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Abstract
A recently proposed extension of the geodesic equations of motion, where the world-
line traced by a test particle now depends on the scalar curvature, is used to study the
formation of galaxies and galactic rotation curves. This extension is applied to the
motion of a fluid in a spherical geometry, resulting in a set of evolution equations for
the fluid in the nonrelativistic and weak gravity limits. Focusing on the stationary solu-
tions of these equations and choosing a specific class of angular momenta for the fluid
in this limit, we show that dynamics under this extension can result in the formation of
galaxies with rotational velocity curves (RVC) that are consistent with the Universal
Rotation Curve (URC), and through previous work on the URC, the observed rota-
tional velocity profiles of 1100 spiral galaxies. In particular, a spectrum of RVCs can
form under this extension, and we find that the two extreme velocity curves predicted
by it brackets the ensemble of URCs constructed from these 1100 velocity profiles.
We also find that the asymptotic behavior of the URC is consistent with that of the
most probable asymptotic behavior of the RVCs predicted by the extension. A stability
analysis of these stationary solutions is also done, and we find them to be stable in the
galactic disk, while in the galactic hub they are stable if the period of oscillations of
perturbations is longer than 0.91±0.31 to 1.58±0.46 billion years.
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1 Introduction

With the discovery of dark energy �DE = (7.21+0.83
−0.84) × 10−30 g/cm3 [15, 17, 25],

comes a universal length scale λDE = c/ (�DEG)1/2 = 14010800820 Mpc, for the
universe that allows for extensions of the geodesic equations of motion (GEOM).
However, to be physically viable these extensions must overcome high hurdles. As
outlined in [23], these hurdles include the following: Ensuring that the equivalence
principle is preserved; this principle is one of the underlying principles upon which
general relativity is founded, and has been experimentally verified. Requiring that
the equations of motion for massless test particles are not affected; all astronomical
observations—in particular, those with which the rotational velocity profiles of spiral
galaxies are determined—are based on the motion of photons. Demonstrating that the
extension is not preventedby attempts at showing theGEOMis theunique consequence
of Einstein’s field equations [7, 8, 10]; such proofs limit the structure of possible
extensions. Finally, ensuring that effects which could have already been measured in
terrestrial experiments, or observed in the motion of bodies in the solar system, are not
produced; such extensions would have been automatically ruled out by experiment.

In [23] we proposed an extension of GEOM, called the extended GEOM, that
satisfies these conditions. It was constructed using the dimensionless parameter
c2R/λDEG, where R is the Ricci scalar, and replacing the mass m of the test particle
bymR[c2R/�DEG] in the Lagrangian for a test particle in general relativity. By doing
so we have changed the response of the test particles to the geometry of spacetime; the
worldlines of massive test particles now depend on the local scalar curvature of the
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spacetime. Importantly, Einstein’s field equations are not changed, and thus the geom-
etry of spacetime is still determined by them. The degree by which the worldline is
changed is determined byR, which is taken to be a non-linear function of c2R/�DEG
with the nonlinearity modulated by a single parameter, the power-law exponent α� .
This exponent determines the asymptotic behavior of R for large arguments. A strict
lower bound, α�Bound, for α� was determined with the range of possible values for
α�Bound established in [23] by requiring that signatures of the GEOMmust not have
already been seen in terrestrial experiments. With reasonable choices for experimen-
tally measurable parameters, we found that 1.28 ≤ α�Bound ≤ 1.58

Given the scale of λDE , it is only at galactic length scales or longer where the
impact of the extended GEOM is expected to be seen, and in [24] we applied this
extension to the analysis of the motion of bodies at these scales. Using a spherical
model for galaxies, we calculated the density profile of a stationary galaxy given the
radius r∗

H = 11.82±0.30 kpc of a typical galactic hub and the velocity v∗
H = 172.1±1.6

km/s of a typical rotational velocity curve (RVC) at this radius [24]. This r∗
H and v∗

H
were determined from the observed motion of stars in 1393 spiral galaxies [3, 4, 13,
18–20]. The density profile for the model galaxy was determined using the extended
GEOM and the following model of the RVC of the galaxy,

v ideal(r) =
{

vHr/rH for r ≤ rH
vH for r ≥ rH ,

}

,

where vH is the asymptotic velocity of the curve. The power-law exponent was set
to α� = 1.56±0.10 using the Hubble length and the density of this model galaxy (the
details of this analysis can be found in [24]); this value is within the bounds for α�

found in [23]. The radius R200 for this density profile was calculated to be 206±53
kpc, in reasonable agreement with observations. Importantly, σ8 was also calculated,
and was found to be 0.73±0.12, which is within experimental error of both the WMAP
value of 0.71+0.049

−0.048 [25], and the PLANCK value of 0.81±0.006 [1].
In [23] and [24] the focus was on using the extended GEOM to determine the

properties of a stationary galaxy that has already been formed. However, if the values
of R200 and σ8 measured are due to the extendedGEOM, then the formation of galaxies
must be describable, and the possible RVCs for these galaxies predictable, within this
extension. Yet, given the drastic difference between galactic length scale (on the order
of tens of kiloparsecs) and the length scales at which R200 and σ8 are relevant (on the
order of a few hundred kiloparsecs and a few megaparsecs, respectively), the results
of our previous paper speaks little about the formation of galaxies. Indeed, since a
specific velocity curve videal(r)was used to begin with, it certainly cannot predict the
RVCs of them. The purpose of this paper is address this lack, and to begin fulfilling
these expectations. In particular, our goal here is to establish the range of possible
asymptotic behaviors of the RVCs that are allowed by the extended GEOM, and to
compare these predictions with observations.

In [23] we showed that the energy-smomentum tensor Tμν for a collection of mas-
sive particles that can be treated as a fluid with density ρ, and fluid velocity uμ

reduces in the nonrelativistic limit to Tμν ≈ ρuμuν even when elements of the fluid
evolve under the extended GEOM. Applying that result here, to a spherically sym-
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metric distribution of particles rotating about a single rotational axis, we obtain a
set of evolution equations Evol for the density ρ(t, r); the fluid velocity along the
radial direction ur (t, r); the gravitational potential �(t, r); and the (specific) angular
momentum L(t, r) = rv(t, r), where v(t, r) is the rotational velocity of the fluid
about the rotational axis. Importantly, as our extension of the GEOM involves replac-
ing the mass m of a test particle by mR[c2R/�DEG], and as this replacement is the
same for all particles irrespective of its nature (as such the extended GEOM obeys the
weak equivalence principle), the extended GEOM—and throught it the Evol—does
not differentiate between baryonic and dark matter; the density ρ of the fluid is the
total density of matter in the model galaxy. We have shown below that both the mass
and the angular momentum of the system are conserved under this evolution. The
types of galaxies that can form, and the RVCs that they can have, under the extended
GEOMwould then be determined by the solution of Evol for some initial distribution
of mass and velocities. These evolution equations are extremely nonlinear, however,
and it is doubtful that any direct attempt at solving them will yield much of use. We
have taken a different approach instead.

If a choice of the initial distribution of mass and velocities results in the forma-
tion of a galaxy under the extended GEOM, then the resultant distribution of mass
and velocities must result in stationary solutions—denoted by ρ∞(r), L∞,�∞, and
ur∞—of Evol. Focusing further on galaxies where the motion of matter traces out
circular orbits and Evol reduces to Eq. (11) of [24], a single second-order, nonlinear,
inhomogeneous differential equation for the stationary density ρ∞(r) of the galaxy
with the inhomogeneous term given by the angular momentum L∞(r) of the fluid in
this limit. Importantly, solutions ρ∞(r) of this differential equation minimizes a sta-
tionary action S∞. The dependence of the structure of the galaxy on L∞(r)—and given
that the total angular momentum is conserved, on the initial distribution of angular
momentum L(0, r) of the fluid—underscores the important role that angular momen-
tum plays in the formation of galaxies even under the extended GEOM. While it is in
principle possible to choose an initial L(0, r), and then use it to determine whether a
galaxy can form under the extended GEOM with this choice, and if it can, whether
such a galaxy has a RVC that agrees with observations, doing so would mean evolving
L(0, r) in time to L∞(r) using Evol. This likely is also intractable analytically.

Since a choice of angular momentum for the fluid must be made, we make this
choice at the stationary limit instead of at the fluid’s initial state. Using the observed
properties of galaxies, we focus on a class of stationary angular momentum given by
the RVC

v∞(r) =
[

(1 + p/q)x2q

x2(q+p) + p/q

]1/2

v∗
H , (1)

where x = r/r∗
H . Here, q and p are parameters that give the asymptotic behavior

of v∞(r) in the x � 1 and x � 1 limits, respectively, with the subscript denoting
that we are in the stationary limit. With this choice we are able to determine whether
galaxies can form under the extended GEOM, and will be able to predict their RVC.
The choice itself depends only on four parameters, each of which have good physical
interpretation, and each of which can either be determined (for v∗

H and r∗
H )—and
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thus used as inputs in the analysis—through observations, or compared (for q and
p) to them. This choice is a natural generalization of v ideal(r) that is also a smooth
function of r , a condition that is important for both physical andmathematical reasons.
Importantly, with two free parameters and with L∞(r) = rv∞(r), v∞(r) can model a
variety of possible angular momenta for the fluid in the stationary limit, and thus has
the potential to model a variety of possible angular momentum L(0, r) at the system’s
initial state. It thereby defines a class of rotational velocity profiles, one for each given
q and p, and importantly, the predicted values of the q and p obtained through the
extended GEOM can be directly compared to observations.

To determine the values of q and p that will result in a stationary galaxy under the
extendedGEOM,wemake use of S∞. Each choice of q and p results in a L∞(r; q, p),
which in turn results in a solution ρ∞(r; q, p) of Evol in the stationary limit. Such a
choice for L∞(r; q, p) need not, in general, lead to a ρ∞(r; q, p) that minimizes S∞,
however. Thus, not all choices of q and p will result in the formation of a galaxy under
the GEOM. To determine the values of q and p that do, we evaluate S∞|(ρ∞;L∞) at
this ρ∞(r; q, p) and L∞(r; q, p); the resultant action then depends on the parameters
q and p. Minimization of this action with respect to these parameters then gives the
values of q and p that, when used in L∞(r; q, p), gives the ρ∞(r; q, p) that does
minimize S∞. It is for these values of q and p that the extended GEOMwould predict
a galaxy can form. (This approach in determining q and p follows a minimization
principle that is similar to the least squares and Rayleigh-Ritz variational methods for
solving differential equations [27]. Like thosemethods, the resultant L∞(r) andρ∞(r)
obtained are an approximation of the solution of Evol in the stationary limit.) If no
such q and p’s can be found, then this choice of v∞(x) for a class of possible rotational
velocity profiles of galaxies is too limited. Galaxies with a RVC given by v∞(x)—and
likely even those approximated by it—cannot be formed under the extended GEOM.

At the end of this analysis, we find that the action S∞ does not have one local
minimum—or even a discrete number of local minima—for a distinct pair of (q, p).
Rather, for each choice of q between 0.010 and 0.336 there is a p between 0.348 and
0.480±0.02 that minimizes S∞. The asymptotic behavior of the RVC in the galactic
hub is thus connected with the asymptotic behavior of the RVC outside of it. This
dependence between the two parameters is expected. A single galaxy is formed from
a single fluid, and during its formation, fluid elements in one region will interact with
the fluid elements in other regions of it. To have the structure of the galaxy inside of
the galactic hub be independent of the structure of the galaxy outside of it is physically
unreasonable.

That the extended GEOM predicts the formation of a variety of galaxies, each with
a different density profile, is a result that is certainly consistent with observations. That
the predicted RVCs for these galaxies are different is consistent with both observations
and the Universal Rotation Curve (URC) proposed by Persic et al.

In [16] Persic et al. analyzed a homogeneous sample of 1100 RVCs of spiral
galaxies, and found that only one global parameter—the luminosity of the galaxy—
determines the profile of theRVCobserved. To describe this dependency they proposed
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the universal rotation curve VURC , which gives the velocity profile of any galaxy given
its luminosity. Salucci et. al. further refined the URC model in [21], and applied it to
the RVC of spiral galaxies; this refinement was then applied to dwarf spheroidal galax-
ies and low surface brightness galaxies in [22] and [5], respectively. One of the main
results of [21] is shown in Fig. 4 of that paper, where the authors plotted an ensemble
of URCs, each with a different virial mass. To show the similarity between the curves
and to compare these curves to VNFW , the RVC obtained from N -body simulations
of Lambda cold dark matter [14], all of the curves were rescaled and normalized to
agree at the viral radius. We find that the RVCs predicted here by the extended GEOM
agrees well with the curves shown in this figure.

The spectrum of RVCs predicted by the extended GEOM ranges from (q, p) =
(0.010, 0.048±0.020) to (0.336, 0.387±0.090), with the median curve given by (0.172,
0.349±0.010). When v∞(x) is rescaled and normalized to fit the scale used in Fig. 4
of [21], we find that the ensemble of curves from VURC is bracketed below by the
(0.010, 0.048±0.020) curve and above by the (0.336, 0.387±0.090) curve; the median
curve (0.172, 0.349±0.010) lies in the middle of the ensemble of URC curves, and
is surprisingly close to the VNFW curve. In addition, we find that the most probable
asymptotic behavior in the large x limit for the RVCs predicted by the extended
GEOM has a p = 0.348, in good agreement with the profile for VNFW , which has an
asymptotic power-law exponent of 0.33 + εNFW with εNFW < 0.1 [21].

While the minimization of S∞ does show that stationary galaxies with L∞(r) can
form and does predict the RVCs for these galaxies, this analysis cannot determine
whether the galaxies predicted are stable under perturbations. To address this lack, we
have also completed a stability analysis of the predicted galaxies by perturbing about
stationary solutions of Evol. This results in a second-order, partial differential equation
for first-order perturbations of the stationary radial velocity. We find that the region
outside of the galactic hub is very rigid; small perturbations in the radial velocity remain
small no matter the frequency of the perturbation.Within the galactic hub, on the other
hand, we find that when the frequency of the perturbation is smaller than 0.267±0.076 to
0.47±0.16 times themaximum angular velocity of the hub (corresponding to a period of
0.91±0.31 to 1.58±0.46 billion years) then perturbations in the radial velocity remains
small. If, however, it is larger than this range of angular velocities then within the
galactic hub small perturbations can increase exponentially with radius.

The rest of the paper is organized as follows. In Sect. 2 the focus is on the evolution
of fluids under the extended GEOM. The spherical model of the fluid used in this paper
is presented. Difficulties in applying Evol to the formation of galaxies is pointed out,
and an alternative approach using the stationary limit of Evol is proposed. Details of
this approach is given in Sect. 3, and the important role that the angular momentum
plays is shown. A specific form for L∞(r) is proposed. Approximate solutions to the
stationary limit of Evol are found in Sect. 4 using techniques from boundary layer
theory. It is then found in Sect. 5 that a spectrum of RVCs is formed under the extended
GEOM, and the range of this spectrum is determined. Comparisons with the URC are
then made. A stability analysis of the stationary solutions is presented in Sect. 6, and
concluding remarks can be found in Sect. 7.
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2 Evolution under the extended GEOM

In this section we focus on the time evolution of fluids under the extended GEOM,
and the use of these evolution equations in determining the formation of galaxies.
We begin with a brief review of the extended GEOM as applied to individual test
particles. These equations of motion are then applied to the motion of the collection
of these particles that form a fluid using the energy-momentum tensor for the fluid
in the nonrelativistic and weak-gravity limits. A spherical model of a galaxy is then
presented, and the Evol is obtained. The difficulties in using Evol to determine the
structure of galaxies are pointed out, and an alternate approach using the stationary
limit of Evol is proposed.

2.1 A review of the extended GEOM for test particles

As WMAP measured the pressure to energy density ratio for Dark Energy to be
−0.967+0.073

−0.072 [25]—within experimental error of the ratio expected for the cosmolog-
ical constant—following [24]we identifyDarkEnergywith the cosmological constant,
and required only that �DE changes so slowly that it can be considered a constant.
Einstein’s field equations are then

Rμν − 1

2
gμνR + �DEG

c2
gμν = −8πG

c4
Tμν, (2)

where Tμν is the energy-momentum tensor for matter, Rμν is the Ricci tensor, Greek
indices run from 0 to 3, Latin indices run from 1 to 3, and the signature of gμν is
(1,−1,−1,−1). Here, we have followed [26] and take

Rμν,α
β = ∂ν

β
μα − ∂μβ

να + λ
μα

β
λν − λ

να
β
λμ, (3)

while

α
μν = 1

2
gαβ

(

∂μgνβ + ∂νgβμ − ∂βgμν

)

. (4)

The extendedGEOMfor a test particlewithmassm is obtained from theLagrangian

LExt ≡ mcR[c2R/�DEG] (gμν ẋ
μ ẋν

) 1
2 , (5)

where for this section only x is the four-vector, xμ = (x0, x1, x2, x3). In [23] we
argued for

R(c2R/�DEG) =
[

1 + D(c2R/�DEG)
]1/2

, (6)

where

D(c2R/�DEG) = χ(α�)

∫ ∞

c2R/�DEG

ds

1 + s1+α
�

, (7)
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while

1

χ(α�)
≡
∫ ∞

0

ds

1 + s1+α
�

= sin [π/(1 + α�)]

π/(1 + α�)
, (8)

is chosen so that D(0) = 1. Here, α� is a constant, and is the only free parameter in the
theory. To prevent the effects of the extension from being already seen in terrestrial
experiments, we considered in [23] an experiment designed to look for anomalous
accelerations through the propagation of sound waves in a gas of He4 atoms at 4 K.
Reasonable choices for experimental parameters then gives the lower bound for α� to
be between 1.28 (for �DE = 10−32 g/cm3) and 1.58 (for �DE = 10−29 g/cm3).

From Eq. (5), the canonical momentum for the particle is

pμ = mcR[c2R/�DEG] ẋμ
(

ẋμ ẋμ

)1/2 , (9)

leading to the constraint,

p2 = m2c2
(

R[c2R/�DEG]
)2

, (10)

as expected.
As

∂LExt
∂xμ

= mc√
ẋ2

1/2

(
1

2
∂μgαβ ẋ

α ẋβR + gαβ ẋ
α ẋβ ∂R

∂xμ

)

, (11)

then with the parametization ẋ2 = c2 the Euler-Lagrange equation gives

0 = d

dt

(

Rgμλ ẋ
λ
)−

(
1

2
∂μgαβ ẋ

α ẋβR + c2∂μR

)

, (12)

or

0 = R

[

gμλ ẍ
λ + ∂νgμλ ẋ

ν ẋλ − 1

2
∂μgαβ ẋ

α ẋβ −
(

c2δν
μ − ẋμ ẋ

ν
)

∂ν logR

]

.

(13)

It then follows from Eq. (4) that the extended GEOM for point particles is

D2xμ

∂t2
= c2

(

gμν − vμvν

c2

)

∇ν logR[c2R/�DEG]. (14)

It is important to note that we have not changed Einstein’s field equtions, and thus
the geometry of spacetime is still given by the solution of Eq. (5). What we have done
by replacing m with mR[c2R/�DEG] in the Lagrangian for a test particle in general
relativity is to change the response of the motion of test particles to the geometry of
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spacetime. As a consequence, the worldline of the test particle is now given by the
extended GEOM Eq. (14) and not the geodesic equations of motion.

Finally, in [24] we used Eq. (14) to determine the density profile of a galaxywith the
velocity profile videal(r) given in the introduction. Thiswas done by splitting the space
around the model galaxy into three regions. While the analysis in [24] for the first two
regions will change in this paper, the analysis in the third region will not. Importantly,
we found that in this third region the density of a galaxy with a RVC given by videal(r)

decreases exponentially fast at distances greater than rI I =
√

χ/(1 + 41+α
� )λDE

from the center of the galaxy; the reader is referred to [24] for the details of this
analysis. Since this decrease in density is not seen, the maximum distance between
galaxies is 2rI I ; setting this equal to the Hubble length gives α� = 1.56±0.10.

2.2 The evolution of fluids under the extended GEOM

We begin by considering a collection of particles in a region of space that can be
described as a fluid. The distribution of such a fluid is given by its density ρ(x), while
the four-velocity field for the fluid is given by the velocity field uμ(x). Then from
Eq. (14) the four-velocity of each fluid element is given by the solution of the equation
of motion,

u · ∇uμ = c2
(

gμν − uμuν

c2

)

∇ν logR. (15)

As we are interested in the formation of galaxies, we work in the nonrelativistic
limit. In particular, in limit ρc2 � 3p we showed in [23] that by using the extended
GEOM Eq. (14) the energy-momentum tensor for this fluid can be approximated as
Tμν ≈ ρuμuν , and the current density jμ ≡ Tμνuν = ρuμ is conserved: ∇ · j ≈ 0.
Next, WMAP and the Supernova Legacy Survey put �K = −0.011±0.012, and the
spatial curvature is within experimental error of vanishing. The universe is essentially
spatially flat. As the timescales and the lengthscales we are interested in are much
shorter than cosmological scales, we approximate the scale factor in the Freeman-
Lemaitre-Robertson-Walker metric to be a constant. We are therefore working in the
weark gravity limit, and can take the metric to be to be gμν = ημν + hμν . Here, ημν

is a flat background metric, and hμν is a small perturbation of it that has only the one
nonzero component: h00 = 2�/c2. We make this choice for gμν even though with
the �DE term in Eq. (2) the spacetime will be significantly different fromMinkowski
space at scales comparable to λDE . At 14010800820 Mpc, λDE is much larger then the
length scales we are interested in, however, and taking the background metric to be
flat is a good approximation.

Writing the connection as α
μν = 0

α
μν + Hα

μν , then

0
α
μν = 1

2
ηαβ

(

∂μηνβ + ∂νηβμ − ∂βημν

)

, (16)
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70 Page 10 of 38 A. D. Speliotopoulos

is the connection in the absence ofmatter and thus determined solely by the coordinates
used, while the contribution to α

μν due to matter is

Hα
μν ≡ ∂μ�

c2
ηα0δ0ν + ∂ν�

c2
ηα0δ0μ − ηαβ ∂β�

c2
δ0μδ0ν . (17)

As expected, the non-vanishing components of 0
α
μν are 0

k
i j , while for H

α
μν they are

H0
0i = ∂i�/c2 and Hi

00 = −ηi j
∂ j�

c2
; H0

00 = ∂t�/c3 ≈ 0 in the nonrelativistic limit.

As u0 ≈ c, both sides of the μ = 0 component of Eq. (15) is of order ui/c, and are
negligible in the non-relativistic limit. The spatial components do survive, however,
and give

∂uk

∂t
+ ui∂i u

k + uiu j
0

k
i j − ηkl∂l

(

� + c2 logR
)

+ ukui∂i logR = 0, (18)

while mass conservation ∇ · j = 0 reduces to

∂ρ

∂t
+ ui∂iρ + ρ

(

∂i + 0
j
j i

)

ui = 0, (19)

in the non-relativistic and weak gravity limits. Since Einstein’s field equations can be
expressed as

Rμν = −8πGρ

c2

(
uμuν

c2
− 1

2
gμν

)

+ �DEG

c2
gμν, (20)

R = 4�DEG/c2 + 8πGρ/c2, and thus R
[

c2R/�DEG
] = R [4 + 8πρ/�DE ]. As

is well known, the only nonvanishing contribution to Rμν in this limit is R00, and
Eq. (20) reduces to

∇i∇ i� = 4πGρ + �DEG. (21)

The last term is small, however, in comparison to 4πρ, and we set it to zero from now
on.

2.3 Spherical geometry and the Evol

We now focus on spherically symmetric fluid distributions where the fluid rotates
about a single rotational axis. Then using the spherical coordinates (r , θ, φ)where the
zenith direction lies along the rotational axis, the velocity along the polar direction,
uθ (t, r) = 0, vanishes while the density ρ(t, r), the radial velocity ur (t, r), and the
rotational (azimuthal) velocity v(t, r) ≡ uφ(t, r) are functions of t and r only.
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For this fluid Eqs. (18), (19), and (21) reduce to

Dur

∂t
= L2

r3
− ∂

∂r

(

� + c2 logR
)

− u
D

∂t
logR, (22)

D (LR)

∂t
= 0, (23)

Dρ

∂t
= − ρ

r2
∂

∂r

(

r2u
)

, (24)

0 = 1

r2
∂

∂r

(

r2
∂�

∂r

)

− 4πGρ, (25)

where L(t, r) = rv(t, r) is the angular momentum of the fluid while

D

∂t
= ∂

∂t
+ u

∂

∂r
, (26)

is the convective derivative. Since R depends on t only implicitly through ρ,

DR

∂t
= dR

dρ

Dρ

∂t
. (27)

But from Eq. (24) we see that Dρ/∂t is of order u, and the last term in Eq. (22) is of
order u2, and thus will not contribute to our analysis. Similarly, at the length scales
that we are dealing with and with our interest being on the structure of galaxies, using
the values of r∗

H , v∗
H , α� , and �DE given in the introduction we find that numerically

R ∼ 1+O(10−5), andwe can setR = 1 in Eq. (23). Angularmomentum conservation
follows from Eq. (23) while Eq. (24) gives mass conservation.

Equations (22)–(25) give the set of evolution equations Evol for the fluid1 with the
solution to Evol denoted by

G(t, r) = (ur (t, r), L(t, r), ρ(t, r),�(t, r)
)

. (28)

Three out of the four equations that make up Evol are nonlinear, and as such deter-
mining a sufficient set of general boundary conditions needed to obtain a G(t, r) is
nontrivial. Indeed, this nonlinearity will limit any definitive comments we can make
about the existence of G(t, r), or the properties of it. For much of this paper we will
be guided instead by physical principles. In particular, we expect on physical grounds
that a set of initial conditions

G0(r) ≡ G(0, r) = (ur (0, r), L(0, r), ρ(0, r),�(0, r)
)

, (29)

1 Specifically, Evol consists of the three evolution equations Eqs. (22)–(24) and one constraint equation
Eq. (25).
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with �(0, r) given as the solution of Eq. (25), is needed; Evol can then be considered
to be the mapping Evol : G0(r) → G(t, r). We also require on physical grounds that
as r → ∞, the three quantities, ρ(t, r) → 0, ur (t, r) → 0, and v(t, r) → 0, must
separately vanish.

One purpose of this paper is to determine whether the formation of galaxies with
RVCs that agree with observations is possible under the extended GEOM. As the
structure of observed galaxies is essentially stationary, one approach to addressing
this question would be to choose a G0(r), solve Evol to obtain G(t, r), and then see
whether this G(t, r) evolves in the t → ∞ limit to

G∞(r) = lim
t→∞G(t, r), (30)

a nontrivial, stationary solution of Evol. (It should be noted that not all choices of
G0(r) need evolve to a stationary solution of Evol, and the limit in Eq. (30) need not
exist. Note also that since G(t, r) is a solution to Evol at each t > 0, if this limit
exists then G∞(r) is a stationary solution of Evol.) This G∞(t) would then be the
galaxy predicted to form under the extended GEOM for this choice of G0(r), and its
RVC could be compared to observations. However, while straightforward, there are a
number of issues with this approach.

Evol gives the evolution of any initial distribution of mass and velocities in the
spherical geometry. That a specific choice of G0(r) may not result in a stationary
solution of Evol, or if it does, may not predict a galaxy whose RVC agrees with
observation, does not mean that the formation of galaxies with the observed RVCs
is not possible under the extended GEOM. It may simply be that the wrong G0(r)
was chosen. On the other hand, knowing which G0(r) should be chosen instead is a
daunting task. Indeed, given the extreme nonlinearity of Evol, determining the set of
G0(r) for which galaxies may be formed under the extended GEOM, or proving that
such a set is empty (as would be expected if galaxy formation was not possible), is
a difficult task. We have instead taken a different approach, one that focuses on the
stationary solutions of Evol.

If a G0(r) can be chosen that results in a G∞(r) with a RVC which is consistent
with observations, then such a solution must be a stationary solution of Evol. To
determine whether galaxies can form under the extended GEOM with a RVC that
agrees with observation, we focus on these stationary solutions. Aswe show in the next
section, stationary solutions of Evol are given by the solution of a nonlinear, ordinary
differential equation, and do not explicitly depend on the choice of G0(r); evolving
this G0(r) under the nonlinear evolution equations given by Evol can be avoided.
While a stationary solution to Evol need not be stable, a stability analysis of this
solution can be attained by analyzing the evolution of time-dependent perturbations
about it. Such perturbations naturally linearize Evol, and their evolution is given by
linear partial differential equations whose solutions are tractable. This approach of
finding stationary solutions of Evol, and then analyzing the stability of these solutions
is the one we have taken in this paper.
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3 The stationary limit of Evol and its perturbation

We turn our attention to the stationary limit of Evol and the perturbations about
it. We begin by denoting the components of the stationary solution by G∞(r) =
(0, L∞(r), ρ∞(r),�∞(r)). As we are interested in galaxies for which the trajectories
of stars are nearly circular, we have taken u∞(r) = 02. Moreover, we are in the region
where 2πρ∞/�DE � 1, and we may further approximate Eq. (7) as

D∞
(
8πρ∞
�DE

)

≈ χ

∫ ∞
8πρ∞
�DE

s−(1+α
�

)ds = χ

α�

(
�DE

8πρ∞

)α
�

. (31)

It follows that D∞ (8πρ∞/�DE ) � 1, and thus from Eq. (6),

R (4 + 8πρ/�DE ) ≈ 1 + 1

2
D (8πρ/�DE ) . (32)

To obtain both the stationary limit of Evol, and perturbations about this limit,
we perturb the general solution G(t, r) of Evol about G∞(r) by taking G(t, r) =
G∞(r) + G1(t, r) with G1(t, r) ≡ (

ur1(t, r), L1(t, r), ρ1(t, r),�1(t, r)
)

being the
perturbation. Keeping to first order in this perturbation and separating the time-
independent terms from the time dependent ones, we obtain from Evol the equations
that determine both G∞(r) and G1(t, r). We begin with G∞(r).

3.1 Evol in the stationary limit

For G∞(r), Evol in the nonrelativistic limit reduces to

0 = L2∞
r3

− d

dr

(

�∞ + 1

2
c2D∞

)

, (33)

0 = 1

r2
d

dr

(

r2
d�∞
dr

)

− 4πGρ∞, (34)

where D∞(r) ≡ D (8πρ∞(r)/λDE ). These two equations can be combined into
one second-order differential equation by multiplying Eq. (33) by r2 and taking the
derivative with respect to r . Equation (34) is then used to obtain

1

r2
d

dr

(
L2∞
r

)

= 4πGρ + c2

2

1

r2
d

dr

(

r2
dD∞
dr

)

, (35)

in agreement with [24].

2 This requirement is not too onerous. The stationary radial velocity u∞(r) = 0 unless L∞ is a constant,
which is not the case we consider here.
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Treating Eq. (35) as a differential equation for ρ∞(r) with a given source term
L∞(r), we find that the solution to Eq. (35) minimizes the time-independent action

S∞ ≡ − c2

16πG

∫ rI I

0

{
c2

4

(
dD∞
dr

)2

+
[
1

r2
d

dr

(
L2∞
r

)

+ α�

1 − α�

4πGρ∞
]

D∞
}

4πr2dr , (36)

where we have made use of Eq. (31). The integral is to rI I since 2rI I is the maximum
separation between galaxies.

3.2 Evol for G1(t, r)

For G1(t, r), Evol reduces to

∂ur1
∂t

= 2

r3
L∞L1 − ∂

∂r

[

�1 − c2

2
χ

(
�DE

8πρ∞

)α�+1 8πρ1

�DE

]

, (37)

∂L1

∂t
= −ur1

dL∞
dr

, (38)

∂ρ1

∂t
= − 1

r2
∂

∂r

(

r2ρ∞ur1

)

, (39)

0 = 1

r2
d

dr

(

r2
∂�1

∂r

)

− 4πGρ1, (40)

in the nonrelativistic limit. As with the stationary equations, these four equations can
be reduced to a single second-order differential equation.

Taking the derivative of Eq. (25) with respect to t and making use of Eq. (24), we
find that

GṀ(t)

r2
= ∂2�

∂t∂r
+ 4πGρ(t, r)ur (t, r), (41)

where Ṁ(t) is an arbitrary function of time only. Next, taking the derivative of Eq. (37)
with respect to t , and making use of Eqs. (38), (39) and (41), we arrive at

− GṀ(t)

r2
= ∂2ur1

∂t2
+ 1

2
c2χ

∂

∂r

{(
�DE

8πρ∞

)1+α
� 1

r2
∂

∂r

[

r2
(
8πρ∞
�DE

)

ur1

]}

+
[
1

r3
dL2∞
dr

− 4πGρ∞
]

ur1, (42)
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since ρ(t, r)ur (t, r) ≈ ρ∞ur1(t, r) to first order. The solution of this differential
equation for ur1 also minimizes an action,

S1 ≡ c2

16πG

∫ rI I

0

{
4πρ∞
�DE

(
∂ur1
∂t

)2

+c2χ

4

(
�DE

8πρ∞

)α
�

+1 1

r4

(
∂

∂r

[
8πρ∞
�DE

r2ur1

])2

−4πρ∞
�DE

(
1

r3
dL2∞
dr

− 4πGρ∞
)

ur1
2 − 8πGρ∞

�DEr2
Ṁur1

}

4πr2drdt, (43)

for a given L∞(r).
As the current density along the radial direction jr (t, r) = ρ(t, r)ur (t, r), the mass

flux through a sphere Sph(R) with radius R about the center of the galaxy is

∫

Sph(R)

�j · d �A = 4πR2ρ(t, R)ur (t, R). (44)

From Eq. (41), this flux is

∫

Sph(R)

�j · d �A = Ṁ(t) − ∂

∂t

(
R2

G

∂�

∂r

∣
∣
∣
∣
r=R

)

. (45)

When Ṁ(t) > 0 there is a flux of mass leaving the center of the galaxy. and thus the
mass of the galaxy would be increasing at the rate Ṁ(t) even in the limit R → 0.
On the other hand, when Ṁ(t) < 0 there is a flux of mass entering the center of the
galaxy, and thus the mass of the galaxy would be decreasing at the rate of Ṁ(t). There
will thus be an essential singularity at the center of the galaxy that would either inject
mass into the galaxy, or remove mass from it. In either case, the total mass of the
galaxy would not be conserved if Ṁ(t) �= 0. As Eq. (24) asserts that mass is in fact
conserved, we set Ṁ(t) = 0.

3.3 The role of angular momentum

In the passage fromG(t, r) toG∞(r), Evol reduces from four equations determining
four functions to two equations determining three functions; Evol thus becomes a
system of underdetermined differential equations in the stationary limit. This can be
seen explicitly in Eq. (35) where ρ∞(r) is only determined once L∞(r) is known.
This underdeterminacy is expected, and is consistent with observations.

Suppose instead that Evol reduces in the stationary limit to a system of three
differential equations for the three non-zero components of G∞(r). This system of
differential equations would be complete, and could then be solved without reference
to the initial conditionsG0(r); they would only have to satisfy the same the boundary
conditions at r = 0 and r → ∞ that are required of G(t, r). The solutions of these
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differential equations will include three arbitrary constants that would then be deter-
mined by these boundary conditions. It would then follow that the stationary galaxies
predicted by the extended GEOM would all be the same irrespective of the choice of
initial condition G0(r). This certainly is not what is observed.

That the set of differential equations given by Evol is underdetermined means that
G∞(r) depends indirectly on the choice of initial conditionsG0(r). A choice ofG0(r)
will, after evolving with Evol, give a L∞(r) that will, through the solution of Eq. (35),
give ρ∞(r) as well. Indeed, the dependence of Eq. (35) on L∞(r), and its role as
the driving term for determining ρ∞(r) underscores the important role that angular
momentum plays in the formation of galaxies. However, since the evolution of G0(r)
to get a L∞(r) would require the solution of Evol, and since such a solution would
also give ρ∞(r) in the first place, one can question the usefulness of focusing on the
stationary solutions of Evol and Eq. (35). In the end, it comes down to the choice of
angular momentum for the fluid, and when this choice is made.

We can certainly make this choice at t = 0 by choosing a specific G0(r), and this
choice may then result in a L∞(r) in the stationary limit after evolution under Evol.
We can also make this choice at the stationary limit by choosing a L∞(r) directly,with
the expectation that, since the angular momentum of the system is conserved, there
exists some choice of G0(r) that will give this L∞(r) after evolving with Evol. By
making the choice at the stationary limit we circumvent the difficulty of solving the
nonlinear partial differential equations in Evol. Moreover, with an appropriate choice
of L∞(r) we will also be able to determine whether it is possible for the extended
GEOM to form galaxies with RVCs that agree with observation. This choice of L∞ can
be determined using S∞ and the fact for given a stationary L∞ the stationary density
ρ∞ must minimize S∞ .

The v∞(r) considered here in Eq. (1) is a natural generalization of videal(r). It has
a well-defined asymptotic behavior in both the x → 0 and x → ∞ limits, and the two
behaviors are smoothly joined together. It depends on four parameters, r∗

H , v∗
H , q, p,

and as q and p give the power law behavior of v∞(r) in the asymptotic limits x → 0
and x → ∞ respectively, each parameter has a definite physical interpretation. Two
of the parameters, r∗

H and v∗
H , are set by observations, and are considered fixed. The

remaining two parameters, q and p, are considered to be free, and forms a two-
dimensional parameter space P . As each chosen q and p will give a different RVC,
this v∞(r) describes a class of velocity profiles, each similar in form, and, since by
construction v∞(x = 1) = v∗

H , all of whom can be compared with one another. We
will, in addition, require that v∞(x) → 0 as x → 0 and x → ∞; this in turn requires
that q > 0 and p > 0. Newtonian gravity, on the other hand, would set q = 1 and
p = 0; we follow suit and limit q ≤ 1 and p ≤ 1/2. The parameter space is thus
restricted to the strip P = {(q, p) : 0 < q ≤ 1, 0 < p ≤ 1/2}. The main focus of this
paper is determining the region of P for which galaxies with velocity profiles v∞(x)
can be formed under the extended GEOM.

We choose L∞(r) = rv∞(r). Then each q and p will give a specific L∞(r; q, p),
and through the solution of Eq. (35), a density profile ρ∞(r; q, p) for a galaxy in the
stationary limit. But while each choice of q and p may ultimately result in a ρ∞, such
a ρ∞ need not minimize S∞. By evaluating S∞ at ρ∞(r; q, p) and L∞(r; q, p), and
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minimizing the action with respect to the parameters, we are able to determine the
values of q and p that do produce a L∞(r; q, p) and a ρ∞(r; q, p) which minimizes
the action. It is for these values of q and p that a stationary galaxy with a RVC given
by v∞(x) can be formed under the extended GEOM. Importantly, if no such q and p
can be found, then such galaxies could not form under the extended GEOM.

4 Stationary solutions

We now turn our attention to finding solutions to Eq. (35). This is possible due to the
two drastically different length scales in the theory, r∗

H andλDE . A straight forward use
of them results in a small parameter that allows for a perturbative solution of Eq. (35).
This parameter multiplies the highest-order derivative of the differential equation,
however, and thus a straightforward application of perturbation theory results in a
reduction of the order of this differential equation. The perturbation theory is therefore
singular, and thus techniques from boundary layer theory (see Ch. 9 of [2]) will have
to be applied. However, there are such significant differences between Eq. (47) and its
boundary conditions, and the differential equations and boundary conditions analyzed
in [2] that the analysis outlined and the terminology used in [2] cannot be directly
applied here. Rather, they will instead serve as guidance for our analysis. Indeed, like
the boundary layer analysis [2], perturbative solutions for our differential equation
must be found in two or more regions of space, and a consistent solution only exists
if these regions overlap. In our case, we will find both the leading and the first-order
perturbation solutions of Eq. (47) within the galactic hub and within the galactic disk,
and then we will determine for which v∞(x) these two regions overlap. Unlike the
differential equations considered in [2], however, one of the boundary conditions for
Eq. (47) is in the limit x → ∞, and thus use of the outer- and inner- terminology used
in [2] would be confusing at best, and we do not use it here. More importantly, with
r∗
H and λDE we have two different length scores, and this will allow for a different
approach to finding the inner-limit solution than that described in [2]. We begin at the
r∗
H length scale.

4.1 The solution in the galactic hub region

In this region we make use of the length scale r∗
H , and take x = r/r∗

H . Then defining
v̂∞(x) ≡ v∞(x)/v∗

H and ϒ(x) = (ρ∞/ρ∗
H )−α

� with

ρ∗
H = 3v∗

H
2

4πGr∗
H
2 , (46)

Eq. (35) becomes

F(x) = ϒ−1/α
� + ε2

x2
d

dx

(

x2
dϒ

dx

)

, (47)
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where

F(x) = 1

3x2
d

dx

(

x v̂2∞(x)
)

, (48)

while

ε2 = χ

α

(

c2

6v∗
H
2

)1+α
�
(

r∗
H
2

λ2DE

)α
�

. (49)

The values for r∗
H , v∗

H and λDE given in the introduction are used to obtain ε =
6.131×10−3 after evaluatingχ atα� = 1.56±0.10. Using ε as an expansion parameter,
we first take the outer limit ε → 0 [2], and expand ϒ(x) to first order in ε2: ϒ(x) =
ϒ0(x) + ε2ϒ1(x). Equation (47) gives for the leading term

ϒ0(x) = [F(x)]−α
� , (50)

and like the nonlinear Carrier equation [2] the reduction of order in Eq. (47) results in
an algebraic equation that is easily solved. Indeed, the resultant equation in this limit
is algebraic to all orders in the perturbation expansion. In particular, it gives for the
first-order perturbation

ϒ1(x) = α

[F(x)]α�
+1

1

x2
d

dx

(

x2
d

dx
[F(x)]−α

�

)

. (51)

The resulting density is

ρhub∞ (x) = F(x)ρ∗
H

[

1 + ε2ϒ1(x)/ϒ0(x)
]1/α

�

. (52)

Equation (52) is valid for values of x for which ε2|ϒ1(x)| < |ϒ0(x)|, or equiva-
lently, when Ehub(x) ≡ ε2|ϒ1(x)/ϒ0(x)| < 1. This condition establishes the region
Rhub of space for which Eq. (52) is valid. We will see below thatRhub encompasses
the region around r = 0, and thus corresponds to the galactic hub. Indeed, this can
be seen directly by setting ε = 0 in Eq. (52); ρ∞(r) then reduces to the Newtonian
result.

4.2 The solution in the galactic disk region

In this region we make use of the length scale λDE , and take x̄ ≡ r/(χ1/2λDE ). Then
defining ȳ(x̄) ≡ 8πρ∞(x̄)/�DE , and

F̄(x̄) ≡ 2

χ

(

v∗
H
2

c2

)

1

x̄2
d

dx̄

(

x̄ v̂2∞(x̄)
)

, (53)
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Eq. (35) becomes

F̄(x̄) = ȳ + 1

α�

1

x̄2
d

dx̄

(

x̄2
dy−α

�

dx̄

)

. (54)

For x̄H ≡ r∗
H/χ1/2λDE = 7.392 × 10−7,

v̂∞(x̄) =
√

1 + p/q

x̄2(q+p) + x̄2(q+p)
H p/q

x̄q x̄ p
H , (55)

after using x = x̄/x̄H , We see that when x̄ ∼ 1, v̂∞ ∼ x̄ p
H , and F̄ ∼ x̄2pH v∗

H
2/c2. This

leads us to take

ȳ(x̄) = ȳa(x̄) + x̄2pH
v∗
H
2

c2
ȳ1(x̄), (56)

and expand Eq. (35) to first order in x̄2pH v∗
H
2/c2. The leading term ȳa is given by

0 = ȳa + 1

α�

1

x̄2
d

dx̄

(

x̄2
d ȳ

−α
�

a

d x̄

)

. (57)

The solution to Eq. (57) was found in [24]; the details of how this was done can be
found there. Here, we will only need the following

ȳa(x̄) = �

x̄
2

α� +1

, (58)

where

�α
�

+1 = −2(1 + 3α�)

(1 + α�)2
, while � =

[
2(1 + 3α�)

(1 + α�)2

] 1
1+α�

. (59)

For the first-order perturbation ȳ1, on the other hand, Eq. (35) gives

x̄−2p
H

c2

v∗
H
2 F̄(x̄) = ȳ1 + 1

|�(α
�

+1)|
1

x̄2
d

dx̄

[

x̄2
d

dx̄

(

x̄2 ȳ1
)]

. (60)

The extent of the regionRdisk where this perturbative expansion is valid is determined

by the condition Edisk(x̄) ≡ x̄2pH (v∗
H )/c)2|ȳ1(x̄)/ȳa(x̄)| < 1. As we will see below,

this region excludes the point r = 0, and thus corresponds to the galactic disk.
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Equation (60) is straightforwardly solved to give

ȳ(x̄) = �

x̄
2

α�+1

+ x̄2pH
v∗
H
2

c2
[

C̄cos jc(x̄/x̄0) + C̄sin js(x̄/x̄0)
]

− 2

νχ

v∗
H
2

c2
|�1+α

� |
x̄5/2

∫ x̄

x̄0

d

ds̄

(

s̄v̂2∞
)

sin(ν log s̄/x̄)
ds̄√
s̄
, (61)

where ν =
√

|�α
�

+1| − 1/4,

jc(x) = 1

x5/2
cos(ν log x), and js(x) = 1

x5/2
sin(ν log x). (62)

Here x̄0 is a point in the intersection of the regionsRhub andRdisk. In the next section
we will determine the region of P where this intersection is nonempty. For now, we
will assume that we are working in this region. We then make use of the following
expansion to evaluate the integral

v̂2∞(x̄) = (1 + p/q)

(
x̄H
x̄c

)2p ∞
∑

n=0

(−1)n
[[

x̄

x̄c

]Zn
qp

θ(x̄c − x̄) +
[
x̄c
x̄

]Zn
pq

θ(x̄ − x̄c)

]

, (63)

where x̄2(q+p)
c = (p/q)x̄2(q+p)

H , Zn
qp = 2[n(q + 1) + np], Zn

pq = 2[n(p + 1) + nq],
and θ(x) is the Heaviside function. The resulting density is

ρdisk∞ (x) = ρ∗
H�

(
αε2

x2

) 1
α�+1

+ Ccos jc

(
x

x0

)

+ Csin js

(
x

x0

)

+ ρdiskp (x), (64)

where the constants

Ccos = ρhub∞ (x−
0 ) − ρ∗

H�

(

α�ε2

x20

) 1
α�+1

, (65)

νCsin = x
dρhub∞
dx

∣
∣
∣
∣
x−
0

+ 5

2
ρhub∞ (x−

0 ) − 1

2
ρ∗
H�

(
1 + 5α�

1 + α�

)(

α�ε2

x20

) 1
α� +1

, (66)

are determined by requiring the density to be smooth at the transition point x0 = x̄0/x̄H
between the regions Rhub and Rdisk,

ρhub∞ (x−
0 ) = ρdisk∞ (x+

0 ),
dρhub∞
dx

∣
∣
∣
∣
x−
0

= dρdisk∞
dx

∣
∣
∣
∣
x+
0

. (67)
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As for the particular solution ρdiskpart (x), when xc < x0,

ρdiskpart (x)

ρ∗
H

= 1

3

(1 + p/q)

x2(p+1)
c

∞
∑

n=0

(−1)n|�α
�

+1|(1 − Zn
pq)

|�α
�

+1| + Zn
pq(Z

n
pq − 1)

{ [ xc
x

]Zn
pq+2

−
[

jc

(
x

x0

)

+ 1

ν

[
1

2
− Zn

pq

]

js

(
x

x0

)][
xc
x0

]Zn
pq+2 }

, (68)

while when x0 ≤ x ≤ xc,

ρdiskpart (x)

ρ∗
H

= 1

3

(1 + p/q)

x2(p+1)
c

∞
∑

n=0

(−1)n|�α
�

+1|(1 + Zn
qp)

|�α
�

+1| + Zn
qp(Z

n
qp + 1)

{[
x

xc

]Zn
qp−2

−
[

jc

(
x

x0

)

+ 1

ν

[
1

2
+ Zn

qp

]

js

(
x

x0

)][
x0
xc

]Zn
qp−2 }

. (69)

Finally, when x0 ≤ xc ≤ x ,

ρdiskpart (x)

ρ∗
H

= 1

3

(1 + p/q)

x2(p+1)
c

∞
∑

n=0

(−1)n |�α
�

+1|
{

(1 − Zn
pq )

|�α
�

+1| + Zn
pq (Z

n
pq − 1)

[ xc
x

]Zn
pq+2

+
[[

(1 + Zn
qp)

|�α
�

+1| + Zn
qp(Z

n
qp + 1)

− (1 − Zn
pq )

|�α
�

+1| + Zn
pq (Z

n
pq − 1)

]

jc

(
x

xc

)

− 1

ν

⎡

⎣

|�α
�

+1| − 1
2

(

1 + Zn
qp

)

|�α
�

+1| + Zn
qp(Z

n
qp + 1)

− |�1+α
� | − 1

2 (1 − Zn
pq )

|�α
�

+1| + Zn
pq (Z

n
pq − 1)

⎤

⎦ js

(
x

xc

)
⎤

⎦

−(1 + Zn
qp)

[

jc
(

x
x0

)

+ 1
ν

[
1
2 + Zn

qp

]

js
(

x
x0

)]

|�α
�

+1| + Zn
qp(Z

n
qp + 1)

[
x0
xc

]Zn
qp−2

⎫

⎬

⎭
.

(70)

4.3 Consistent solutions

The region where ρhub∞ is valid is given by Rhub = {x : Ehub(x) < 1}; this region
is simply connected, andRhub = (xhubL , xhubU ). Similarly, the region where ρdisk∞ is
valid is given by Rdisk = {x : Edisk(x) < 1}; this region is also simply connected

with Rdisk = (xdiskL , xdiskU ). A consistent solution ρ∞(x) to Eq. (35) exists when
the two regions overlap, Rhub ∩ Rdisk �= ∅ [2]. It is only in this case that a x0 can
be chosen, and the arbitrary constants C̄cos and C̄sin in the homogenous solution to
Eq. (35) be determined. The focus of this subsection is on determining both Rhub
and Rdisk, along with the region P∩ ⊂ P for which their intersection is not empty:
P∩ = {(q, p) ∈ P : Rhub ∩ Rdisk �= ∅}.
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Fig. 1 A 3D plot of (�x)∩ with respect to q and p. Note the region in red where (�x)∩ < 0. In this region
Rout ∩ Rin = ∅ (color figure online)

Considering first the limit x → 0, we find that

Ehub(x) ≈ 2α�ε2
(1 − q)(1 + 2α�(1 − q))

[(1 + q/p)(1 + 2q)/3]1+α
�

x−2[q(1+α
�

)−α
�

]. (71)

Then xhubL = 0 for q ≤ α�/(α� + 1) and q = 1, while when α�/(α� + 1) < q < 1,

xhubL =
(

2α�ε2
(1 − q)(1 + 2α�(1 − q))

[(1 + q/p)(1 + 2q)/3]1+α
�

) 1
2[q(1+α� )−α� ]

. (72)

The largest that xhubL can be is 2.69×10−4 or roughly 3.18 pc. In the x → ∞ limit, on

the other hand, ρdisk∞ (x) ∼ x−2(p+1) while ρa(x) ∼ x−2/(α∞+1). Then Edisk(x) ∼
x−2(p+α

�
/(α

�
+1)) → 0 as x → ∞ for all p, and thus Rdisk = (xdiskL ,∞).

Both xhubU and xdiskL are found numerically using the following process. For xhubU ,
a value of xtrial is chosen, and Ehub(xtrial) is calculated. If Ehub(xtrial) > 1, the
value of xtrial is decreased while if Ehub(xtrial) < 1, it is increased. With this new
value for xtrial, Ehub(xtrial) is again calculated, and the process is repeated until

sufficient accuracy is achieved. This final xtrial is then set equal to xhubU . A similar

process is used to determine xdiskL .

As (�x)∩ ≡ xhubU − xdiskL > 0 in P∩, we can use (�x)∩ to determine P∩. The
results of this calculation is shown in Fig. 1. Both xhubU and xdiskL were calculated
to an accuracy of 0.0001 starting at q = 0.01 and continuing in 0.1 increments from
q = 0.1 to q = 1.0. Similarly, p starts at 0.01, and increases in increments of 0.01
until p = 0.50 is reached. We find that (�x)∩ > 0 everywhere except for the red
triangular-shaped region shown in the figure. This region is bounded by the lines
q = 1.0, p = 0.50, and a curve that starts at (1.0, 0.33) and ends at (0.3, 0.50).
Outside of this triangular region the regions Rhub and Rdisk overlap, and there is a
consistent boundary-layer solution to Eq. (35).

We emphasize that while (�x)∩ < 0 in the triangular-shaped region, this does not
mean that there are no solutions toEq. (35) in this region ofP . All that can be concluded
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is that the singular perturbation analysis that divides space into only two regions cannot
be applied. A consistent solution may be possible when a third, intermediate region is
introduced to interpolate between the two regions, for example. This region would be
given by the solution to Eq. (35) obtained by setting the inhomogeneous term equal to
the term proportional to ε2. However, such solutions would depend more on the detail
behavior of v∞(r) in the transition region between the galactic hub and the disk—and
thus on how this transition is modeled—than on the asymptotic properties of the RVC.
Moreover, we have found values of q and p do that minimize the stationary action, and
they lie far outside of the triangular region. As our focus is on the asymptotic behavior
of RVCs, the two-region, boundary-layer solution is sufficient for our purposes.

The values of (�x)∩ inP∩ range from 0.0014 to 0.6339, and, given that 6(�x)∩ <

(xhubU + xdiskL )/2, are quite small when compared to either xhubU or xdiskL . Conse-

quently, while ρdisk∞ (x) may depend on the choice of x0 ∈ (xdiskL , xhubU ), the size of
(�x)∩ is such that this choice of x0 does not have much of an impact on our analysis.
Nevertheless, since we will find in the next section that the action is dominated by
the behavior of v∞(x) in the galactic disk, we choose x0 = xhubU to maximize the
contribution of the galactic hub to the action.

5 A spectrum of rotational velocity curves

In the region P∩ the boundary-layer method gives

ρ∞(x) = ρhub∞ (x)θ(x0 − x) + ρdisk∞ (x)θ(x − x0), (73)

as the solution of Eq. (35). Such a solutionmust alsominimize the action S∞, however.
In this section we will determine the values of q and p that do, and in doing so,
determine the RVCs that can form under the extended GEOM. We will find that a
continuous range of RVCs is possible, and this spectrum of RVCs is in agreement
with the URC.

When evaluated at L∞ and ρ∞, the action breaks up into two pieces,

S∞
∣
∣
(ρ∞;L∞)

= Shub∞
∣
∣
(ρhub∞ ;L∞)

+ Sdisk∞
∣
∣
(ρdisk∞ ;L∞)

, (74)

corresponding to the solutions in the regions Rhub and Rdisk. We begin with the
region Rhub.
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5.1 The action in the regionRhub

As ϒ = ϒ0 + ε2ϒ1 in the region Rhub, we first expand Eq. (36) about ϒ0,

Shub∞ ≡ −4πr∗
H
3EH

∫ x0

0

{

F(x)ϒ0 + α�

1 − α�

ϒ
1−1/α

�

0

+ε2

[

1

2

(
dϒ0

dx

)2

+
[

F(x) − ϒ
−1/α

�

0

]

ϒ1

]}

x2dx, (75)

keeping terms linear in ϒ1 in the integrand. Here, EH ≡ ρ∗
Hc

2D∞(8πρ∗
H/�DE )/4.

After evaluating Shub∞ at the solution Eq. (52) we obtain

Shub∞
4πr∗

H
3EH

∣
∣
∣
∣(

ρhub∞ ;L∞
) = −

∫ x0

0

{
F1−α

�

1 − α�

+ 1

2
ε2α2

�
F−2(α

�
+1)
(
dF

dx

)2 }

x2dx .(76)

Importantly, in the x → 0 limit the first term in the integrand is proportional to
x2[(α�

−1)(1−q)+1] while the second term is proportional to x4α�
(1−q). Since the integral

is well-defined as long as 2[(α� − 1)(1 − q) + 1] > −1 and 4α�(1 − q) > −1, we
find that

q < 1 + 1

4α�

. (77)

This condition is satisfied for all points in P .

5.2 The action in the regionRdisk

While in Sect. 4.2 we used ȳ and x̄ , in this section we find it more convenient to use
y = (�DE/8πρ∗

H

)

ȳ and x . Then

ya =
(

�DE

8πρ∗
H

)

ȳa, while y1 = x̄2pH

(
v∗
H

c

)2 (
�DE

8πρ∗
H

)

ȳ1. (78)

Expanding Eq. (36) about ȳa , and keeping terms linear in y1,

Sdisk∞ = −4πr∗
H
3EH

∫ xI I

0

{
1

2
ε2

(

dy
−α

�
a

dx

)2

+ α�

1 − α�

y
1−α

�
a

−α�ε2
dy

−α
�

a

dx

d

dx

(

y
−(1+α

�
)

a y1
)

+ [F(x) + α� y1]y−α
�

a

}

x2dx . (79)

This action naturally breaks up into two additional pieces, Sdisk∞ = S
disk-asym
∞ +

Sdisk-near∞ , with the first piece consisting of the first two terms in Eq. (79). When
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S
disk-asym
∞ is evaluated at the solution Eq. (58), they can be integrated to give

S
disk-asym
∞
4πr∗

H
3EH

∣
∣
∣
∣(

ρdisk∞ ,L∞
) = − 2α2

�
(α�ε2)

1−α�
1+α� (1 + α�)3�2

(α� − 1)(1 + 3α�)2(1 + 5α�)

[

x

1+5α�
1+α�
I I − x

1+5α�
1+α�

0

]

,

(80)

after Eq. (59) is used. For the second piece consisting of the third and fourth terms in
Eq. (79), after an integration by parts and making use of Eq. (60), it reduces to

Sdisk-near∞
4πr∗

H
3EH

∣
∣
∣
∣(

ρdisk∞ ,L∞
) = 1

2

(1 + α�)2

(1 + 3α�)
�
(

αε2
)− α�

1+α�

×
{

α�(1 + α�)

(1 + 3α�)

[

x

1+3α�
1+α�
I I

(

x2y1
) ∣
∣
∣
xI I

−x

1+3α�
1+α�

0

(

x2y1
) ∣
∣
∣
x0

]

+1

3

∫ xI I

x0
x

2α�
1+α�

d
(

x v̂2∞
)

dx
dx

}

. (81)

Making use of Eq. (63) again, this last integral becomes for xc < x0,

1

3

∫ xI I

x0
x

2α�
1+α�

d
(

x v̂2∞
)

dx
dx = 1

3
(1 + p/q)x

1+3α�
1+α�

−2p

c

∞
∑

n=0

(−1)n(1 − Zn
pq)

1+3α
�

1+α
�

− Zn
pq

×
{(

xc
xI I

)Zn
pq− 1+3α�

1+α� −
(
xc
x0

)Zn
pq− 1+3α�

1+α�

}

, (82)

while for xc > x0,

1

3

∫ xI I

x0
x

2α�
1+α�

d
(

x v̂2∞
)

dx
dx = 1

3
(1 + p/q)x

1+3α�
1+α�

−2p

c

∞
∑

n=0

(−1)n

×
⎧

⎨

⎩

1 + Zn
qp

1+3α
�

1+α
�

+ Zn
qp

⎡

⎣1 −
(
x0
xc

)Zn
qp+

1+3α�
1+α�

⎤

⎦+

1 − Zn
pq

1+3α
�

1+α
�

− Zn
pq

⎡

⎣

(
xc
x0

)Zn
qp−

1+3α�
1+α� − 1

⎤

⎦

⎫

⎬

⎭
. (83)
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5.3 Minimization of S∞
∣
∣
(�∞,L∞)

When evaluated at ρ∞ the action becomes

S∞
∣
∣
(ρ∞,L∞)

= Shub∞
∣
∣(

ρhub∞ ,L∞
) + S

disk-asym
∞

∣
∣(

ρdisk∞ ,L∞
) + Sdisk-near∞

∣
∣(

ρdisk∞ ,L∞
),

(84)

The first two terms depend on q and p indirectly, through x0. Since the integrand
in the first term is integrable, and because we chose x0 = xhubU ∼ 1 − 5, they do
not contribute appreciably to the action. It is the third term, with its dependence on
xI I = 2.264 × 105, q, and p, that dominates the behavior of S∞

∣
∣
(ρ∞,L∞)

, and will
determine the values of q and p that minimizes it. To emphasize this, and to isolate
the dependence of S∞

∣
∣
(ρ∞,L∞)

on these parameters, we define

S(q, p) ≡ 2(1 + 3α�)2

α�(1 + α�)3�

(α�ε2)

α�
1+α�

x
(1+3α

�
)/(1+α

�
)

I I

Sdisk-near∞
4πr∗

HEH

∣
∣
∣
∣
(ρ∞,L∞)

. (85)

Note that the dependence of S(q, p) on P∩ is dominated by the x2
I I
y1(xI I ) term in

Eq. (81). This x2
I I
y1(xI I ) in turn is dominated by two terms, one coming from the par-

ticular solution to Eq. (60), which is proportional to (xc/xI I )
Z0
pq , and the other coming

from the homogeneous solution to Eq. (60), which is proportional to (xc/xI I )
1/2. For

S(q, p) to be small, the homogeneous solution must dominate, and thus it is in the
region of P∩ where Z0

pq ≥ 1/2—which in turn requires p ≥ 1/4—that the minima
of S(q, p) will be found.

The precise values for q and p that minimizes S(q, p) are determined numerically
using the following process. We first determine xhubU to an accuracy of 10−6 for q
starting at 0.01 and continuing in 0.1 increments from 0.1 to 1.0, and for p starting at
0.01 and continuing in 0.01 increments to 0.50. We then set x0 = xhubU , and calculate
S(q, p) for these values of q and p. The result is a two-dimensional surface above
P∩. We find that there is a slight concavity in the surface in the rectangular region of
P∩ bounded by the lines q = 0.01, q = 0.40, p = 0.34, p = 0.50. For each choice
of q in this region there is a p(q) such that

∂S

∂ p

∣
∣
∣
∣
(q,p(q))

= 0. (86)

The solution to Eq. (86) gives p(q) as a function of q, and thus defines a curve on
the base space P∩. The lifting of this curve to the surface S(q, p) gives the curve
S(q) = (q, p(q), S(q, p(q))) on which the action is local minimum for each choice
of q.

To determine this function p(q) and the curve S(q), we determine xhubU to an
accuracy of 10−6 for q starting at 0.200 and continuing in 0.002 increments until
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Fig. 2 A series of plots of curve S(q). Here figure a gives the full three-dimensional plot of the curve, while
figure b gives the projection of the curve onto the S(q, p) − q plane and figure c gives its projection onto
the S(q, p) − p plane. Notice that in both projections the minimum action curve approaches an asymptote
(color figure online)

0.210 is reached, and for p starting at 0.345 and continuing in 0.001 increments until
0.355 is reached. These xhubU are then used to calculate S(q, p), and for each q the p
that minimizes S(q, p) is determined along with the value of S(q, p) at this point. Up
to N = 15000 terms in the series in Eqs. (68)–(70) and (82)–(83) is used in calculating
S(q, p). As expected, the collection of these points form a curve on the action surface
S(q, p). We then follow this curve along values of q that are less than 0.200 and along
values of q that are greater than 0.210 in increments of 0.002 until we reach a q ∈ P∩
for which a minimum of the action cannot be found. The result of this calculation is
shown in Figs. 2 and 3.

Figure 2a is a graph of the minimum action curve S(q) above a region of the base
parameter space P∩; not shown is the surface on which this curve lies. The projection
of this curve onto the S(q, p) − q plane is shown in Fig. 2b, while the projection of
the curve onto the S(q, p) − p plane is given in Fig. 2c. Notice the asymptote for the
curve shown in Fig. 2b and c.

Figure 3 shows the graph of p(q) versus q, and is the projection of S(q) onto the
q − p plane. Each point (q, p(q)) on the curve gives a L∞(x) that results in a density
ρ∞ that minimizes S∞. Thus, each point (q, p(q)) on this curve gives the density
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Fig. 3 Graph of the dependence of p(q) on q along S(q). Notice that for much of the graph p(q) is a weak
function of q. Notice also that the uncertainty in p(q) grows rapidly as q → 0.336 (color figure online)

and, through v∞(x), the RVC of a galaxy that can form under the extended GEOM.
Notice that p(q) is nearly flat for most of the values of q shown, and thus many of
these galaxies will have RVCs that have similar asymptotic behavior in the galactic
disk, while at the same time have very different behavior in the galactic hub. This can
be seen explicitly in Fig. 4.

By focusing only on the large x asymptotic behavior of the RVC, we use the
increments 0.001 by which p was increased when determining S(q) as a bin size
�p, and determine the probability of finding a galaxy with an asymptotic power-law
exponent between p and p + �p. This is done by simply counting the number of
RVCs with a value for p between p and p+�p without regard to their corresponding
values of q; the resultant histogram is shown in Fig. 4. Notice that the most probable
value of p—with 19 out of the 164 possible RVCs, or 11.6%—is 0.348. The median
of this distribution of curves is at p = 0.349±0.01; the corresponding RVC has a
(q, p) = (0.172, 0.349±0.01). In addition, 50%of the possibleRVCs have a p ≤ 0.355
while 95% of the curves have a p ≤ 0.404.

Shown also in Figs. 2 and 3 are the estimated uncertainties in determining
S(q, p(q)) and p(q). Notice in particular the large increase in uncertainty in p(q)

as q → 0.336; this is precisely the location of the asymptote for S(q). The largest
contribution to the uncertainties is due to the power-law exponent α� . While the
uncertainties in r∗

H , v∗
H , and λDE also contribute to the uncertainties in S(q, p(q))
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Fig. 4 Histogram showing the distribution of p with the most probable value of p being 0.348

and p(q), including these contributions to the uncertainties in any reliable manner
would require determining xhubU to an accuracy much higher than 10−6; we did not do
so here. Instead, we focus on the uncertainty due to α� by increasing the value of α�

to α� +�α� with �α� = 0.01. A new curve S(q) was then calculated, and the graph
p(q) determined. The uncertainty in S(q, p(q)) was calculated from the difference in
S(q, p(q)) due to this change in α� ; the uncertainty in p(q)was calculated in a similar
way. While large, this is the smallest �α� that could be used without increasing the

accuracy in xhubU to beyond 10−6. For these reasons we caution that the uncertainty
shown in Figs. 2 and 3 is an estimate.

After analyzing a homogeneous sample of 1100 RVCs, Persic et. al. [16] found
that the profile of the RVC for a galaxy is determined by a single parameter, the
luminosity of the galaxy. They further showed that these profiles could be described
by a single function of this luminosity. This work was further refined by Salucci
et al. [21] where they expressed the square of the URC as the sum of two terms,
V 2
URC = V 2

URCD + V 2
URCH . This VURCD gives the stellar contribution to the URC,

while VURCH gives the dark matter component. To demonstrate the self-similarity
of the URC, and to compare the URC to VNFW , an ensemble of URCs, each with a
different virial mass Mvir , was plotted in Fig. 4 of [21]. This was accomplished by
rescaling xopt = r/Ropt → xvir = r/Rvir , where Ropt and Rvir are the optical and
virial radii, respectively, and normalizing both the ensemble of URCs and the VNFW

so that all the curves agree at xvir = 1. The similarity between these curves becomes
readily apparent.

By rescaling x → xscale = x/8 so that the maximum of v̂∞(x) now occurs near
the location of the maxima of the URCs in Fig. 4 of [21], and rescaling v̂∞ so that
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Fig. 5 Graphs of the extended
GEOM RVC superimposed on
Fig. 4 of [21]. The two graphs in
red is given below by the
(0.010, 0.048±0.020) curve, and
above by the
(0.336.0.387±0.090) curve.
They bracket the ensemble of
UHCs (grey-scale lines) and
VNFW (solid black line) from
[21]. Also plotted is the median
(0.172, 0.349±0.010) curve in
blue (color figure online)

v̂∞(xscale = 1) = 1, we have added the spectrum of RVCs predicted by the extended
GEOM to this graph. The result is shown in Fig. 5. The two ends of the p(q) graph
in Fig. 3 correspond to (0.010, 0.480±0.020) and (0.336, 0.387±0.090); all the pre-
dicted RVCs are bracketed below by the (0.010, 0.480±0.020) curve and above by the
(0.336, 0.387±0.090) curve. These two curves, shown in red in Fig. 5, are superimposed
on Fig. 4 of [21] along with the median RVC curve given by (0.172, 0.349±0.010); this
median curve is shown in blue in Fig. 5. The two extreme RVCs, (0.010, 0.480±0.020)

and (0.336, 0.387±0.090), also bracket the ensemble of URCs from [21]. While the
(0.336, 0.387±0.090) curve lies significantly above the highest URC curve shown, the
uncertainty p for this curve is both very large and is the highest of the extended GEOM
RVCs. The median RVC curve (0.172, 0.349±0.010) of the extended GEOM lies also
in the middle of the ensemble of URC graphed in Fig. 4 of [21].While the two extreme
curves from the extended GEOM does not approach the VNFW RVC as closely as the
URC curves, in the region 2 ≤ x ≤ 18 Salucci et. al. have shown that the Burkert and
NFW profiles can be approximated as

VURCH (x) = VURCH (3.24)
2.06x0.86

1.59 + x1.19+εNFW
, (87)

where εNFW < 0.13, and for x near 18, VURCH (x) ∼ x−0.33−εNFW . The histogram
in Fig. 4 shows that the most probable asymptotic behavior of a RVC predicted by the
extended GEOM has a p = 0.348. Such a RVC would have the asymptotic behavior
v̂∞ ∼ x−0.348, in good agreement with the VNFW , and the ensemble of URC curves.
While the extreme curve (0.010, 0.480±0.020) does not have a p that is within εNFW

of 0.33, 95% of the predicted curves have a p ≤ 0.404, and is within εNFW of 0.33.

6 Stability analysis

We now turn our attention to the stability analysis of the stationary solutions found
in the previous section. The equation determining the perturbation ur1(t, r) of the
radial velocity in the stationary limit was found in Sect. 3.2. Instead of working with

3 In [21] the variable y is used for the ratio r/r∗
H instead of x .
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ur1(t, r), however, weworkwith the radial current density jr (t, r) = ρ(t, r)ur (t, r) ≈
ρ∞(r)ur1(t, r) since u∞(r) = 0, and through it, the flux of mass through a sphere
Sph(r) of radius r ,

μ(t, r) ≡
∫

Sph(r)

�j · d �A = 4πr2ρ∞(r)ur1(t, r). (88)

Equation (42) then becomes

0 = ∂2μ

∂t2
+ c2χ

(
4πρ∞
�DE

)

r2
∂

∂r

[(
�DE

8πρ∞

)1+α
� 1

r2
∂μ

∂r

]

+
[
1

r3
∂L2∞
∂r

− 4πGρ∞
]

μ. (89)

The solution of this differential equation depends on ρ∞, and is different in the two
regions. We begin with the region Rhub.

6.1 Perturbations in the regionRhub

Following the notion in Sect. 5.2, we take y = ρhub∞ /ρ∗
H , and Eq. (89) becomes

0 = 1

3ω∗
H
2

∂2μ

∂t2
+ α�ε2yx2

∂

∂x

[

y−(1+α
�

)

x2
∂μ

∂x

]

+
[

v̂2∞
3x2

+ F − y

]

μ, (90)

whereω∗
H = v∗

H/r∗
H is the angular velocity of the galactic hub at r∗

H . We are interested
in the normal modes

μ(t, x) = ei
√
3ω∗

H εht H(x), (91)

that oscillate with frequency ω = √
3εhω∗

H . Then by taking

H(x) = xy(1+α
�

)/2ξ(x), (92)

Eq. (90) reduces to a particularly simple form,

0 = α�ε2
d2ξ

dx2
+ M2(x)ξ(x), (93)
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where M2(x) = M2
0 (x) − (22(x)/x2)ε2 after expanding to first order in ε2. Here

M2
0 (x) =

[
v̂2∞(x)

3x2
− ε2h

]

[F(x)]α� , and

2(x) = 1 − 1

2

[

1

2
(α� − 1) + α�

M2
0

F1+α
�

][

x2
d2 log F

dx2
− 2x

d log F

dx

]

+1

2

[

1

4

(

α� − 1
)2 + α2

�

M2
0

F1+α
�

](

x
d log F

dx

)2

. (94)

Using the WKB approximation to order ε, we find that

ξ(x) = 1√
M0

[

Ahub cos(�(x)) + Bhub sin(�(x))
]

, (95)

where

�(x) = −
∫ x0

x

{
M0(s)√

α�ε

−
√

α�ε

s2M0(s)

[

2(s) − 1

8

(

s
d logM0

ds

)2

+ 1

4
s2

d2 logM0

ds2

]}

ds. (96)

If ε2h < 0, then M2
0 (x) > 0, andμ(t, x)will be an exponential function of t , and an

oscillatory function of x . The situation is more complicated if ε2h > 0. While μ(t, x)
will always be an oscillatory function of t , it will be an exponential function of x when
M2

0 (x) < 0, and an oscillatory function of x when M2
0 (x) > 0. We are interested in

the case whenμ(t, x) is an oscillatory function of both t and x , and therefore bounded.
Given that in Rhub we have x < xhubU , we can always choose a εh for which this is
true.

The function v̂2∞(x)/3x2 ismonotonically decreasingwhen q ≤ 1.Moreover, when
q < 1, v̂2∞(x)/3x2 → ∞ as x → 0. As x < x0 for all x ∈ Rh,

M2
0 (x) ≥

[

v̂2∞(x0)

3x20
− ε2h

]

[F(x)]α� . (97)

Thus, to ensure that M2
0 (x) ≥ 0 in Rhub, we limit εh < εmax

h where εmax
h =

v̂∞(x0)/
√
3x0. This in turn imposes an upper limit to the frequency,

ω <
v̂∞(x0)

x0
ω∗
H , (98)
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of oscillation for the mode. As ξ(x) is then assured to be an oscillatory function, we
define

k(x) = d�

dr
, (99)

as the local wavenumber for the oscillation with λ(x) = 2π/k(x) being its corre-
sponding wavelength. When x → 0,

k(x)r∗
H ≈ 1√

α�ε

(
1

3
[1 + q/p]

)(1+α
�

)/2

(2q + 1)α�
/2 x−(1+α

�
)(1−q). (100)

When, however, x → x−
0 and εh → εmax

h , we may approximate M2
0 (x) ≈

[(

εmax
h

)2 − ε2h

]

+ B(x0 − x), and

k(x)r∗
H = M0(x)√

αε
+ 5

32

√
αεB2

M5
0 (x)

. (101)

Here,

B = −dM2
0

dx

∣
∣
∣
∣
x0

. (102)

Thewavelength λ(x) varies widely overRhub, with the shortest wavelengths near x =
0; it is here where k(x) → ∞ when q < 1. The longest wavelength is occurs close to
x0, and the maximumwavelength for the stationary solutions found in Sect. 5.3 ranges
from ∼ 1.5r∗

H to ∼ 7r∗
H . Given that the radius rhubU = xhubU r∗

H of the region Rhub
varies correspondingly from ∼ 2r∗

H to 3.5r∗
H , this range of maximum wavelengths is

reasonable, and expected.

6.2 Perturbations in the regionRdisk

Using the variables introduced in Sect. 4.2, Eq. (89) becomes

0 = 2

ω∗
H
2

∂2μ

∂t2
− ȳa

(1 + Edisk)

|�1+α
� | x̄2

∂

∂ x̄

[

1

(1 + Edisk)1+α
�

∂μ

∂ x̄

]

−
[

1 + Edisk − 1

ȳa

(

F̄ + 2

χ

v2

c2 x̄2

)]

�yaμ, (103)

in this region. We make the change in variable x̄ → z = 1/
√
ya(x̄), and as with the

previous section, look for normal modes with a definite frequency,

μ(t, z) = eiω
∗
H εdt/

√
z H(z). (104)
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Equation (103) reduces to a particularly simple form after taking H(z) = [z(1 +
Edisk)](1+α

�
)/2ξ(z),

0 = z2
d2ξ

dz2
+ z

dξ

dz
+
[

2(1 + 3α�)ε2dz
2 + (1 + α�)2ν2 + P(z)

]

ξ, (105)

with

P(z) = 2(1 + 3α�)
[

α�ε2dz
2 + (1 + α�)

]

Edisk

+1

2
(1 + α�)

[

z2
d2Edisk
dz2

− α� z
dEdisk
dz

]

+ 2

χ

v∗
H
2

c2
(1 + α�)2

z2α�

[
1

1 + α�

z
d v̂2∞
dz

+ 2v̂2∞
]

. (106)

This P(z) ∼ v∗
H
2/c2, and is small compared to the terms proportional to z2 and ν2

terms in Eq. (105). We thus treat the P(z)ξ term as a perturbation, and solve Eq. (105)
perturbatively by taking ξ = ξ0 + ξ1. Then for z̄ = √2(1 + 3α�)εdz,

0 = z̄2
d2ξ0
dz̄2

+ z̄
dξ0

dz̄
+
[

z̄2 + (1 + α�)2ν2
]

ξ0, (107)

−P(z̄)ξ0 = z̄2
d2ξ1
dz̄2

+ z̄
dξ1

dz̄
+
[

z̄2 + (1 + α�)2ν2
]

ξ1. (108)

These are Bessel’s equations of imaginary order ν̄ = (1 + α�)ν. Using the same
terminology and notation in [6], we find

ξ0(z̄) = AdiskFi ν̄ (z̄) + BdiskGi ν̄ (z̄), (109)

ξ1(z̄) =
∫ z̄

z̄0
P(s̄)ξ0(s̄)G(s̄, z̄)

ds̄

s̄
. (110)

Here, z̄0 ≡ √2(1 + 3α�)εd/ȳa(x0)1/2, and G(s̄, z̄) is the Green’s function,

G(s̄, z̄) = π

2

[

Gi ν̄ (s̄)Fi ν̄ (z̄) − Fi ν̄ (s̄)Gi ν̄ (z̄)

]

. (111)

In the limit x → ∞, z̄ → ∞, and Fi ν̄ (z̄) ∼ cos(z̄−π/4)/
√
z̄ whileGi ν̄ (z̄) ∼ cos(z̄−

π/4)/
√
z̄; ξ0 thus dies off as 1/

√
z̄. For ξ1(z̄), we first note that Ehub ∼ ȳ1/ȳa ∼ z̄2 ȳ1.

Then

P(s̄)ξ0(s̄)

(
Fi ν̄ (s̄)

Gi ν̄ (s̄)

)

∼ z̄3 ȳ1(z̄)

(
cos(s̄ − π/4)

sin(s̄ − π/4)

)

, (112)

since P(z̄) ∼ z̄2Edisk. From Sect. 4.2, y1(z) consists of a particular solution ȳP and a
homogenous solution ȳh . The particular solution behaves as yp(z̄) ∼ 1/z̄2(1+α

�
)(1+p)
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for large z̄, and as such z̄3 ȳp ∼ 1/z̄2(1+α�)(1+p)−3. For the integral Eq. (110) to
converge at large z̄, 2(1 + α�)(1 + p) − 3 > 0 or p > (1 − 2α�)/2(1 + α�). This
is always true on P . Next, for the homogenous solution, ȳh(z̄) ∼ 1/z̄5(1+α

�
)/2, so

that z̄3 ȳh(z̄) ∼ 1/z̄(5α�
−1)/3. The contribution by ȳh(z̄) to the integral also converges.

Thus, ξ(z̄) is well-behaved everywhere.

6.3 The stability of stationary solutions

From Sect. 6.2 we see that in Rdisk small perturbations in the current flux μ will
remain small, and the stationary solutions to Evol found in Sect. 5.3 are thus stable.
The situation is more complicated inRhub, however.

We see from the analysis in Sect. 6.1 that μ be an oscillatory—and thus bounded—
function of both t and r when ε2h ≥ 0 and 0 ≤ εh < εmax

h . This only occurs when the
frequency of oscillations of the perturbation ω < ω∗

H v̂∞(x0)/x0. For the stationary
solutions found in Sect. 5.3, 0.267±0.076 ≤ v̂∞(x0)/x0 ≤ 0.47±0.16. These stationary
solutions are therefore stable in Rhub as long as the period of oscillations for the
perturbations is longer than Tmax with 0.91±0.31 ≤ Tmax ≤ 1.58±0.46 billion years.
Such perturbations have a maximum wavelength of ∼ 1.5r∗

H to ∼ 7r∗
H .

7 Concluding remarks

The choice of v∞(x); the direct connection between the parameters used in its con-
struction and observations; and the ability of v∞(x) tomodel a wide range of rotational
velocity profiles, have allowed for those profiles that are consistent with the extended
GEOM to be determined. Indeed, while each point in P∩ corresponds to a different
RVC, and while each RVC may give a L∞(r) that results in a solution ρ∞(r) of
the stationary Evol, it is only along the curve (q, p(q)) in P∩ for which a stationary
solution that minimizes the action can be found. As each ρ∞(r) obtained from the
stationary Evol would correspond a galaxy with a RVC given by v∞(x), it is there-
fore only galaxies with RVCs given along this curve that will be formed under the
extended GEOM. This spectrum of allowed RVCs is consistent with the URC, and
given that the URC is constructed through the observations of the velocity profiles of
1100 spiral galaxies, it is consistent with observations as well. In fact, the two extreme
RVCs predicted by the extended GEOM bracket the ensemble of VURC shown in [21],
while the median curve has a form similar to both the VURC and VNFW . Moreover,
the asymptotic behavior of URCs and VNFW is in good agreement with that of the
RVC with the most probable p predicted by the extended GEOM. Importantly, we
have also shown that these stationary solutions in the galactic disk are stable under
perturbations, while in the galactic hub they are stable as long as the period of oscil-
lations of the perturbation is longer than 0.91±0.31 to 1.58±0.46 billion years; these
perturbations have wavelengths shorter than ∼ 1.5r∗

H to ∼ 7r∗
H .

When comparing the graphs of the RVC obtained using the extended GEOM with
the URC in Fig. 5, it becomes readily clear that v∞(x) may be too simplistic in the
transition region between the two asymptotic limits x → 0 and x → ∞. This is
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borne out by the shallowness of the minima in S(q, p); we would expect that the more
accurate the choice of v∞(x) is, the deeper the minima will be. There are, in fact,
many ways of smoothly joining together the asymptotic behavior of the rotational
velocity profile in the two limits x → 0 and x → ∞. Given this, it is likely that future
progress in determining the RVCs that can form under the extended GEOM using the
stationary-solution approach presented here will come frommaking a different choice
in v∞(x) as much as, or even more than, from more accurate numerical calculations.

We have used a spherical model for our galaxy with the fluid rotating about a single
axis. Moreover, the values for the parameters r∗

H and v∗
H used here were obtained

through observations of the motion of stars in spiral galaxies. As such, the results
we have obtained can be most directly applied to the formation of spiral galaxies. It
applicability to the formation of other types of galaxies, such as those analysed in [22]
and [5], is still an open question, and is a topic of future research.

The extension of the GEOM we have considered here replaces the mass of a test
particlem bymRc2R/�DEG in the Lagrangian for a test particle in general relativity.
By doing so we have changed the response of the motion of test particles to the
geometry of spacetime; the worldline of the test particles is now determined by the
extended GEOM, and not the GEOM. Einstein’s field equations are not changed, and
the geometry of spacetime is still determined by the solution of them. Importantly, this
approach does not differentiate between baryons and dark matter, and does not change
the worldlines of massless particles. It is for these reasons that we were able to show
in [23] that the extended GEOM is not excluded by the deflection of electromagnetic
waves by the Sun, or through the advancement of the perihelion of Mercury.

Another approach to modifying gravity, called modified gravity theories in general,
takes a different approach. The focus of these approaches is to change general relativity
itself. Examples of such theories include the Jordan-Brans-Dicke theory where the
gravitational constant is replaced by a scalar field, a scalar-tensor theory where the
cosmological constant is replaced by a scalar field, and f (r) theories where the Ricci
scalar in the Hilbert action is replaced by a function f (R) of it (see [9] for a review).
Such modifications of general relativity inherently changes Einstein’s field equations,
and as such the resulting geometry of spacetime. Importantly, the response of test
particles to this geometry is not changed, and the worldline of the particle is still
determined by the GEOM. In particular, both the worldlines of massive and massless
particles are effected, and as such Solar system tests of general relativity place stringent
limitations on such theories and the introduction of screening mechanisms are needed
(see [11] for a review and [12] for an application of the screening).

While the choice of L∞(r), and the construction of v∞(x) was driven by observa-
tions and the requirement that all the parameters used in v∞(x) have a definite physical
interpretation, they are nevertheless choices. Theyweremadewith the expectation that
there are choices of initial conditions G0(r) which, when evolved to the stationary
limit by Evol, will indeed result in both the L∞(r) chosen and the stationary solution
ρ∞(r) resulting from this choice. Whether such expectation is born out is a question
that requires, if not solving the Evol, then at the least a perturbative analysis of it near
the stationary limit. This analysis is also a focus of future research.
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