhem
and local zeroth law, as established in [20]. Here by local we mean local on N .

This is in general an open thermodynamical system as it can be out of (local) equi-
librium due to the passage of news Ni j or having a non-zero expansion �; thermal
equilibrium may be achieved only in the absence of news [20], when the boundary
theory becomes a closed (isolated) thermodynamical system. We stress that balance
equation which is describing the rearrangement of b.d.o.f due to the passage of Ni j

through N , should not be viewed as a (relativistic) dynamical equation. This rear-
rangement happens locally (instantaneously) at any given v to ensure diffeomorphism
invariance of the D dimensional theory.

9 Concluding remarks

To summarize, for any locally accelerated observer we need to formulate physics
on one side of a null surface. This system is an open thermodynamic system; the
dissolution of bulk infalling modes into this system is governed by the flux-balance
equations. The configuration/phase space of the system is a direct sum of boundary
and bulk modes. The boundary d.o.f may be parametrized by the area density � at a
given v and its canonical conjugate variable is P , as is seen from (5).

This description is suggestive of a new “semiclassical” description of the system
where the boundary mode is treated quantum mechanically while the bulk mode Ni j

is kept classical. That is, we quantize the canonical Poisson brackets (6) and (7)
by promoting these fields to operators and the Poisson brackets to commutators. In
this system 1/(4G) effectively plays the role of �. As discussed the entropy density
S = �/(4G). With the appropriate dynamics chosen for this boundary system � may
be quantinzed in units of �. This semiclassical descriptionmay be relevant to questions
regarding black hole microstates and the information puzzle. We hope to report on
this new semiclassical quantization in future publications.

10 Dedication and connection to Paddy’s works

This work is dedicated to the memory of T. Padmanabhan, Paddy, whose work has
directly and indirectly influenced the current research discussed here. Paddy had real-
ized the crucial role of boundary conditions and boundary dynamics in his influential
works on semiclassical and quantum aspects of black holes. In particular in [33, 34]
the variational principle and the required boundary term for the null surfaces was
discussed and analyzed. These analysis was then used in his later works [35, 36],
where it was argued that “the null surfaces in spacetime exhibit (observer-dependent)
thermodynamic features. This suggests a possible thermodynamic interpretation of
the boundary term when the boundary is a null surface.” These arguments resonates
with analysis of [20] and our discussion above.
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