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Abstract
General relativity admits a plethora of exact compact object solutions. The augmenta-
tion of Einstein’s action with non-minimal coupling terms leads to modified theories
with rich structure, which, in turn, provide non-trivial solutions with intriguing phe-
nomenology. Thus, assessing their viability under generic fluctuations is of utmost
importance for gravity theories. We consider static and spherically-symmetric solu-
tions of a Horndeski subclass which includes a massless scalar field non-minimally
coupled to the Einstein tensor. Such theory possesses second-order field equations
and admits an exact black hole solution with scalar hair. Here, we study the stabil-
ity of such solution under axial gravitational perturbations and find that it is linearly
stable. The qualitative features of the ringdown waveform depend solely on the ratio
of the two available parameters of spacetime, namely the black hole mass m and
the non-minimal coupling strength �η. Finally, we demonstrate the gravitational-wave
ringdown transitions between three distinct patterns as the ratiom/�η increases; a state
which is dominated by photon-sphere excitations and maintains a typical quasinormal
ringdown, an intermediate long-lived state which exhibits gravitational-wave echoes
and, finally, a state where the ringdown and echoes are depleted rapidly to turn to an
exponential tail.
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1 Introduction

Compact objects play a decisive role in contemporary astrophysics, as their relativis-
tic collisions may provide crucial information concerning astrophysical processes in
extreme-gravity conditions. The latest gravitational-wave (GW) detections by ground-
based interferometers [1–5] have provided intelligence regarding the strong-field
regime. The early stage of the gravitational ringdown of black hole (BH) mergers,
described by quasinormal modes (QNMs) [6–9], further contributes to the under-
standing of their relaxation properties, as well as the governing theory of gravity.
Nevertheless, a conclusive interpretation of the underlying gravitational theory has
not yet been met. Therefore, it is expected that future ground and space-borne detec-
tors will improve our perception of gravitational interactions, and in particular will
shed light into the existence of exotic compact objects (ECOs) [10–19] which may
possess unexpected multipolar and near-horizon structures that differ significantly
from those of BHs.

ECOs are spacetime solutions of general relativity (GR) and modified gravity the-
ories that describe compact objects with exotic properties and intriguing multipolar
structure [20], such as BHs which evade the ‘no-hair’ theorem and give rise to addi-
tional spacetime parameters (besides themass, spin and charge), wormholes that evade
singularities and connect Universes [11] as well as horizonless compact objects which
possess unexpected near-horizon structures that expel the event horizon and subse-
quent singularities through reflective centrifugal barriers [21]. The majority of ECOs,
which possess a photon sphere, can naturally mimic BHs when perturbed and produce
prompt ringdown waveforms in the time domain which are identical to those of BHs
[22, 23]. This occurs due to the indifference of photon sphere excitations from external
perturbations. The dominant effects of ECO ringdown only appear at late times in the
form of successively damped repetitions of subsequent photon sphere excitation, know
as echoes, which occur due to the entrapment of perturbations inside potential wells
and the formation of quasibound states [24–27]. These modes represent the actual
QNM content of the ECO, which in the frequency domain is dramatically different
from the QNMs of BHs [28]. In what follows, we will loosely refer to the spectral
content of the prompt ringdown as the QNM spectrum whenever the echo timescales
are sufficiently large, even though these to do not necessarily correspond to the actual
QNMs of the full eigenvalue problem.
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Even though GR has withstood many experimental tests, remaining consistent with
plenty of observations so far, modified theories of gravity attempt to describe phenom-
ena where GR seems to fail, such as the construction of viable cosmological models
for inflation and dark energy [29]. The most general scalar-tensor theory of gravity
in four dimensions whose Lagrangian is constructed by the metric tensor and a non-
minimally coupled scalar field is Horndeski’s theory [30]. This gravity theory contains
subclasses that preserve a classical Galilean symmetry [31, 32], leads to second-order
field equations and is free of ghost instabilities [33–36]. The most extensively stud-
ied subclass of Horndeski theory is represented by a Lagrangian with a scalar field
non-minimally coupled to the Einstein tensor.

On large scales, the non-minimal coupling term of the aforementioned subclass
possesses very intriguing effects on inflationary dynamics. Froman inflationarymodel-
building point of view, it allows for a very effective implementation of a slow-roll
phase, due to the fact that it acts as a friction mechanism [37, 38], allowing poten-
tials such as the Standard-Model Higgs [39], thus making it a very attractive term in
Horndeski theory. A generalization of the non-minimal kinetic term and its applica-
tion to inflation was recently analyzed in [40–42]. During the inflationary phase of the
Universe in GR, scalar and tensor perturbations result in spectra which are red-shifted
[43]. One then expects that the presence of a non-minimal kinetic term will magnify
the red-shift behavior of the perturbation spectra because of the friction effect, which
is subsequently related to the decrease of the Hubble parameter H during inflation
(for a review of the effects of the non-minimal kinetic term in inflation see [44]).
On the contrary, if the scalar fields are phantom fields with negative kinetic energy
non-minimally coupled to the Einstein tensor, then the spectra of scalar and tensor
perturbations produced during an inflationary phase are typically blue-shifted [45].
Their dynamics in cosmological setups, as well as the instabilities at which tachyons
or ghosts appear in the infrared region around the present Hubble scale were discussed
in [46]. Beyond inflation, the non-minimal kinetic coupling has also been utilized to
construct cosmological models [47].

Apart from cosmological applications, the particular subclass of Horndeski theory
allows the construction of BH solutions with scalar hair [48–52]. Consequently, an
important aspect of these compact objects is their stability. Regarding the formation
of stable hairy BHs, the ‘no-hair’ theorem should be evaded [53, 54], which translates
to the existence of a balance mechanism to outweigh the gravitational force outside
the BH event horizon. A typical example is offered by holography. A charged scalar
field theory embedded into an anti-de Sitter (AdS) Lagrangian leads to the formation
of horizon hair, as a result of the counterbalance between the attractive gravitational
and the repulsive electromagnetic force [55, 56]. Then, according to the gauge/gravity
duality, such mechanism allows a holographic phase transition which results to a
conformal field theory describing a holographic superconductor on the AdS boundary
[57–59], besides other interesting phenomena [60–64].

In the subclass of the Horndeski theory in which a scalar field is coupled kineti-
cally to the Einstein tensor there is a direct coupling of matter to curvature and there
exist local solutions in which this coupling appears as a primary charge in the metric
functions of the resulting hairy BH, that may play the role of an effective negative
cosmological constant, even though the action is absent of any cosmological constant
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term. An interesting aspect of such objects are their thermodynamical properties as
well as their viability as novel compact objects. One of the most important require-
ments for the viability of these objects is their stability against perturbations. To that
end, the stability of the hairy BH solution found in [49], against linear scalar pertur-
bations, was recently assessed [65]. At the linearized level, the non-minimal coupling
constant sources an effective asymptotic boundary where the effective potential of
the wave equation that governs the propagation of scalar perturbations diverges. Such
a boundary serves as a perfect reflector for incident scalar waves and generates a
trapping region outside the photon sphere without the need of invoking a negative
cosmological constant in the action of the theory. As a result, the ringdown signal of
the BH exhibits successively damped echoes. Thus, scalarized compact objects in the
particular Horndeski class can serve as alternatives to the standard echo sources which
possess trapping regions beyond the photon sphere due to near-horizon structures [15,
21–23, 66–71].

Gravitational perturbations in modified theories of gravity provide information
regarding the velocity with which GWs travel. The recent observations of GW170817
and GRB170817A, as well as its electromagnetic counterpart, imply that GWs travel
at the speed of light, with deviations smaller than a few 10−15. The consequences
of this experimental result for models of dark energy and modified gravity theories
were discussed in [72, 73]. In particular these constraints on the speed of GWs were
used to test some classes of Horndeski theory. A detailed discussion of the effects
of the kinetic coupling on the speed of the GWs in the subclass of the Horndeski
theory, in which the scalar field is coupled to the Einstein tensor, is provided in [74].
It was found that while the kinetic energy of a minimally coupled scalar field does
not change under the cosmological evolution, the kinetic energy of the scalar field
coupled to the Einstein tensor changes as the Universe expands. At the inflationary
epoch it acts as a friction term and drives inflation with steep potentials, while as the
Universe expands its contribution to the cosmological evolution is less important and
at the late cosmological epoch is negligible, thus GWs propagate at the speed of light
at late cosmological times.

In any case, Horndeski theories do predict a modified speed of GW propagation.
Even so, recent studies [75–77] demonstrate that with analogue versions of Horndenki
gravity,which are based on teleparallel gravity constructedwith a nonvanishing torsion
tensor, one can device a more general Horndeski theory where GWs propagate with
the speed of light without eliminating the coupling functionsG4(�, X) andG5(�, X)

that were highly constrained in standard Horndeski theory. Hence, in the teleparallel
approach one is able to restore these terms, creating an interesting way to revive this
theory of gravity. Even though our analysis still lies in a curvature-based formulation
of gravity, it is still very interesting that there are ways of evading the tight constraints
of Horndeski theory.

The purpose of this work is twofold. First, we investigate the effect of the kinetic
coupling of the scalar field to the Einstein tensor on the stability of local solutions of
the particular subclass of Horndeski theories. We will work with the hairy BH solution
[49] for which scalar perturbations have been analyzed recently [65, 78] for a wide
range of the kinetic coupling. Under these analyses the hairy BH was found to be
linearly stable with echoes being present at late times on the ringdown waveform.
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Here, we perform a first step towards gravitational modal stability, thus extending
our previous test scalar field analysis to axial gravitational perturbations. Since the
kinetic coupling appears as a primary charge in the metric functions, we expect to get
a better understanding on the stability of such objects, although a complete picture
of gravitational modal stability can only be discerned when one considers not only
the axial but also the polar sector of fluctuations which generally couple to the scalar
hair present in scalar-tensor theories. Our second goal is to investigate how the kinetic
coupling affects the ringdown waveform and attempt to assess the appearance of GW
echoes in the parametric space of such geometries.

The work is organized as follows. In Sect. 2 we review the BH solution of the
Horndeski theory with a scalar field kinetically coupled to the Einstein tensor. In
Sect. 3 we discuss the general framework of axial gravitational perturbations and we
derive the effective potential of the considered BH solution. In Sect. 4 we demonstrate
the numerical scheme of time-domain integration. In Sect. 5 we study the evolution
of the axial gravitational perturbations and finally in Sect. 6 we conclude this work.

2 Black hole solution with a scalar field kinetically coupled to Einstein
tensor

In what follows, we will consider static solutions of a scalar-tensor theory in which the
scalar field is kinetically coupled to the Einstein tensor. This is part of the most general
scalar-tensor theory which yields second-order field equations, namely the Horndeski
theory. The full Lagrangian is given by:

L =
i=5∑

i=2

Li ,

L2 = K (�, X) ,

L3 = −G3(�, X)�� ,

L4 = G4(�, X)R + G4,X

[
(��)2 − (∇μ∇ν�)2

]
.

L5 = G5(�, X)Gμν∇μ∇ν� − 1

6
G5,X

[
(��)3 − 3��(∇μ∇ν�)2 + 2(∇μ∇ν�)3

]
,

(2.1)

where X = − 1
2∇μ�∇μ�. We consider a particular subset of Horndeski theory with

non-trivial L2 = K (�, X) = 2εX and G4(�, X) = (8π)−1 − ηX terms. The theory
is described by the following action,

S =
∫

d4x
√−g

[
R

8π
− (εgμν + ηGμν)∂

μ�∂ν�

]
, (2.2)

where gμν is the metric tensor, g = det(gμν), R is the scalar curvature, Gμν is the
Einstein tensor, � is a real massless scalar field and η is the non-minimal kinetic
coupling parameter with dimensions of length-squared. The ε parameter equals ±1,

123



49 Page 6 of 28 N. Chatzifotis

where in the case ε = +1 we have a canonical scalar field with positive kinetic term,
while the case ε = −1 corresponds to a phantom scalar field with negative kinetic
energy. Even though in the original Hordenski theory the kinetic energy of the scalar
field is positive, in this work we will also considered the case where the scalar field’s
kinetic energy is negative.

Varying the action (2.2) with respect to the metric tensor gμν and scalar field �

provides the following field equations

Gμν = 8π
[
εTμν + η	μν

]
, (2.3a)

[εgμν + ηGμν]∇μ∇ν� = 0 , (2.3b)

where

Tμν = ∇μφ∇ν� − 1

2
gμν(∇�)2 , (2.4)

	μν = −1

2
R∇μ�∇ν� + 2∇α�∇(μ�Rα

ν) + ∇α�∇β� Rμανβ + ∇μ∇α�∇ν∇α�

− ∇μ∇ν��� − 1

2
(∇�)2Gμν

+ gμν

[
−1

2
∇α∇β�∇α∇β� + 1

2
(��)2 − ∇α�∇β� Rαβ

]
. (2.5)

A static and spherically-symmetric BH solution to the aforementioned theory has
been found in [49], where the scalar field of the theory depends only on the radial
coordinate. The solution yields the constraint εη < 0, which leads to the definition of
the following coupling parameter

�η = |εη|1/2 . (2.6)

In terms of the line element

ds2 = −gtt (r)dt
2 + grr (r)dr

2 + gθθ (r)d�2 , (2.7)

theBHsolution corresponds to gθθ (r) = r2 with r ∈ (0,+∞) and yields the following
metric components

gtt (r) = −1

4
F(r) , (2.8a)

grr (r) = (r2 + 2�2η)
2

(r2 + �2η)
2F(r)

, (2.8b)

F(r) =
[
3 + r2

3�2η
− 8m

r
+ �η

r
arctan

(
r

�η

)]
, (2.8c)
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while the scalar hair of the theory reads

(∂r�)2 = �2 = − ε

8π�2η

r2grr
r2 + �2η

, (2.9)

which implies that

4πη�2 = 1

2

r2

r2 + �2η
grr > 0 , ∀r > rh (2.10)

where r = rh is the event horizon radius. It is important to note that the asymptotic
behavior of the lapse function (2.8a) when r → +∞, becomes F(r) ∼ r2/�2η, where
the term �2η assumes a form of an effective cosmological scale, similar to that of an
actual cosmological radius, with dimensionality length squared in geometrized units.
Even so, we have to stress that the action does not contain any negative cosmological
constant term and the emergence of this effective scale is solely due to the non-minimal
coupling of the scalar field to the Einstein tensor.

Another important note is that the equations of motion of the scalar field, (2.3b),
can be expressed as the conservation of the Noether current that corresponds to the
shift symmetry of the Galileon, i.e. � → � + δ�, where δ� is constant. It can
straightforwardly be found that the current is defined as

Jμ = (εgμν + ηGμν)∇ν� . (2.11)

The BH solution satisfies the physical requirement that the norm of this current does
not diverge at the horizon, by virtue of (2.6). The scalar hair, however, diverges at the
horizon as one can readily see from (2.9). One can also deduce from (2.9) that the
metric components can be expressed in terms of the scalar hair. As such, the scalar hair
of the theory can be understood as an intrinsic part of the geometry. Finally, we note
that due to the Bianchi identity,∇μGμν = 0, the equation (2.3a) leads to a differential
consequence

∇μ
[
εTμν + η	μν

] = 0 . (2.12)

The substitution of expressions (2.4) and (2.5) into the Bianchi identity yields Eq.
(2.3b). In other words, the equation of motion of scalar fields (2.3b) is the differential
consequence of the system (2.3a) due to the general covariance and the absence of fur-
ther degrees of freedom.Let us also note that the solution reproduces theSchwarzschild
BH in the limit of �η → +∞, therefore the metric can be understood as a hairy BH
generalization of the Schwarzschild spacetime with effective AdS-asymptotics, when
the spin-0 degree of freedom also acquires dynamics from the kinetic mixing with the
graviton, i.e. the Gμν∂μ�∂ν� term.

As one can observe, the metric functions (2.8) of the BH solution [49] depend only
on the parameter �η, besides the mass parameterm. Therefore, they do not contain the
information of whether the produced compact object is made of normal or phantom
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matter as long as εη < 0. Even though in [49] the scalar field is assumed to be
canonical (ε > 0) with the non-minimal coupling being negative (η < 0), we have
checked that the same solution is obtained when the scalar field is phantom (ε < 0)
and the non-minimal coupling is positive (η > 0).

In finality, let usmention that in [38] it was argued that the subclass of theHorndeski
theory under consideration yields wormhole solutions as well. We wish to note here
that the wormhole solution derived there is just a coordinate artifact of the BH and
does not correspond to a traversable wormhole. Let us consider the BH metric we
previously described

ds2 = −1

4
F(r)dt2 + (r2 + 2�2η)

2

(r2 + �2η)
2F(r)

dr2 + r2d�2. (2.13)

We perform the following coordinate transformation

u2 = r2 − a2, u ∈ (−∞,+∞) (2.14)

and the coordinate redefinition

dt2 = 4(
3 − 8m

a + a2

3�2η
+ �η

a arctan
(

a
�η

))dT 2 = CdT 2 . (2.15)

Note that this coordinate transformation covers the BH region for r > a twice. Fix-
ing a > rh , the corresponding geometry will cover only the region r > rh twice.
Performing the coordinate transformation (2.14), one finds:

ds2 = −CF(
√
u2 + a2)dT 2

+ u2(u2 + a2 + 2�2η)
2

(u2 + a2)(u2 + a2 + �2η)
2F(

√
u2 + a2)

du2

+ (u2 + a2)d�2, (2.16)

F(
√
u2 + a2) =

(
3 − 8m√

u2 + a2
+ u2 + a2

3�2η
+ �η√

u2 + a2
arctan

(√
u2 + a2

�η

))
.

(2.17)

The corresponding metric is the solution derived in [79], modulo the form of the gtt
component, which was left as an indefinite integral. In particular, the integral factor
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in the gtt component found in [79] can be solved exactly to yield:

gtt = a√
u2 + a2

exp

[∫ u

0

u(u2 + a2 + 2�2η)
2

�2η(u
2 + a2)(u2 + a2 + �2η)F(

√
u2 + a2)

dr

]

= a√
u2 + a2

exp

[∫ u

0

(
d(ln[√u2 + a2F(

√
u2 + a2)])

du

)
du

]

= F(
√
u2 + a2)

F(a)

(2.15)= C

4
F(

√
u2 + a2) (2.18)

Obviously, a compact object cannot change nature due to a coordinate transformation,
thus, themetric (2.16) is just the BH solution (2.8) written in a “bad” coordinate system
and was falsely identified as a wormhole. This result is in accordance with the findings
in [80] regarding the absence of static and spherically-symmetric wormhole solutions
in the particular subclass of Horndeski theory.

3 Axial gravitational perturbations: general analysis

In this section we will undergo an analysis of axial perturbations of the BH solution
using Chandrasekhar’s method [81]. The most general metric for an axisymmetric
non-stationary spacetime is given by

ds2 = −e2 f0dt2 + e2 f3(dφ − q0dt − q1dr − q2dθ)2 + e2 f1dr2 + e2 f2dθ2 . (3.1)

This result is found by use of the Cotton–Darboux theorem, which states that any
three-dimensional metric, g = gi j∂i∂ j , can always be brought to a diagonal form by a
local coordinate transformation. It is clear that the background metric of our solutions
can be described by qi = 0. In this gauge, axial perturbations are described by the
non-vanishing values of qi , while polar perturbations are described by fi → fi + δ fi
and qi = 0.

For the purposes of writing down the explicit form of the equations (2.3a) for
the most general form of the metric of (3.1), we shall obtain the components of the
curvature tensors via Cartan’s structure equations. We choose the following tetrads to
work with

ε0μ = (e f0 , 0, 0, 0) , (3.2a)

ε1μ = (0, e f1 , 0, 0) , (3.2b)

ε2μ = (0, 0, e f2 , 0) , (3.2c)

ε3μ = (−e f3q0,−e f3q1,−e f3q2, e
f3) . (3.2d)
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Under these tetrads, the basis is found to be

ε0 = e f0dt → dt = e− f0ε0 , (3.3a)

ε1 = e f1dt → dr = e− f1ε1 , (3.3b)

ε2 = e f2dθ → dθ = e− f2ε2 , (3.3c)

ε3 = −e f3q0dt − e f3q1dr − e f3q2dθ

+ e f3dφ → dφ = e− f3ε3 + q0e
− f0ε0 + q1e

− f1ε1 + q2e
− f2ε2 . (3.3d)

The reasoning behind these tetrads is that they associate the perturbations to a single
tetrad and thus allow for a decoupling of the equations of motion at first order. The
spin connections can be derived from the tetrad postulate, where we associate the zero
torsion condition with the Levi–Civita connection as

ωa
μb = εaν ελ

b�ν
μλ − ελ

b ∂μεaλ . (3.4)

Using Cartan’s second structure equation, we can derive the Riemann tensor,

Ra
bμν = 2(∂[μωa

ν]b + ωa
c[μωc

ν]b) , (3.5)

and from (3.5) all the necessary tensors for the equations of motion of the underlying
gravity theory. From (2.3a), we know that

Gab = T̂ab , (3.6)

where T̂ab = 8π
[
εTab + η	ab

]
(note that indices a, b are Lorentz and not spacetime

indices). However, the Einstein and stress-energy tensors acquire contributions from
the perturbations. From the linearization of the equations of motion we find that only
the G03,G13,G23 terms are important at first order. In fact, equation δG03 = δT̂03 is
degenerate, i.e. it is automatically satisfied by the other two equations. In particular,
we find the following results

δG13 = 1

2r3 sin2 θ

1√
gtt

∂

∂θ
Q + r sin θ

2gtt
√
grr

∂

∂t

[
∂

∂r
qa − ∂

∂t
qb

]
, (3.7a)

δT̂13 = 4πη�2

grr
δG13 , (3.7b)

δG23 = − 1

2r2 sin2 θ

1√
gtt grr

∂

∂r
Q + sin θ

2gtt

∂

∂t

[
∂

∂θ
qa − ∂

∂t
qc

]
, (3.7c)

δT̂23 = 4πη�2

grr

(
1

2r2 sin2 θ

−1√
gtt grr

∂

∂r
Q − sin θ

2gtt

∂

∂t

[
∂

∂θ
qa − ∂

∂t
qc

])

− 4πη
∂

∂r

(
�2

2grr

)
1

r2 sin2 θ
√
gtt

√
grr

Q , (3.7d)
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where Q =
[
r2 sin3 θ

√
gtt√
grr

∂
∂θ
qb − r2 sin3 θ

√
gtt√
grr

∂
∂r qc

]
. Using the redefinition

F =
(
1 − 4πη�2

grr

)
Q , (3.8)

the differential equations we get from δGab = δT̂ab, using (3.7a)–(3.7d), read

1

r4 sin3 θ

√
gtt

√
grr

(
grr

grr − 4πη�2

)
∂

∂θ
F = ∂

∂t

[
∂

∂t
qb − ∂

∂r
qa

]
, (3.9a)

1

r2 sin3 θ

√
gtt√
grr

(
grr

grr + 4πη�2

)
∂

∂r
F = ∂

∂t

[
∂

∂θ
qa − ∂

∂t
qc

]
. (3.9b)

Differentiating (3.9a) and (3.9b) by θ and r respectively, and adding them together
yields the differential equation that governs axial perturbations

r4√
gtt

√
grr

(
grr − 4πη�2

grr

)
∂

∂r

[
1

r2

√
gtt√
grr

(
grr

grr + 4πη�2

)

∂

∂r
F

]
− r2

gtt

∂2F
∂t2

+ sin3 θ
∂

∂θ

[
1

sin3 θ

∂

∂θ
F

]
= 0 . (3.10)

Using a separation of variables, the angular component of equation (3.10) can be
understood as the known ultraspherical differential equation with solutions the Gegen-
bauer polynomials, i.e. the angular component of the perturbation is the same as in
the Schwarzschild case. This is to be expected, since both spacetimes are spherically
symmetric. Thus, setting F = R(r , t)S(θ), where in the Appendix A we explicitly
show that S(θ) = C−3/2

�+2 (θ), (3.10) can be rewritten as

r4√
gtt

√
grr

(
grr − 4πη�2

grr

)
∂

∂r

[
1

r2

√
gtt√
grr

(
grr

grr + 4πη�2

)

∂

∂r
R

]
− r2

gtt

∂2R
∂t2

− (� + 2)(� − 1)R = 0 . (3.11)

where � is the angular quantum number of the perturbation. In order to continue, it
will prove useful to set

h =
√
gtt√
grr

, A =
(

grr
grr + 4πη�2

)
, B =

(
grr − 4πη�2

grr

)
, (3.12)

thus, simplifying equation (3.11) to

Br2h
∂

∂r

[
1

r2
Ah

∂

∂r
R

]
− ∂2R

∂t2
− (� + 2)(� − 1)

r2
gttR = 0 . (3.13)
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By further defining a scalar field

u = R
r

√
A , (3.14)

and using the tortoise coordinate transformation h = dr/dr∗, we find that the equation
that governs the axial perturbations reads

h
∂

∂r

[
h

∂

∂r
u

]
− 1

AB

∂2u

∂t2
−

[
(� + 2)(� − 1)

r2
gtt
AB

+ r√
A
h

∂

∂r

(
h

∂

∂r

(√
A

r

))]
u = 0 . (3.15)

If we consider a time dependence of the form u(r , t) ∼ u(r) exp(iωt), then (3.15)
yields a non-trivial wave equation of the following form

h
d

dr

[
h
d

dr
u

]
+ ω2

AB
u −

[
(� + 2)(� − 1)

r2
gtt
AB

+ r√
A
h
d

dr

(
h
d

dr

(√
A

r

))]
u = 0 . (3.16)

As such, the corresponding Regge–Wheeler-like potential reads

V (r) = (� + 2)(� − 1)

r2
gtt
AB

+ r√
A
h
d

dr

(
h
d

dr

(√
A

r

))
. (3.17)

It is important to note that by fixing the metric components to those of the BH solu-
tion, Eq. (3.17) asymptotes to the standard Schwarzschild Regge–Wheeler effective
potential in the limit where �η → +∞. Another crucial aspect of Eq. (3.16) is the
presence of a multiplication factor 1/AB to the gravitational perturbation frequency
ω, which signifies the existence of a modified speed of GW propagation [74].

Equation (3.16) demonstrates that one can reduce the problem of axial gravi-
tational perturbations around the compact object under consideration into a single
one-dimensional scattering problemwith an effective potential. By applying the proce-
dure outlined above, on theBH solution (2.8)–(2.9)we find the corresponding effective
potentials a gravitational perturbation induces. An illustration of these potentials for
various choices of the angular index of the perturbation � is given in Fig. 1. The effec-
tive potential possesses a peak for sufficiently large �η, at the Schwarzschild limit,
which is located arbitrary close to the photon sphere at r = 3m. For a myriad of BH
solutions, Ref. [82] demonstrates that the angular frequency and instability timescale
of null geodesics that are trapped in unstable circular orbits at the photon sphere are
associated with the oscillation frequency and decay rate of eikonal QNMs. In turn, the
existence of such centrifugal potential barrier is responsible for the prompt ringdown
and photon sphere QNMs found in the response of a plethora of perturbed BHs [83–
89]. In what follows, we will show that the aforementioned analogy only holds at the
GR limit and away from it such duality is broken.

Asymptotically, the potential approaches a constant positive value, a behavior very
different from the case of scalar perturbations [65], but still, one which encodes the
effective non-asymptotically-flat nature of spacetime. A similar behavior was also
observed in [90]. More specifically, at spatial infinity, the BH potential at zeroth order
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Fig. 1 Left: BH effective potential with �η = 100 , m = 0.1 and different values of angular numbers �.
Right: BH effective potential with m = 0.5 , � = 2 and various coupling constants �η

yields V (r → ∞) ∼ C + O (1/r) where the constant C depends on the parameters �

and �η and can be calculated only numerically. A similar asymptotic behavior was also
observed in [91] for the case of vector perturbations in the scalarized BH considered
here.

Wemust note here the dimensionality of various quantities appearing in the follow-
ing figures, in order to avoid repetition and cluttering on our discussion. According to
the geometrized units utilized here, the BH mass m and coupling �η have dimensions
of length, while the perturbation u is dimensionless, as well as the ratio m/�η, which
makes it an appropriate scale for our analysis. In turn, the effective potential V (r)
has dimensionality length to the power of −2, as expected, while the frequency ω has
length dimensions.

4 Time-domain integration scheme

Here, we briefly demonstrate the numerical scheme of time-domain integration, first
proposed in [92], which yields the temporal response of a metric perturbation as it
propagates on a fixed background spacetime. By defining u(r∗, t) = u(i�r∗, j�t) =
ui, j , V (r(r∗)) = V (r∗) = V (i�r∗) = Vi , A(r∗) = A(i�r∗) = Ai and B(r∗) =
B(i�r∗) = Bi Eq. (3.16) takes the form

ui+1, j − 2ui, j + ui−1, j

�r2∗
− 1

Ai Bi

ui, j+1 − 2ui, j + ui, j−1

�t2
− Vi ui, j = 0 . (4.1)

Then, by using as initial condition a Gaussian wave-packet of the form ψ(r∗, t) =
exp

[−(r∗ − c)2/(2σ 2)
]
and ψ(ρ∗, t < 0) = 0, where c and σ correspond to the

median and width of the wave-packet, we can derive the time evolution of u

ui, j+1 = Ai Bi �t2
(
ui+1, j − 2ui, j + ui−1, j

�r2∗
− Viui, j

)
+ 2ui, j − ui, j−1 , (4.2)

where the Courant–Friedrichs–Lewy (CFL) condition requires �t/�r∗ < 1/(Ai Bi ).
To calculate the precise values of the potentialVi ,we integrate numerically the equation
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for the tortoise coordinate and then solve with respect to the corresponding radial
coordinate. Moreover we require the vanishing of perturbations at radial infinity by
imposing reflective boundary conditions uimax , j = 0, since our solution is effectively
asymptotically AdS [8, 93]. For further details regarding the numerical scheme and
its convergence see Appendix B.

5 Evolution of axial gravitational perturbations

Regardless of the fact that the spacetime utilized here does not describe aBH immersed
in aUniversewith a negative cosmological constant, it ismeaningful to compare it with
Schwarzschild-AdS BHs, since �η introduces an effective cosmological scale to the
geometry considered. It what follows, we will adopt the categorization from Horowitz
and Hubeny [94] regarding AdS BHs determined by two dimensionful parameters,
namely theAdS radius r = RAdS and the event horizon radius r = rh . TheBH solution
in the present study depends also on two parameters: m and �η. The value of mass
controls the position of the event horizon rh (and consequently of the photon sphere)
and �η dictates the value of the effective cosmological radius r = Reff . However, one
key difference between the two solutions is that the first is a ‘bald’ BH embedded in
an AdS Universe, whereas the scalarized solution is ‘dressed’ with scalar hair whose
existence creates the effective AdS-like asymptotics. In this sense, the parameter �η

controls the strength of the scalar hair and as a consequence the value of Reff . In our
case, the effective cosmological radius is given by Reff = √

3 �η. One may categorize
BHs in an AdSUniverse [94] as (i) small size BHs with rh << RAdS , (ii) intermediate
size BHs with rh ∼ RAdS and (iii) large BHs with rh >> RAdS . We utilize a similar
classification to distinguish between small (rh << Reff ), intermediate (rh ∼ Reff )
and large hairy BHs (rh >> Reff ) (see Fig. 2).

In what follows, we apply the numerical procedure outlined above, to calculate
the temporal response of axial gravitational perturbations on the BHs of the above
categories. In the following figures we obtain the perturbation response at a position
arbitrarily close to the event horizon r − rh = 10−5, though we have checked that the
same results are obtained if we calculate the response at any position outside the event
horizon. Furthermore, we have performed some typical tests to ensure the validity of
the integration method. Specifically, we have calculated the response of gravitational
perturbations on the BH considered here, in the limit where �η → ∞, where the
effect of the scalar hair is suppressed, (we have chosen �η = 1000 though even for
�η = 10 the potential V (r) converges to the Regge–Wheeler one). By using the Prony
method [95] we can extract the spectral content from the temporal response at the large
coupling limit and investigate if the modes extracted solely from the prompt ringdown
agree with the standard axial gravitational QNMs of Schwarzschild BHs [81]. In Fig.
3 we show the prompt ringing of small BHs for � = 2 gravitational perturbations.
We only consider the case where the BH mass is m = 0.1 in order to obtain a clear
ringing phase, since for the range of couplings we considered from 4 to 100 the echo
timescales are very large and the extraction of QNMs from the prompt ringdown is
possible. Figure 3 indicates that decreasing �η has a menial effect on the spectrum

123



Stability of black holes with non-minimally coupled scalar... Page 15 of 28 49

Fig. 2 The difference between
the effective cosmological and
event horizon radius as a
function of m and �η , where
Reff = √

3 �η . For m << �η we
have rh << Reff , for m 
 �η

we have rh 
 Reff , while for
m >> �η we have rh >> Reff .
The minima of the curves occur
at approximately m/�η 
 3 and
indicate the points in the
parametric space (m, �η) for
which rh >> Reff

Fig. 3 Left: oscillatory prompt response of axial gravitational perturbationswith � = 2 of theBHconsidered
with m = 0.1 and varying �η . Right: fundamental � = 2 modes extracted from the prompt ringing phase
of the BH considered with m = 0.1 and �η = 4, 10, 50, 100 from left to right

while for �η = 100 the extracted mode asymptotes to the fundamental Schwarzschild
QNM with accuracy ∼ 0.1%.

For completeness, we have further calculated the instability timescale of null
geodesics (Lyapunov exponents) at the photon sphere [82] and found that at the GR
limit the correspondence between null geodesics and eikonal (large �) QNMs still
holds. This is expected since at this limit the BH approaches Schwarzschild and GWs
propagate with the speed of light. Therefore this analysis serves as another validity test
of our numerical results and justifies the existence of a modified propagation speed
of GWs. In fact, for the case with m = 0.1, �η = 100 (m/�η = 10−3) the instability
timescale of null geodesics and the extracted decay rate of the fundamental QNM for
� = 10 (approximately eikonal) axial perturbations have a percentage difference of
less than 0.5%. On the other hand, when �η is not large enough then the propagation
speed of GWs is modified, in accordance with Eq. (3.16), and this leads to a significant
inconsistency between null geodesics and eikonal fundamental QNMs, as expected.
For example, by choosing m = 5, �η = 1 (m/�η = 5) the instability timescale of null
geodesics and the extracted decay rate of the fundamental QNM for � = 10 (approx-
imately eikonal) axial perturbations have a percentage difference ∼ 50%. Therefore
we conclude that the fundamental eikonal QNMs are not always associated with null
geodesics at the spacetime, as it was also shown in [96].

Figure 4 presents the temporal response of the BH against axial perturbations in the
small ratio regime m << �η (m/�η ∼ O(10−3)). The initial quasinormal ringdown
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is quite similar to that of a Schwarzschild BH. Such behavior is expected and can
be attributed to the high value of �η relative to the mass. Perturbations with higher
angular number � decay faster and with higher frequency since more energy is carried
away from the photon sphere. This phenomenon is expected since similar behavior
appears for gravitational perturbations and QNMs in Schwarzschild BHs [8]. The late
time behavior however, shows that, instead of a power-law cutoff, the field settles to
a constant value which is related to the asymptotic value that the effective potential
acquires (see Fig. 1) and the expectancy of late-time echoes. The eventual late-time
tail should be more evident for large BHs since echoes will be washed out rapidly at
the event horizon.

In Fig. 5 the evolution of perturbations for m < �η (m/�η ∼ O(10−1)) is dis-
played. The most obvious effect one observes is the emergence of echoes following
the initial quasinormal ringdown. In this parametric region the relation between the
mass of the BH and the coupling �η becomes more transparent. By keeping �η fixed
and increasing the mass, perturbations will have to travel a shorter distance between
the photon sphere and the effective AdS boundary induced by the scalar field leading
to repetitions in the signal which appear in shorter timescales. Analogously, simi-
lar behavior is obtained when one keeps the mass fixed and decreases the coupling.
This pattern was also observed in [65] for the case of scalar perturbations though test
scalar fields travel with the speed of light, in contrast to axial gravitational waves in
our analysis which have a variable propagation speed (see Eq. (3.16)). This means
that a null geodesic analysis, similar to that in [21–23] where the echo timescales
are approximated by the time that light takes to travel from a boundary to the photon
sphere and back, is rendered pointless. Our case is much more intricate since one
cannot consider null geodesics anymore but rather has to analyze waves traveling in
a dispersive medium with varying propagation speed in different regimes. We have
performed a trivial null geodesic analysis and the results we obtained are expected,
that is for large �η the propagation speed of GW approaches the one of light and the
echo timescales can be properly approximated, while as the coupling decreases the
echo timescales predicted by null geodesics are completely inconsistent with the actual
timescales of echoes obtained by our numerical integration. Nevertheless, such inves-
tigation reinforces our discussion regarding the existence of a modified GW speed of
propagation.

To obtain a complete picture regarding the effect of the ratio m/�η on the BH’s
response to fluctuations we have plotted in Fig. 6 the time evolution of perturbations
for a wide range of masses keeping �η fixed. As m grows the echoes are replaced
by quasinormal oscillations, while further increment of the mass leads to a single
quasinormal ringdown followed by a late-time tail. We conclude that this behavior
stems from the shape of the effective potential which decreases in amplitude as m
increases. This leads to an increasingly smaller region where trapped modes, which
lead to echoes, can occur, and thus the quasinormal ringing of the BH dominates over
the echoes which are quickly suppressed.

When the mass becomes proportional (m/�η ∼ O(100)) or significantly larger
than �η (m/�η ∼ O(102)), negative wells develop in the effective potential in the
vicinity of the event horizon (see Figs. 7, 8). Despite the negative well formation, the
time-domain profiles show an exponential decay of the signal without any indication
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Fig. 4 Left: effective potential of axial gravitational perturbations, with varying �, of the scalarized BH
with �η = 100, m = 0.1. The parametric region considered here corresponds to small BHs in the sense
that rh << Reff (m/�η ∼ O(10−3)). Right: response of axial gravitational perturbations with respect to
the effective potential of BHs considered at the left subfigure

Fig. 5 Left: effective potential of an � = 2 gravitational perturbation of the scalarized BH with �η = 5
for varying mass m. The cases we consider here correspond to intermediate size BHs with rh ∼ Reff
(m/�η ∼ O(10−1)). Right: response of axial gravitational perturbations with respect to the effective
potential of BHs considered at the left subfigure

of a linear instability. On the contrary, more massive objects lead to signals with
shorter quasinormal ringing stages, due to the absence of a photon sphere peak, and
with faster decay rates even though the corresponding effective potentials develop
even deeper negative wells. The exponential nature of the eventual late-time behavior
of perturbations is related to the effective AdS asymptotics of our spacetime which
requires the imposition of reflective boundary conditions at infinity and is in agreement
with what occurs in perturbations of AdS BHs [97]. The tail in these cases appears
because echoes are subdominant and vanish very rapidly at the event horizon, thus the
asymptotic behavior is probed faster. We expect that even perturbations of the small
BHs in study will eventually possess an exponential tail but at much later times which
our numerical scheme cannot probe.

From the above, we conclude that the scalarized BH spacetime is modally stable
under axial gravitational perturbations, where the qualitative features of the response
depend solely on the ratio m/�η. In Fig. 9 we demonstrate the above statement for
the case of intermediate size BHs. Our numerics show that a similar analogy occurs
irregardless of the BH’s size. Even though the source of echoes in our BH is related
to the asymptotics of spacetime, and not to the nature of the near-horizon structure,
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Fig. 6 Left: effective potential of an � = 2 gravitational perturbation of the scalarized BHwith �η = 0.1 for
varying mass m. Right: response of axial gravitational perturbations with respect to the effective potential
of BHs considered at the left subfigure

Fig. 7 Left: effective potential of an � = 2 gravitational perturbation of the scalarized BH with �η = 1
for varying mass m. The cases we consider here correspond to intermediate size BHs with rh ∼ Reff
(m/�η ∼ O(100)). Right: response of axial gravitational perturbations with respect to the effective potential
of BHs considered at the left subfigure. The responses were shifted in time for illustration purposes

Fig. 8 Left: effective potential of an � = 1 gravitational perturbation of the scalarized BH with �η = 5 for
varying mass m. The cases we consider here correspond to large BHs with rh >> Reff (m/�η ∼ O(102)).
Right: response of axial gravitational perturbations with respect to the effective potential of BHs considered
at the left subfigure. A shift in time was applied on the responses for illustration purposes

our results are in accordance with perturbations in wormholes with decreasing throat
radii [71] and black-bounce models, which transition from regular BHs to wormholes
[98].
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Fig. 9 Time evolution of an � = 2 gravitational perturbation of the scalarized BH with fixed ratio m/�η 

0.1 (left), m/�η 
 0.3 (middle) and m/�η = 1 (right)

6 Conclusions

In this work we studied static and spherically symmetric solutions of a Horndeski
subclass which includes a massless scalar field non-minimally coupled to the Einstein
tensor. Such theory admits an exact BH solution ‘dressed’ with scalar hair whose exis-
tence induces an effective negative cosmological constant even though the BH does
not reside in an AdS Universe. We have studied the modal stability of such solutions
under axial gravitational perturbations, with time evolution techniques, and comple-
mentary QNM extraction, that solve the linearized gravitational wave equation. Our
results designate that the BH under study is linearly stable against axial perturba-
tions, with decaying temporal responses akin to ringdown waveforms. The qualitative
features of the ringdown waveform depend solely on ratio of the two available param-
eters of spacetime, namely the BHmassm and non-minimal coupling strength �η. We
have further demonstrated that as m/�η increases, we have gravitational-wave ring-
down transitions between three distinct response patterns, namely a state with a typical
quasinormal ringdown (m/�η � 10−2), an intermediate long-lived statewhich exhibits
gravitational-wave echoes (10−2 � m/�η � 10−1) and a state where the ringdown
and echoes are depleted rapidly to give turn to an exponential tail (m/�η � 10−1).

Regardless that our findings point towards linear stability, we only considered the
axial sector of gravitational fluctuations. In generality, one must investigate the polar
sector of gravitational perturbations as well in order for a complete stability analysis
to be established. This extension can be extremely challenging with what regards
the achievement of writing the perturbation equation into a one-dimensional Zerilli-
like equation and the stability of spacetime itself, since the polar degrees of freedom
generically couple to the scalar hair in scalar-tensor theories. A first step towards
the aforementioned direction is the consideration of radial perturbations which are a
good proxy to polar ones [99–102]. Radial perturbations can also couple the scalar
field with the metric components, thus can serve as more sensible probe to the overall
linear stability of the hairy BHs under consideration.

Besides dealing with temporal evolution techniques, another interesting direction
would be a complete frequency domain analysis of axial and polar gravitational QNMs
which is still lacking in the particular family of BH solutions, in a similar manner as
in Refs. [103, 104] where scalar QNMs have been discussed. Furthermore, since the
BH geometry in study possesses a propagation speed for GWs that differs from that
of light, it will be paramount to investigate potential observational imprints in order to
disentangle possible degeneracies between GW phase modifications and environmen-

123



49 Page 20 of 28 N. Chatzifotis

tal effects and avoid misinterpreting GWs in modified gravity with strongly-lensed
GR GWs [105, 106].

Finally, in a recent analysis [107], a class ofmechanical models were studied, where
a canonical degree of freedom interacts with another one with a negative kinetic term,
i.e. with a ghost. Surprisingly, it was shown that the classical motion of the system
is completely stable for all initial conditions, even though one would expected that
such system to be unstable due to the presence of a ghost field. In our case, we have
dealt with a conceptually analogue system, consisting of a scalarized BH for which the
kinetic energy of the scalar hair can be positive or negative (first degree of freedom)
provided that the strength of the non-minimal coupling to the Einstein tensor has the
opposite sign (second degree of freedom), being attractive of repulsive respectively.
Regardless of the case, we find that the BH is stable under axial perturbations, thus
providing an illustration that the classical mechanics analysis in [107] can potentially
apply to BH physics.
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Appendix

A. Solution of the angular differential equation

In this appendix, we present the solution of the angular part of the differential
Eq. (3.10). The corresponding differential equation is:

sin3 θ
d

dθ

[
1

sin3 θ

dS(θ)

dθ

]
+ AS(θ) = 0 , (A1)

where A is the separation constant. By performing a change of variables of the form
x = cos θ we obtain the following differential equation:

(1 − x2)S ′′ + 2xS ′ + AS = 0 . (A2)

Note that this is very similar to the Legendre differential equation albeit with one
sign change. This differential equation is called the ultraspherical or Gegenbauer
differential equation. There exist three alternate forms of the equation that yield the
same result. We are going to show the two we are interested in here.
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First form:

(1 − x2)S ′′ − 2(m + 1)xS ′ + (� − m)(� − m + 1)S = 0 . (A3)

The first form has the following solutions

S = (x2 − 1)−m/2 [
C1P

m
� (x) + C2Qm

� (x)
]

, (A4)

where Pm
� (x) and Qm

� (x) are the Legendre functions of the first and second kind,
respectively. Note that m = −2.
Second form:

(1 − x2)S ′′ − (2n + 1)xS ′ + k(k + 2n)S = 0 . (A5)

The second form has the following solutions

S = (x2 − 1)(1−2n)/4
[
C1P

n−1/2
−1/2+k+n(x) + C2Qn−1/2

−1/2+k+n(x)
]

. (A6)

Note that n = −3/2. If −1/2 + k + n is an integer, then this solution yields the
Gegenbauer polynomials, Cn

k . Equating (A3) with (A4), yields −1/2+ k + n = l →
k = � + 2, and thus we are left with the solution of

S = C−3/2
�+2 (θ) . (A7)

Therefore, the differential equation (A2) yields the separation constant A = (� +
2)(� − 1) .

B. Convergence tests

Here, we discuss in depth our numerical scheme which is briefly analyzed in Sect. 4.
The essential equations in play areEqs. (4.1) and (4.2), togetherwith theCFLcondition
and the vanishing of perturbations at radial infinity. In terms of the tortoise coordinate
r∗, we observe that when r tends to infinity, r∗ tends to a finite constant which we
denote as rmax∗ . The implications of the behavior of r∗ are twofold: firstly, the reflective
boundary condition in terms of r∗ takes the form u(rmax∗ , t) = uimax , j = 0 and
secondly, our region of interest in the (r∗ − t) diagram lies on the left of the vertical
line r = rmax∗ as seen in Fig. 10.

It is important to note that the values of the finite constant rmax∗ are proportional
to the value of the coupling �η i.e. rmax∗ ∼ �η (see Table 1). This means that the
value of �η dictates the range of r∗ since r∗ ∈ (−∞ , rmax∗ ]. A second important
consequence of the above proportionality is that, as �η increases we also need to
increase the number of grid points N in order to keep the value of �r∗ sufficiently
small. To better understand why this is occurring we need to delve into the technical
details concerning the procedure executed by our code.
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Fig. 10 Diagram of the numerical grid in the (r∗ − t) plane. The points on the red lines are determined
through the boundary and initial conditions. The points on the green line u(r∗ = 0, t) are the results shown
in this paper and they correspond to r = 1.00001 rh . The rest of the grid points are calculated through
the recursive relation (4.2) starting from the point uimax−1,1. The blue arrows demonstrate a graphical
depiction of the time evolution Eq. (4.2) for the point uimax−1,1

The first step is to find the function r(r∗) by numerically solving the differential
equation of the tortoise coordinate

dr(r∗)
dr∗

=
√

f (r(r∗))
g(r(r∗))

, (B1)

together with the condition r(r∗ = 0) = 1.00001 rh which fixes the integration
constant. Hence, after the integration we have r(r∗ → −∞) → rh , r(r∗ = 0) =
1.00001 rh and r(r∗ → rmax∗ ) → ∞, meaning that r∗ ∈ (−∞ , rmax∗ ]. However, in
order to define a numerical grid with which we will perform the time evolution of
u, we need to work on a finite interval of r∗. We do so by choosing a sufficiently
large negative value1 (which we denote by rmin∗ ) as the second end of the interval
of r∗. Thus, in the context of the numerical integration we will work on the interval
rnumerical∗ ∈ [rmin∗ , rmax∗ ] even though in principle r∗ ∈ (−∞ , rmax∗ ].

The final step of our code which calculates the time domain profiles expects as
inputs the values of rmin∗ , rmax∗ and N in the r∗ direction. It then calculates the spatial
step �r∗ from the relation

�r∗ = rmax∗ + |rmin∗ |
N

(B2)

and the time step from �t = c�r∗ where c is positive constant value satisfying the
CFL condition that should not be confused with the speed of light. The fact that rmin∗
is constant throughout all of our evolutions and that rmax∗ ∼ �η implies, through Eq.
(B2), that as �η increases we also need to increase N in order to keep the value of �r∗
sufficiently small (see Table 2).

1 We note that this value is kept constant throughout all of our evolutions.
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Table 1 Reference values
indicating the analogy
rmax∗ ∼ �η

�η rmax∗

0.1 1.017

5 29.501

100 351.929

Table 2 The corresponding grid
spacing �r∗ for various choices
of grid points N

�η = 100 , m = 0.1 �η = 5 , m = 0.5

Grid points (N ) �r∗ Grid points (N ) �r∗

5000 0.07 1000 0.0695

6000 0.058 1200 0.0579

7000 0.05 1600 0.0434

8000 0.043 2000 0.0347

9000 0.039 2200 0.0316

10,000 0.035 2600 0.0267

12,000 0.029 2800 0.0248

Different values of grid points correspond to similar values of�r∗ due
to the different choices �η

Fig. 11 Left: convergence curve for m = 0.1 , �η = 100 corresponding to a case where we obtain a clear
prompt ringdown. As u(r∗, t)|best we choose the value of u for N = 12, 000 grid points, i.e. u(r∗, t)|12,000,
indicating the best approximation. All the points are extracted at r∗ = 0 and t/m = 225.228. Right:
Convergence curve for m = 0.5 , �η = 5 corresponding to a case where we obtain echoes after the initial
ringdown. As u(r∗, t)|best we choose the value of u for N = 2800 grid points, i.e. u(r∗, t)|2800, indicating
the best approximation. All the points are extracted at r∗ = 0 and t/m = 234.637

Finally, we can produce convergence curves to provide some quantitative informa-
tion regarding the accuracy of our numerical integration scheme. To produce these
curves, we first calculate the values of u(r∗, t) at a given point as the grid spacing �r∗
is reduced by increasing N . We will denote these values by u(r∗, t)|N . We then use
the value u(r∗, t) for the maximum number of grid points (i.e. the smaller grid spacing
�r∗) as a reference value indicating the best approximation to the true value of u at
that point. We will denote that value by u(r∗, t)|best . To calculate the error we subtract
each value u(r∗, t)|N for every different N from the value of the best approximation
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and then take its absolute value i.e.

|Error|N =
∣∣∣u(r∗, t)|best − u(r∗, t)|N

∣∣∣ . (B3)

The diagrams in Fig. 11 demonstrate that our code achieves numerical convergence
irrespective of whether our compact object responds with a clear ringdown or with a
signal with echoes i.e. in rather different regions of our parametric space (m, �η). Even
though for the first case of Fig. 11 on the left the code converges rapidly, we expect that
the same will occur for the second case depicted in Fig. 11 on the right if we further
increase the number of grid points. As a final note, we stress the fact that even though
the chosen values of the grid points N are very different for the convergence curves
in Fig. 11, the corresponding grid spacing �r∗ is of the same order of magnitude for
both cases, as can be seen in Table 2.
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