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Abstract
In this paper, we study the holographic entanglement entropy computation of the
ultraviolet, integrable deformation of the 2−dimensional conformal field theory (T T̄ -
deformed conformal field theory) that would be dual to some massive deformations
of 3D gravity in asymptotically AdS3 spacetimes. We compute the correction due
to the deformation up to the leading order of the deformation parameter in higher
curvature 3D gravities such as new massive gravity, general minimal massive gravity,
and exotic general massive gravity. We also use the evaluation of the symplectic
potential to obtain the entanglement entropy for deformed theories. In each case, we
find agreement between the results.

Keywords Holographic Entanglement Entropy · T T̄ -deformed CFTs · Massive
gravity
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1 Introduction

Holographic conjecture is one of the powerful tools to study quantum gravity, in which
the quantum gravity in the d spacetime dimensions is equivalent to a quantumfield the-
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ory on the d −1 dimensions boundary. An important example is a holographic duality
between conformal field theory in d dimension and (d + 1)-dimensional AdS gravity
[1–3]. Conformal field theory is by definition a UV complete framework, in which the
rules of local quantum field theory apply at all energy scales. CFTs, are critical points
of RG flows. It is then natural to ask: can holography be extended to effective QFTs
so that the UV behavior isn’t described by CFTs? within the context of AdS3/CFT2,
this question has been answered by Zamolodchikov [4] by considering a general class
of exactly solvable irrelevant deformations of 2D CFT. Irrelevant deformations, com-
pared to marginal and relevant deformations, are difficult to understand. Turning on
an irrelevant operator will turn on many additional operators at high energies, which
modifies the theory in the UV and lead to a loss of predictive power. Although, the
T T̄ deformation is a irrelevant operator, but it does not have these problems [5–9].
The 2d T T̄ operator is a operator constructed of the stress tensor Tμν which can be
expressed as

det(Tμν) =
[
tr(Tμν)

2 − TμνTμν

]
. (1)

Given a seed theory’s Lagrangian L(0), the T T̄ flow can be defined by the following
flow equation

∂L(μ)

∂μ
= det(T (μ)

ab ), (2)

μ is the parameter of deformation with dimension (length)2. The flow Eq. (2), defines
a curve in the space of quantum field theory parameterized by μ with some properties
[10]. When a CFT is deformed by T T̄ operator, it doesn’t mean we add this operator
to the original theory, instead, the deformed theory’s Lagrangian L(μ) is required to
satisfy the above flow equation. In [11], the author considered T T̄ deformations of the
(0+ 1)-dimensional dual to 2d JT Gravity1 and interpret the deformation as a modifi-
cation of the JT Gravity boundary conditions. In [12, 13] it has been proposed that T T̄
deformation can be obtained by coupling the original theory to topological gravity.
In [14] proposed to interpret T T̄ deformation as a random geometry. Several meth-
ods of determining the exact deformed Lagragian through integrating out vielbeins or
metrics are also discovered by [15, 16]. In [17] the authors studied the symmetries of
T T̄ , JTa and J T̄ deformed CFTs, in which they showed that each deformed theory
possesses an infinite number of conserved charges. The authors of [18] showed that
with a mixed boundary condition at spatial infinity and Chern-Simons formalism of
AdS3 constructed the surface charges and associated algebra in T T̄ deformed theories.
In [19], by applying covariant phase space methods, the Poisson bracket algebra of
boundary observables which is a one-parameter nonlinear deformation of the usual
Virasoro algebra of asymptotically AdS3 gravity deduced. This algebra should be
obeyed by the stress tensor in any T T̄ -deformed holographic CFT. In [20] proposed
that within the holographic dual, this deformation represents a geometrical cut-off on a

1 JT Gravity can be viewed as the dimensional reduction of the Chern-Simons description of 3d gravity.
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wall at finite radial distance r = rc within the bulk that removes the asymptotic region
of AdS and places the QFT on it. More precisely if a CFT has a gravity dual, then
the deformed theory is dual to the original gravitational theory with the new boundary
at r = rc. Many interesting physical quantities such as the partition function, the
S-matrix, the energy spectrum, and the entanglement entropy have been computed in
the deformed theories, see [21] and the references within.

In this paper following the papers [22, 23] we would like to understand the effect
of this deformation on entanglement entropy using holography in the framework of
higher derivative massive gravity in 2 + 1 dimensions. The holographic method we
used to obtain entanglement entropy is the Song-Wen-Xu-like method [24]. We used
this method because the symplectic potential depends on the theory and it will give
us the possibility to calculate entanglement entropy for different theories of gravity
including Chern-simons-like theories.

Because of the absence of local degrees of freedom, General Relativity (GR) in
three dimensions is an easier theory for studying the different aspects of gravity. New
Massive Gravity(NMG) is a three-dimensional theory of gravity with parity-even,
higher derivative action which at the linearized level reduces to massive spin-two
Fierz-Pauli theory [25, 26]. General Minimal Massive Gravity (GMMG) which was
introduced in [27], is an example of the 3D theory of gravity with actions that make
use of two auxiliary one-forms, h and f , which at the level of the field equations can
be integrated out, leading to the New Massive Gravity field equations supplemented
by the Cotton tensor and by a parity even tensors, Jab. This term with respect to
the curvature is quadratic, and therefore the field equations for the metric remain of
the fourth-order. These effective Einstein equations cannot be obtained only from a
variational principle of the metric as a dynamical field, nevertheless, they are on-
shell consistent as is the case in the theories introduced in [28–31]. GMMG avoids the
bulk-boundary clash and so possesses positive energy excitations about the maximally
symmetric AdS3 vacuum in addition to a positive central charge within the dual CFT.
Such a problem within the previously constructed gravity theories with local degrees
of freedom in 2+1-dimensions namely Topologically Massive Gravity and therefore
the cosmological extension of Massive Gravity is present [25, 32, 33]. Exotic general
massive gravity is another 3D theory of gravitywith parity−odd actionwhich describes
a propagating massive spin−2 field. The field equations of this theory supplement the
Einstein equations with a term that contains up to 3rd of the metric and is made with
combinations and derivatives of the Cotton tensor [30]. The different aspects of this
model have been studied in [34–39].

The paper is organized as follows: In Sect. 2, we obtained the entanglement entropy
for NMG with parity even action, directly by using on-shell action and using the RT-
method. In Sect. 3, for the other Chern–Simons-like theories of gravity GMMG and
EGMG, we obtain the entanglement entropy and repeat the procedure of the previous
section for them. We provide some conclusions in Sect. 4.

123



85 Page 4 of 17 M. R. Setare, S. N. Sajadi

2 Entanglement entropy for NMG

The new massive gravity is one of the famous three-dimensional theories of gravity
among massive gravity models. This model is second-order in time derivatives, its lin-
earizations around a Minkowski metric are equivalent to the second-order Fierz-Pauli
action for a massive spin-2 particle. Furthermore, NMG preserves parity symmetry
which is not the case for the topological massive gravity. The action of NMG is
described as follows [25, 26]

SNMG = 1

8πG

∫
d3x

√−g

[
R − 2λ − 1

m2

(
RμνRμν − 3

8
R2

)]
, (3)

where λ andm are the cosmological constant and the mass parameter of NMG, respec-
tively. By a variation of the Lagrangian we obtain

Eμν = Gμν + λgμν − 1

2m2 Nμν, (4)

with

Nμν = −1

2
∇2Rgμν − 1

2
∇μ∇νR + 2∇2Rμν + 4RμaνbR

ab

− 3

2
RRμν − Rαβ R

αβgμν + 3

8
R2gμν, (5)

and Gμν is the Einstein tensor. To obtain the renormalized action we should take into
account the generalized Gibbons-Hawking boundary term for NMG [40] as follows

SGH =
∫

d2x
√−γ

(
2K + f̂ abKab − f̂ K

)
, (6)

where

Kμν = −1

2
(nμ;ν + nν;μ), γ μν = gμν − nμnν, f̂ ab = f μνγμ

aγν
b,

fμν = 2

m2

(
Rμν − 1

4
Rgμν

)
. (7)

Now, we consider a deformed CFT on manifold M. So, the entanglement entropy is
given by

SEE = lim
n→1

1

1 − n
log

Zn

Zn
, (8)

where Zn is the partition function on Mn which is obtained by using the replica
method in which one may provide n copies of the manifold glues them together.
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We start with the deformed CFT defined on the boundary metric in two dimensions
with complex coordinates (x, x̄) to cover this surface as

ds2 = dxdx̄ . (9)

By using the following coordinate transformation one can convert the metric to a
conformal form as

y =
(
x − a

x − b

) 1
n

(10)

then

ds2 = eφ(y,ȳ)dyd ȳ, e
φ(y,ȳ)

2 = nl
|y|n−1

|yn − 1|2 (11)

where φ is the Liouville field. By using the Fefferman–Grahammetric, one can extend
the boundary metric (11) to the bulk as [41]

ds2 = dρ2

4ρ2 + 1

ρ
gi j (ρ, X)dXidX j , gi j (ρ, X) = g(0)

i j (X) + ρg(1)
i j (X) + . . .

(12)

here Xi = (y, ȳ) and g(0)
i j = eφdyd ȳ. So, the bulk metric can be written as follows

[42]

ds2 = dρ2

4ρ2 + 1

ρ
eφdyd ȳ + 1

2
Tφdy

2 + 1

2
T̄φd ȳ

2 + 1

4
Rφdyd ȳ

+1

4
ρe−φ

(
Tφdy + 1

4
Rφd ȳ

) (
T̄φd ȳ + 1

4
Rφdy

)
(13)

where

Rφ = 4∂y ∂̄yφ, Tφ = ∂2yφ − 1

2
(∂yφ)2, T̄φ = ∂̄2yφ − 1

2
(∂̄yφ)2. (14)

The following coordinate transformations [43]

ξ =
√
eφ

ρ
+ 1

4

√
ρ

eφ
|∂yφ|2, z = y + 1

2

ρeφ∂̄yφ

1 + 1

4
ρe−φ |∂yφ|2

(15)

convert the FG coordinate to the Poincare coordinate, which brings us to the following
metric

ds2 = dξ2

ξ2
+ ξ2dzdz̄. (16)
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This metric is a solution for NMG if

λ = −
(
1 + 1

4m2

)
. (17)

So, λ andm related by (17) and are not arbitrary. The on-shell action of NMG is given
by

SNMG =
(
1 + 1

2m2

) [
− 1

δ2

∫∫
eφdzdz̄ − 1

2

∫∫
ψdzdz̄ − δ2

16

∫∫
e−φψ2dzdz̄

]

(18)

here we assumed ρ = δ2, then the regulator surface is

ξ f = 1

δ
e

φ
2 + δ

4
e− φ

2 ψ. (19)

While on the boundary nμ = ξδ
μ
ξ , γ = −ξ4/4, g = −ξ2/4 and K = γ abKab = 2

one can get the generalized Gibbons-Hawking on-shell action as

SGH =
(
1 + 1

2m2

)[
2

δ2

∫∫
eφdzdz̄ +

∫∫
ψdzdz̄ + δ2

8

∫∫
e−φψ2dzdz̄

]
. (20)

Here, we select the appropriate counter-term as follows:

Sct =
(
1 + 1

2m2l2

) ∫
d2x

√−γ (1 + δ2κ(z, z̄)), (21)

The first term in the above counter-term as the usual counterterm of gravitational action
removes the divergent term of GH and bulk action. In the second term, we chose κ

such that no boundary terms of order δ2 remain in the boundary action. So, explicitly
the action is as follows:

Sr = −
(
1 + 1

2m2

) [
1

δ2

∫∫
eφdzdz̄ +

∫∫
1

2
ψ + κ(z, z̄)eφ(z,z̄)dzdz̄

+δ2

2

∫∫ (
1

8
e−φψ2 + κ(z, z̄)ψ

)
dzdz̄

]
. (22)

Thus, by choosing κ = ψ/8eφ one can get the renormalized on-shell action is given
by

Sr = SNMG + SGH + Sct = −1

8

(
1 + 1

2m2

) ∫∫ [
ψ + δ2

2
ψ2e−φ

]
dzdz̄. (23)
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Therefore, one can rewrite the renormalized action in terms of the Liouville field as

Sr = 1

64πG

(
1 + 1

2m2

) ∫
dV

(
∂iφ∂ iφ + δ2

2

(
∂i∂

i e
φ
2

)2)
, (24)

after integrating by part one can get

Sr = 1

64πG

(
1 + 1

2m2

) ∫
dSn

[
φ∂nφ + δ2

2

(
∂ne

− φ
2 �e− φ

2 − e− φ
2 ∂n�e− φ

2

)]
.

(25)

In order to solve this integral, we adopt

z = reiθ , e− φ
2 = 1

n�
(rn+1 + r−n+1 − 2r cos(nθ)), e−φψ2 = (∂∂̄e− φ

2 )2. (26)

Then one can get

SEE = 1

4G

(
1 + 1

2m2

) (
1 − n2

n

)[
log

(
�

δ

)
+ δ2

n�2

]
, (27)

one finally arrives at

SEE = c

3
log

(√
24π

ςc
�

)
+ ςc2

72π�2
, (28)

where

ς = 8Gm2δ2

1 + 2m2 (29)

which is in agreement with the results of CFT side [23, 44]. In the limit m → ∞,
ς = 4πGδ2. The entropic C−function in two dimensions for T T̄ deformed CFT, is
defined as [45]

C = 3�
∂SEE

∂�
= c − ςc2

12π�2
, c = 3

4G

(
1 + 1

2m2

)
(30)

which depends on the deformation parameter and approaches the central charge of
the undeformed CFT (c is the central charge of NMG and it is positive, therefore
the dual CFT2 is unitary.) when ς = 0, as expected [46]. It is expected that the
holographic entanglement entropy of deformed CFT is obtained by RT-method. By
using z = x + iτ , ξ = 1/η and going to the polar coordinate in (16), we have

ds2 = 1

η2

[
dη2 + r2dτ 2 + n2dr2

]
. (31)
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The entanglement entropy can be calculated using the presymplectic potential by
replacing δgμν = ∂ngμν as

SHEE =
∫

�(φi , ∂nφi )n→1,r→0 , (32)

which is integral in direction of bulk after integrating out τ along S1. For NMG the
presymplectic potential is given by [40]

�
μ
NMG = θμ − 1

2
f θμ + f ρσ gμν∇̄ρ(δgσν) − 1

2
f ρσ ∇̄μ(δgρσ ) − 1

2
f μνgρσ ∇̄ν(δgρσ )

+ 1

2
[∇̄μ f νρ − 2∇̄ f μρ + gμν∇̄ρ f + gνρ∇̄σ f σμ − gνρ∇̄μ f ]δgνρ,

θμ = gμν∇̄ρ(δgνρ) − gρσ ∇̄μ(δgρσ ). (33)

So, the presymplectic structure for metric (31) is obtained as

�r = 1

8πG

(
1 + 1

2m2

)
η2

rn3
. (34)

Then, one can achieve the entropy as

SHEE =
∫ 2π

0
dτ

∫ √−g�r dη = 1

4Gn2

(
1 + 1

2m2

) ∫ �

η f

dη

η

= 1

4G

(
1 + 1

2m2

)
ln

(
�

η f

)
, (35)

here we have used
√−g = nr

η3
, η f = 1/ξ f and � is the interval length of subsystem

A. Therefore, the explicitly nonperturbative HEE (35) becomes

SN P
HEE = 1

4G

(
1 + 1

2m2

)
ln

(
�

δ
e

φ
2 + δ

4
ψe− φ

2

)
. (36)

We have expanded (35) around δ � 1, then one can obtain [46]

SP
HEE = lim

n→1
r→0

1

4G

(
1 + 1

2m2

) [
ln

(
�e

φ
2

δ

)
+ ψ

4eφ
δ2

]
. (37)

By using (26) one can arrive

lim
n→1
r→0

e− φ
2 = 1

�
, lim

n→1
r→0

e−φψ = 4

�2
. (38)
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Inserting (38) into the (37) and (36), we have obtained nonperturbative SN P
HEE and

perturbative SP
HEE entropy as follows

SN P
HEE = 1

4G

(
1 + 1

2m2

)
ln

(
�2

δ
+ δ

�2

)
, (39)

SP
HEE = 1

4G

(
1 + 1

2m2

) [
ln

(
�2

δ

)
+ δ2

�2

]
. (40)

Therefore, the entropic C function becomes

CN P = c
(�4 − δ2)

(�4 + δ2)
, (41)

CP = c − 2μc2

�4
, (42)

in which the nonperturbative CN P is different from (3.54) of [47], while the perturba-
tive CP is comparable with perturbative form of (3.54).

3 Entanglement entropy for GMMG

The Lagrangian of general minimal massive gravity theory is a generalization of the
Lagrangian of general massive gravity. The Lagrangian of GMMG is given as [27]

LGMMG = −σe.R + �0

6
e.e × e + h.T (ω) + 1

2μ

(
ω.dω + 1

3
ω.ω × ω

)

− 1

m2

(
f .R + 1

2
e. f × f

)
+ α

2
e.h × h, (43)

where m is the mass parameter of NMG term, �0 is a cosmological constant, μ is a
mass parameter of Chern−Simons term, σ is a sign, α is a dimensionless parameter,
e is a dreibein, ω is a dualized spin-connection and h and f are auxiliary one-form
fields. After integrating out the auxiliary one−form fields f and h, the field equations
obtain as

σ̄Gμν + �̄0gμν + 1

μ
Cμν + γ

μ2 Jμν + s

2m2 Kμν = 0 , (44)

whereCμν is the Cotton tensor, Kμν is the Euler−Lagrange derivative of the quadratic
part of the NMG Lagrangian with respect to the metric, and Jμν is the quadratic in
the curvature tensor introduced in [28]. The parameter s is sign, γ , σ̄ and �̄0 are the
parameters which defined in terms of other parameters like σ,m and μ.
The metric (16) is a solution for the field Eq. (44) under the condition

λ = −4σμ2m2 + γm2 − sμ2

4μ2m2 . (45)
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Therefore, the couplings of the theory related by (45) and are not arbitrary. The
Lagrangian (43) can be written as follows

LGMMG = −
(
σ + c f

m2

)
e.R + 1

2μ
LCS + che.T

+
[

�0

6
− c2f

2m2 + αc2h
2

]
(e.e × e), (46)

where we have used

h = che, f = c f e. (47)

The dreibein components of the metric after Wick rotation can be chosen as

e0 = dξ

ξ
, e1 = ξ

2
(dz − dz̄) , e2 = ξ

2
(dz + dz̄) . (48)

Then, the spin connections would be

ω1
0 = 1

2
ξ(dz − dz̄), ω2

0 = 1

2
ξ (dz + dz̄) , (49)

and therefore the dualized spin-connections are given by

ω0 = 0, ω1 = ξ

4
(dz + dz̄) , ω2 = ξ

4
(dz̄ − dz) . (50)

The different terms of the action are given by

e.R = ξ

4
dξ ∧ dz ∧ dz̄, e.e × e = ξ

2
dξ ∧ dz ∧ dz̄,

T = 0, LCS = 0, ω.e = −ξ2

2
dz ∧ dz̄. (51)

Then, the on-shell action is given by

SGMMG = 1

4

(
−σ + �0

3
− c2f

m2 + αc2h − c f

m2

)

×
[
1

δ2

∫∫
eφdzdz̄ + 1

2

∫∫
ψdzdz̄ + δ2

16

∫∫
e−φψ2dzdz̄

]
. (52)

The boundary actions are given as

SGH =
∫

−
(
σ + c f

m2

)
ω.e + 1

2μ
ω.ω + che.e
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= 1

2

(
σ + c f

m2

) [
1

δ2

∫∫
eφdzdz̄ + 1

2

∫∫
ψdzdz̄ + δ2

16

∫∫
e−φψ2dzdz̄

]
,

(53)

Sct = −1

4

(
σ + c f

m2

) ∫
e (1 + δ2κ(z, z̄)). (54)

If �0
3 − c2f

m2 + αc2h = 0, then we have

Sr = −1

8

(
σ + c f

m2

) [∫∫
ψdzdz̄ + δ2

8

∫∫
e−φψ2dzdz̄

]
(55)

by using (26), one can obtain

SEE = −1

8

(
σ + c f

m2

)(
1 − n2

n

)[
log

(
�

δ

)
+ δ2

n�2

]
, (56)

one finally arrives at

SEE = c′

3
log

(√
24π

ςc′ �

)
+ ςc′2

72π�2
, c′ = c+ + c−

2
(57)

where

ς = − 64Gm2δ2

c f + σm2 , c± = − 3

2G

(
σ + αch

μ
+ c f

m2 ± 1

μ

)
, (58)

where c± are the central charges of GMMG and under the condition σ + αch/μ +
c f /m2±1/μ < 0 the dualCFT2 is unitary. The entropicC−function in twodimensions
is given as [45]

C = 3l
∂SEE

∂l
= c′ − ςc′2

12πl2
, c′ = − 3

2G

(
σ + c f

m2

)
, (59)

which depends on the deformation parameter and approaches c′ when ς = 0, as
expected [46]. The dreibein components of metric (31) can be written as

e0 = r

η
dτ, e1 = n

η
dr , e2 = 1

η
dη. (60)

The dualized spin connections would be

ω0 = − n

2η
dr , ω1 = r

2η
dτ, ω2 = 1

2n
dτ. (61)
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The presymplectic form of GMMG is given by [48]

�GMMG = −
(
σ + c f

m2

)
δω.e + 1

2μ
δω.ω + chδe.e. (62)

Then, we assume δω = ∂ω/∂n, δe = ∂e/∂n, one can get

�GMMG = −
(
σ + c f

m2

) [
r

2η2
dr ∧ dτ − 1

2n2η
dτ ∧ dη

]
. (63)

So, the entropy for GMMG is as follows

S =
∫ 2π

0
dτ

∫ √−g�r dη =
∫ 2π

0
dτ

∫ �

η f

1

2n2

(
σ + c f

m2

) dη

η

= 1

4G

(
σ + c f

m2

)
ln

(
�

η f

)
, (64)

here η f = 1/ξ f . After the series expansion of (64) around δ � 1, we have [46]

SHEE = lim
n→1
r→0

1

4G

(
σ + c f

m2

)[
ln

(
�e

φ
2

δ

)
+ ψ

4eφ
δ2

]
. (65)

Inserting (38) into (64) and (65) one can obtain the results similar to (39)–(41) with
the central charges of GMMG.

Entanglement entropy for EGMG

Exotic general massive gravity is a third-way consistency theory in three dimensions
with a parity−odd theory describing a propagating massive spin−2 field. A gravity
theory that leads to both a unitary theory in the bulk and a positive central charge in
the boundary theory when formulated on AdS spaces. The Lagrangian of the theory
is given as [30]

LEGMG = − 1

m2 [ f .R(ω) + 1

6m4 f . f × f

− 1

2m2 f .D(ω) f + ι

2
f .e × e − m2h.T (ω)

+ (ι − m2)

2

(
ω.dω + 1

3
ω.ω × ω

)
+ ιm4

3μ
e.e × e], ι = 1 − m4

μ2 .

(66)

In the metric formalism, the field equation is given as follows

Rμν − 1

2
gμνR + �gμν + 1

μ
Cμν − 1

m2 Hμν + 1

m4 Lμν = 0, (67)
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where

Hμν = εαβ
μ ∇αCνβ, Lμν = 1

2
εαβ
μ εγσ

ν CαγCβσ , (68)

μ and m are mass parameters, Hμν and Lμν are symmetric and traceless tensors. The
above Lagrangian can be rewritten by using (47) as

LEGMG = − c f

m2 e.R +
(
ch + c2f

2m4

)
(e.De) − 1

m2 (ι − m2)LCS

− 1

m2

[
c3f
6m4 + ιc f

2
+ ιm4

3μ

]
(e.e × e). (69)

By using (51), one can obtain

SEGMG = m2

8μ

∫∫
ξ2f dzdz̄. (70)

The GH term for EGMG is given by

LGH = − c f

2m2 e.ω + 1

2

(
ch + c2f

m4

)
e.e +

(
1 − ι

m2

)
ω.ω, (71)

then the GH action is given

SGH = −m2

4μ

∫∫
ξ2f dzdz̄, (72)

where we have used

ch = 1

2

(
1 − 1

m2

) (
1 − m4

μ2

)
, c f = −m4

μ
. (73)

The counter term is given

Sct = m2

8μ

∫∫
e(1 + δ2κ(z, z̄))dzdz̄. (74)

The renormalized on-shell action by using a cut-off surface is given as

Sr = m2

8μ

[∫∫
ψdzdz̄ + δ2

8

∫∫
e−φψ2dzdz̄

]
, (75)
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then, similar to the previous section, using (26) we have

Sr = −m2

8μ

(
1 − n2

n

) [
log

(
�

δ

)
+ δ2

n�2

]
(76)

one finally arrives at

Sr = c′

3
log

(√
24π

ςc′ �

)
+ ςc′2

72π�2
, c′ = c+ + c−

2
(77)

where

ς = −64Gμδ2

m2 , c± = 3

2G

[
−m2

μ
±

(
1 + m2

μ2 − 1

m2

)]
, (78)

where c± are the right moving and left moving central charges of the dual CFT2. In
the case of m2/μ ∓ (1 + m2/μ2 − 1/m2) < 0, the dual CFT is unitary. The entropic
C−function in two dimensions is defined as [45]

C = 3l
∂SEE

∂l
= c′ − ςc′2

12πl2
, c′ = − 3m2

2Gμ
, (79)

which depends on the deformation parameter and approaches c′ when ς = 0, as
expected [46]. The presymplectic form of EGMG is given [48]

�EGMG = 1

2

[(
ch + c2f

m4

)
δe.e +

(
1 − �

m2

)
δω.ω − c f

m2 δe.ω

]
, (80)

this presymplectic using (60) and (61) can be written as

� = c f

2m2

[
r

2η2
dr ∧ dτ + 1

2n2η
dτ ∧ dη

]
. (81)

Then, the entropy for EGMG is given as follows

S =
∫ 2π

0
dτ

∫ √−g�r dη =
∫ 2π

0
dτ

∫ �

η f

c f

4n2m2

dη

η
= − m2

16Gμ
ln

(
�

η f

)
, (82)

here η f = 1/ξ f . In the case of δ � 1, one can obtain [46]

SHEE = − lim
n→1
r→0

m2

16Gμ

[
ln

(
�e

φ
2

δ

)
+ ψ

4eφ
δ2

]
. (83)

After using (26) and limiting, one can arrive at (77).
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4 Conclusion

In this paper, we investigated the holographic entanglement entropy of deformed
conformal field theories dual to a cut-off of AdS spacetimes. The holographic entan-
glement entropy evaluated on a three-dimensional Poincare AdS3 space with a finite
cut-off can be interpreted as the dual field theory deformed by T T̄ -deformation. We
have done these calculations in the framework of higher derivative gravity theories like
NMG, GMMG, and EGMG theories. We perform a direct holographic calculation of
the entanglement entropy by evaluation of the gravitational action in the bulk space-
time which has been reconstructed from a dual CFT2 on n-sheeted Riemann surface as
a finite cut-off boundary. The correction term corresponds to the deformation which
comes from the boundary side affected by the mass parameter of higher derivative
theories. For the theories with gravitational anomalies like EGMG and GMMG, the
average of the central charges of left and right moving (c = (c+ + c−)/2) appear in
the deformation parameters. By considering the entropic C−functions, the effect of
deformation parameters on the central charges of deformed CFTs were studied. We
have also obtained the entropy for the theories with a cut-off onAdS3 spacetimes using
the pre-symplectic potential integrated along Euclidean time and along with the depth
into the bulk. By expansion around UV cut-off deformation, we find an agreement
between the results in the two methods.
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