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Abstract
General relativity (GR)was proven via the direct detection of gravitational waves from
the mergers of the binary black holes and binary neutron stars by the advanced LIGO
and advanced virgo detectors. These detections confirmed the prediction of GR and
provided the first direct evidence of the existence of stellar-mass black holes (BHs).
However, the occurrence of singularities at the centers of BHs suggests that GR is
inapplicable because of the breakdown of the equivalence principle at the singulari-
ties. The fact that these singularities exist indicates thatGRcannot be a universal theory
of space–time. In the low-energy limit, the theoretical and observational challenges
faced by the �CDM model also indicate that we might have to look beyond GR as
the underlying theory of gravity. Unlike GR, whose field equations contain only up to
second-order derivatives, the modified theories with higher derivative Ricci/Riemann
tensor gravity models include higher derivatives. Therefore, one expects significant
differences between GR and modified theories. Since there are many ways of mod-
ifying GR in the strong-gravity and cosmological distances, each model has unique
features. This leads to the following crucial question: Are there a set of unique signa-
tures that distinguish GR frommodified gravity (MG) theories? This review discusses
three aspects of MG theories: (1) Why do we need to consider MG theories? (2) How
to modify GR? and (3) What are the observational consequences? The review is writ-
ten in a pedagogical style with the expectation that it will serve as a useful reference
for theorists and observers and those interested in bridging the divide between theory
and observations.
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1 Introduction

General relativity (GR) has established itself as an extraordinarily successful model
of gravity and cosmology. It is in remarkable agreement with a wealth of solar system
gravity precision tests, such as gravitational redshift, gravitational lensing of light
from distant background stars, anomalous perihelion precession of Mercury, Shapiro
time-delay effect, and Lunar laser experiments. Moreover, the above predictions are
in the regime of weak gravitational fields (like near the surface of the Sun) [1].

Outside the solar system, predictions of GR involving changes in the orbit of binary
pulsars due to gravitational wave emission and black hole (BH) mergers are being ver-
ified [2–4]. However, themerger of twoBHs is a cataclysmic event that involves strong
gravity [4]. It is unclear whether GR can accurately describe gravity in this regime.
Nevertheless, both theory and observations suggest that GR can have significant clas-
sical and quantum corrections in the strong-gravity regime.

With the direct detection of gravitational waves (GWs) in the ground-based detec-
tors from such events, one should be able to test theories of gravity in the strong-gravity
regime. As is always the case, any discovery serves as a springboard for subsequent
discoveries by providing a new lens through which to view the Universe. The signal-
to-noise ratio (SNR) of the next generation of gravitational-wave detectors, such as
Cosmic Explorer and Einstein telescope, will be at least 50 times greater than that
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of today’s laser interferometer [5–8]. These detectors are capable of confirming or
refuting GR.

On the largest scales, the biggest surprise from observational cosmology is the
accelerated expansion of the current Universe [9–12]. This can be explained either by
the presence of an exotic source referred to as dark energy or modifications to GR
on the largest length scales [13]. Therefore, testing GR using cosmological and GW
observations is crucial to understanding the Universe. With the new missions coming
up, we are in a position to answer the above questions.

First, however, to identify the classical and quantum corrections to GR in the strong
and weak gravity regimes, we need to construct modified theories of gravity that make
definite predictions. One direction to explore is to identify the core principles of
GR, to which possible modifications can be introduced. Einstein used Mach’s and
Equivalence principles to formulate the general theory of relativity [14–16]. Mach’s
principle suggested that local physical laws are affected by the large-scale structures
of the Universe. Einstein later refined this as presence of matter curves the geom-
etry of space–time. Equivalence principle states that locally a free-falling observer
and an inertial observer are indistinguishable. As a consequence, inertial mass and
gravitational mass are the same. In GR, the four-dimensional (4D) space–time and its
properties are described by the metric tensor denoted by gμν . The metric that deter-
mines the infinitesimal distance between two space–time points is described by the
invariant quantity:

ds2 = gμνdxμdxν . (1)

Mathematical description of the relation between the geometry of the space–time and
the distribution of the matter can be obtained from the Einstein–Hilbert action:

SEH = 1

2κ2

∫
d4x

√−gR +
∫

d4x
√−gLm (2)

where R is the Ricci scalar, Lm is the matter Lagrangian and κ2 = 8πG/c4. Varying
the action leads to Einstein equations:

Rμν − 1

2
gμν R ≡ Gμν = κ2 Tμν. (3)

The LHS describes the geometry of the space–time, while Tμν represents the energy-
momentum tensor of the minimally coupled matter field. Here Rμν ≡ Rα

μαν denotes
the Ricci tensor and the Riemann tensor is given by:

Rα
βγ δ = ∂

∂xγ
�α

βδ − ∂

∂xδ
�α

βγ + �α
γ ε�

ε
βδ − �α

δε�
ε
βγ . (4)

where

�
μ
αβ = gμγ

2
(gγα,β + gγβ,α − gαβ,γ ) (5)

and gγα,β refers to the partial derivative of gγα wrt xβ . InGR, the presence of the space–
time curvature prevents two parallel geodesics from remaining parallel. Therefore, the
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Table 1 List of the tests of the principles and predictions of GR

Principles/predictions Observational tests

Weak equivalence principle All freely falling test particles fall at the same rate irre-
spective of their internal composition

[Schlamminger-2008] [17]

Local Lorentz invariance Non-gravitational physical laws are independent of the
velocity of the freely falling frame described

[Rossi & Hall-1941] [18]

Local position invariance Non-gravitaional physical laws are independent of the
position in space or time of the

freely falling frame described. [Fischer et al.-2004] [19]

Gravitational deflection of light A ray of light passing by a massive object will bend
towards the object, changing the apparent

position of the source from which it was emitted [van der
Wel et al.-2013] [20]

Perihelion precession of Mercury Unexplainable by Newtonian gravity, the slow perihelion
shift of Mercury at 43 arcseconds per

century was correctly predicted by GR. Most recent
observation include Messenger

spacecraft observations [Park et al.-2017] [21]

Lense–Thirring effect A rotating massive body will drag inertial frames around
its vicinity along the direction of rotation,

leading to a precession in a gyroscope’s spin if it is not
parallel to the angular momentum

of the rotating body. [Ciufolini et al.-2016] [22]

Gravitational redshift An observer located at a distance from a massive lumi-
nous body will see the light from the body to

be redshifted compared to an observer located closer to
the surface of the body. [Barstow et al.-2005] [23]

Gravitational waves Mass distributions with time-varying Quadrupole
moments and higher will shed orbital/rotational

energy by radiating GWs. [Abbott et al.-2015] [24]

Existence of BHs Direct imaging through the Event Horizon telescope of
the central BH of neighboring galaxy M87

[Akiyama et al.-2019] [25]

relative acceleration between any two geodesics is described by the geodesic deviation
equation:

d2ξα

dt2
= Rα

μβν

dxμ

dt

dxβ

dt
ξν (6)

As discussed above, Einstein employed aesthetic and philosophical criteria in devel-
oping GR, allowing the development of alternative theories based on diverse criteria.
Such efforts to obtain alternative theories to GR began as early as the 1920s, with
examples including Whitehead’s quasi-linear theory, Einstein’s Carton theory, and
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Fierz–Pauli theory (See, for instance, [26]). However, there was no reason to question
GR for many decades as it was self-contained and successful in explaining experi-
mental and observational results. Table 1 contains the predictions and principles of
GR that observations and experiments have verified [27].

However, as we discuss in the next section, both theory and observations suggest
that GRmight have significant corrections in the strong andweak gravity regimes. This
review covers three aspects of modified theories of gravity: Why, How, andWhat. The
title of this review is adopted from Simon Sinek’s Golden circle [28]. Sinek proposed
the concept of Golden Circle to explain how certain brands/companies can inspire and
truly differentiate from others. In the same spirit, MG theories must have a theoretical/
observational reason of:

W
hy

m

odif
y gravity?

H
ow

to
mo

dify General Relativity?

W

ha
t a
re t

he ob
servational consequences?

(i) Why do we need to consider them? (ii) How can they be physical? and (iii)
What are the distinguishing features? This review covers these three aspects of MG
models. For lack of space, this review is not exhaustive, although it accurately reflects
the current literature’s state and illustrates the complexity of building an alternative
to GR. For other aspects of MG theories, readers can see Refs. [29–37]. We use
(−,+,+,+) metric signature, and 8πG = κ2 = 1/M2

Pl ∼ �2P where the Planck
Mass (MPl) ∼ 1019 GeV. Unless otherwise specified, we set c = � = 1.

2 Whymodify GR?

Einstein equations (3) are obtained by varying the Einstein–Hilbert action (2) which
is linearly dependent on the curvature scalar R. In this section, we list four reasons
why the assumption of the linear dependence of curvature scalar might not be valid.
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2.1 Gravity is not probed at all scales

Asmentioned in the Introduction, one of GR’s founding principles is Einstein’s equiv-
alence principle (EEP), which states that all non-gravitational phenomena are locally
unaffected by gravity when performed in a freely falling frame. A particular conse-
quence of this principle is that everything, including light, obeys the same laws. Thus,
the EEP represents the interface between gravity and the rest of physics. However,
unlike gauge invariance of electromagnetic field, it is not a fundamental symmetry
but an experimental fact. Einstein initially referred to it as the equivalence hypothesis
before elevating it to a principle once it became clear how critical it was to generalize
special relativity to include gravitation. Indeed, it is surprising that the EEP is satisfied,
let alone under the stringent uncertainties of modern tests.

Gravity is well tested in solar and stellar system scales and is ill-tested beyond
this scale [1, 26]. One way to test GR is to test the underlying principle of GR—
the equivalence principle. Hence, any experimental evidence of the violation of the
equivalence principle will also act as evidence against GR. Additionally, one of its
components, local Lorentz invariance, implies charge, parity, and time reversal (CPT)
symmetry [38], which is well tested on Earth [39]. Nonetheless, testing the EEP’s
validity on cosmic scales is much more difficult.

In principle, other gravitational fields besides the metric could exist, such as scalar
fields. Thus, the existence of a light or massive scalar field with a coupling to matter
weaker than gravitational strength is a possible source of violation of the weak equiv-
alence principle. In the weak-field limit, GR leads to Newtonian gravity with inverse
square law. Figure 1 shows the experimentally excluded region for inverse-square-
law-violating Yukawa type gravity interaction [40, 41]:

V (r) = −G
m M

r

[
1 + αe−r/λ

]
(7)

where α is a dimensionless constant and λ corresponds to the deviation of the Newto-
nian potential.

Thus from the above plot, we can conclude that the inverse-square-law predicted
by GR may not be conclusive for all scales. Figure 2 provides a representation of the
range in which gravity has been tested accurately. With the availability of improved
observational/experimental data, we might have to consider strong gravity corrections
or large distance corrections depending on the length/energy scales. In the rest of the
section, we provide reasons for the modifications to GR in strong gravity and at the
largest possible distances.

2.2 GR needs corrections in strong gravity regimes

In the earlier subsection, we showed that the gravity is not well tested beyond certain
scales. We have extrapolated GR from the current observational scales to strong grav-
ity regimes. Considering two specific cases, we show that the very success requires
modifications to GR at strong gravity regimes.
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Fig. 1 Plot shows the current 95% confidence-level constraints on the inverse-square-law-violating Yukawa
interactions (7) with λ > 1 cm [40]

Fig. 2 This figure provides a
representation of the range of
length/scale where GR has
currently been tested

First, let us consider the Friedmann–Lemaitre–Robertson–Walker (FLRW) line
element:

ds2 = −dt2 + a2(t)dx̄2 = −a2(η)
[
dη2 − dx̄2

]
(8)

where t is the cosmic time, x̄ refers to the 3-space, and η is the conformal time.
Assuming a power-law scale factor a(t) ∼ tn (n > 0) that is a solution to Einsten’s
equation (3), the Ricci scalar for this line-element is:

R ∼ n(2n − 1)M2
Pl

τ 2
, τ = t MPl (9)

Let us consider the following series:

f (R) = R +
∑
m≥1

αm

M2m
Pl

Rm+1 (10)

where αm are dimensionless constants. Ratio between (m + 1)th term and mth term
in the above series is:

fm+1

fm
∼ n(2n − 1)

τ 2
for all m

From the above expression, we infer that higher-order Ricci scalar R will significantly
contribute at early times (small τ ) or small length scales. Thus, the very success
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Table 2 Value of the
Kretschmann scalar at the
horizon radius rH for different
BH masses

Black hole rH (m)
√

K (rH ) (m−2)

Solar mass 103 10−6

PBH of 10−3M� 1 3

PBH of 10−5M� 10−2 104

PBH of 10−10M� 10−7 1014

requires modifications to GR, and it is imperative to include higher-order curvature
terms at early times.

To further emphasize this, we consider Schwarzschild space–time which is an exact
solution of Einstein’s equation:

ds2 = −
(
1 − rH

r

)
dt2 +

(
1 − rH

r

)−1
dr2 + r2

(
dθ2 + sin2 θdφ2

)
,

where rH is horizon radius (11)

Although Schwarzschild space–time has a vanishing Ricci tensor (scalar), not all the
components of the Riemann tensor vanish. From the Riemann tensor, we can construct
Kretschmann scalar:

K (r) = Rμναβ Rμναβ = 12r2H
r6

, where rH = 2G M

c2
(12)

which is non-zero. The table below gives the value of the Kretschmann scalar at the
horizon radius rH for different BH masses:

From the above table, we infer that the description of Primordial black holes
(PBHs) [42–44] may require one to go beyond GR. In order to demonstrate this,
let us consider the following MG Lagrangian:

LP B H = R + αR2 + β Rμν Rμν + γ Rμνσδ Rμνσδ (13)

where α, β and γ are arbitrary constants with the dimensions
[
L2

]
. Consider a BH

described by Schwarzchild space–time (11). Although the Ricci scalar (R) and Ricci
tensor (Rμν) vanish, Riemann curvature is non-zero. Thus in the above Lagrangian, the
Kreschtmann scalar is non-zero. As we see in Table 2, even though this contribution
is negligible in the case of solar mass BH, for PBH with lower mass, we cannot ignore
the effect of the Kretschmann scalar. More importantly, we need to consider higher
curvature terms to understand the physics of PBHs. The same reasoning also applies
to Kerr BHs, which has vanishing Ricci tensor.

From these two physical situations, one can conclude that the form of classical
GR (2) does not reflect nature, and indeed one would at the very least expect higher-
order curvature terms that induce alterations to GR. Note that these corrections can be
classical or quantum.
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2.3 Late time acceleration and new physics

TheUniverse is homogeneous and isotropic in the cosmological scales and is described
by the FLRWmetric (8). The �CDMmodel is considered to be the standard model of
cosmology and is consistent with most of the observations [45]. The �CDM model
presupposes thatGRdescribes gravity in the cosmological scales. As the name implies,
the model postulates that dark matter and dark energy denoted by the cosmological
constant � dominate the Universe’s energy budget.

The success of the standard model of cosmology comes at a price as atomic matter
makes up less than 5% of our Universe. Additionally, we do not know what dark
energy and dark matter are made of. Dark energy and dark matter have not been
directly detected yet other than inferring through the gravitational interaction.�CDM
model is also faced with several theoretical and observational challenges. A few of
those problems are given below.
Fine tuning problem: From the observations, it is estimated that the current energy
density of the cosmological constant is of the order of ρ� ∼ 10−47 GeV [10, 11, 46].
Assuming the cosmological constant originates from a vacuum energy density, this
value is in severe disagreement with the value of vacuum energy density predicted by
the quantum field theory ρvac ∼ 1074 GeV [47]. In other words, the value of ρ� is in
conflict with the possible energy scales and requires fine-tuning.
Coincidence problem: Cosmological observations suggests that the current value of
dark energy density parameter to be �

(0)
� ∼ 0.7, which is of the same order of the

current value of the matter-energy density parameter given by �
(0)
m ∼ 0.3. In other

words, even though the matter-energy density ρm changes with time and the dark
energy density ρ� remains constant, they are of the same order precisely at the current
epoch, which appears to be a coincidence, and would require fine-tuning of parameters
in the early Universe. This is known as the cosmological coincidence problem [46].
It has to be noted that this problem appears in many other dark energy models as
well [48].
Tensions between early and late universe observations: As mentioned earlier, the
�CDM model is consistent with the cosmological observations. This includes the
observations from the Cosmic Microwave Background (CMB) and the late Universe
(Late time acceleration). However, the latest observations suggest that within the
framework of �CDM, there are some tensions between these two sets of observa-
tions [49].

The estimated value of H0 from the observations of the late Universe shows 5σ
tensionwith the value of H0 estimated from theCMBobservations [50]. EarlyUniverse
estimates of H0 result in higher values as compared to the ones obtained from the local
Universe observations. With the increasing accuracy of the observations, it has been
suggested that one might have to look beyond the �CDM model to alleviate the H0
tension.

Another prominent cosmological tension comes from the observations of large-
scale structures and the corresponding parameter values estimated from CMB
observations. This tension (3σ ) can be seen in the parameter constraints on the matter-
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energy density parameter �m , the amplitude σ8 of matter fluctuations estimated from
the local Universe measurements and CMB observations [51, 52].

Various alternate theories of gravity have been proposed to solve these issues [34,
53]. These range fromMGmodels with geometric modifications [37] to scalar-tensor
theories [46]. It has been shown that these models can drive the observed late-time
evolution of the Universe. However, most of these cosmological models are not pre-
ferred over the�CDMmodel by the cosmological observations. Hence, it is important
to construct alternatives to the �CDM model that better fits the observational data.

2.4 Constructing quantum theory of gravity

According to our current understanding, the fundamental interactions of nature are
the strong, electromagnetic, weak, and gravitational interactions. The first three are
successfully explained by standard model of particle physics, which partially unifies
the electromagnetic and weak interactions. Except for the non-vanishing neutrino
masses, noobservable data contradicts the standardmodel at themoment.GRdescribes
gravity. Thus, there is no incentive to seek out new physical rules from an empirical
standpoint. However, the situation is unsatisfactory from a theoretical (mathematical
and conceptual) standpoint. GR is a classical theory, whereas the standard model is a
quantum field theory that describes an incomplete unification of interactions.

We still do not have a physically and mathematically consistent theory of quantum
gravity. As we go to smaller and smaller length scales, the quantum effects cannot
be ignored. For example, consider a particle of mass M . Quantum mechanics gives
a strict lower bound on the length (Compton wavelength) within which M can be
localized:

λC = h

Mc
�⇒ λC ↓ as M ↑ . (14)

According to GR, any particle of mass M can become a BH if it collapses down to
the Schwarzschild radius:

rH = 2G M

c2
�⇒ rH ↑ as M ↑ (15)

Note that λC decreases as the Mass M increases while rH increases as the Mass
increases. It thus follows that for Planck mass MPl size BHs, Planck length lPl, rH and
λC are comparable. At such small length scales, quantum gravitational effects become
important. Thus, quantum gravitational effects are expected (when considered at low
energy) to correct the classical action (2) by additional terms involving quadratic and
higher powers of the curvature tensor (for a historical overview, see Ref. [54]).

Considering quantum matter in a classical gravitational background [55] presents
additional intriguing issues,most notably the possibility that the zero-point fluctuations
of the matter fields generate a non-vanishing vacuum energy density ρvac. This is
analogous to adding the term �gμν to the left-hand side of Einstein’s equations (3),
where� = 8Gρvac/c4. As mentioned in the previous subsection, recent cosmological
observations imply a positive cosmological constant corresponding to ρvac ∼ (2.3 ×
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10−3eV)4. In this review, we only consider the classical limit of gravitation (i.e.,
classical matter and classical gravity).

3 How tomodify GR?

In the preceding section, we discussed various examples that demonstrate the need
to modify GR to describe gravity at all length scales accurately. Ironically, the very
success of GR necessitates its modification. However, due to the complexity and
diversity of the field of the modification of GR, we must first understand what makes
GR unique. Understanding this will assist in determining whether it is feasible to
construct alternate theories of gravity and, if so, how to proceed.

To accomplish this, we will examine Lovelock’s theorem [56, 57]. While the
Lovelock theorem is a no-go theorem, it does provide direction for searching for
modifications to GR in four dimensions and beyond. We begin by stating the Love-
lock theorem and the five conditions it imposes on GR being the unique theory of
gravity in four dimensions. We then demonstrate that when each of these conditions is
relaxed, paths to construct consistent modified theories of gravity become available.

3.1 Is GR unique in 4D?

Lovelock’s theorem [57] states that Einstein field equations (3) are the only second-
order local equations of motion for a metric derivable from the action in 4D. In other
words, Lovelock’s theorem proves that GR is unique under the following five condi-
tions:

1. Equations of motion (EOM) should be second order (quasi-linear).
2. No extra fields (degrees of freedom (DOF)).
3. Covariance ∂μ → ∇μ.
4. Locality.
5. Space–time is 4D.

Lovelock’s theorem acts as a no-go theorem for the gravity theories for the 4D
space–time. This implies that any gravitational theory other than GR is ruled out
under the aforementioned conditions. However, the preceding five conditions suggest
possible ways around Lovelock’s theorem. To begin, we determine whether GR is
unique in higher dimensions.

3.2 Is GR unique in higher dimensions?

Lovelock obtained the most general second rank tensor in arbitrary D-dimensions that
satisfy the following three conditions [56]: (1) Symmetric (2) Depends on metric and
its derivatives up to II order its first and second order derivatives (3) Divergence-free.
Lovelock showed that the Einstein–Hilbert action (2) is no longer unique. The unique,
D-dimensional theory with the same properties contains nonlinear corrections to the
Einstein–Hilbert Lagrangian, and these terms reduce to Einstein theory in 4D space–
times [58, 59]. Table 3 gives the unique gravity Lagrangian for higher-dimensional
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Table 3 Unique gravity Lagrangians in higher dimensional space–times

Space–time Unique gravity Lagrangian

D = 3, 4 LI = R + �

D = 5, 6 LII = LI + αGBLGB LGB = Rαβγ δ Rαβγ δ − 4Rαβ Rαβ + R2

D = 7, 8
LIII = LII + R3 + 3R Rμναβ Rαβμν − 12R Rμν Rμν + 24Rμναβ Rαμ Rβν

+ 16Rμν Rνα Rα
μ + 24Rμναβ Rαβνρ Rρ

μ + 8Rμν
αρ Rαβ

νσ Rρσ
μβ + 2Rαβρσ Rμναβ Rρσ

μν

Table 4 By-passing Lovelock theorem for modified gravity theories

Lovelock conditions By-pass for MG theories

Second order EOM Beyond second order EOM

No extra fields Add new field content (Scalar, Vector, Tensor)

Covariance Non-minimal coupling to matter fields

Locality Non-local theories

4D Higher dimensions (5D and above)

space–times. As can be seen, for D > 4, Einstein gravity GR can be thought of as a
particular case of Lovelock gravity since the Einstein–Hilbert term is one of several
terms that constitute the Lovelock action. The Lovelock theories are free from ghosts.
Interestingly, gravity may travel faster or slower than light [60].

3.3 Bypassing Lovelock theorem in 4D and possible modifications

We showed how the Lovelock theorem [57] provided a route to obtain higher-
dimensional gravity action consisting of the dimensionally-extended Euler densities
(polynomial scalar densities in the Riemann curvature tensor with the property that
their Euler–Lagrange derivatives contain derivatives of the metric only up to second
order). Similarly, as listed in the table below, each of the remaining four conditions
provides options to bypass Lovelock’s theory in 4D, leading to a specific modification
to GR. From Table 4, we can classify the MG models into four broad classes:

1. Beyond second order
2. Extra field contents
3. Non-minimal coupling
4. Higher dimensions

Several models have been proposed under each of the class of MG theories. The
mind map in Fig. 3 provides a bird’s eye view of various MG models proposed in
the literature. A few points are in order: First, some models, like Inverse-Ricci [61,
62] can have a combination of two or more of these types of modifications. Second,
we have included a few generic models that are theoretically possible. Some models
have been ruled out due to theoretical and observational inconsistencies. Third, not
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Fig. 3 Classification of modified gravity theories

all modifications are equally important for MG model building. Hence, we have not
included non-local MG theories in this review.

4 Constructingmodified theories of gravity

From the above discussions, we can say that, like the standard model of particle
physics, GR is a fundamental theory and is an effective description valid in a certain
energy range. The first step in constructing a consistent gravity theory requires us to
list the criteria for such theories [1]. We then discuss the criteria in the effective field
theory language [63–67].
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4.1 Criteria for a consistent gravity theory

Will has provided the following list of criteria that any consistent gravity theory must
satisfy [26]:

1. Theory must be complete: The theory should be able to analyze from first
principles the outcome of any experiment.

2. Theory must be self-consistent: Predictions should be unique and independent
of the calculation method. In other words, the theory should be able to make
predictions that can be tested by observations/experiments, making it falsifiable.

3. Theory must be relativistic: Special theory of relativity has been shown to
be consistent with several experimental results. It governs the kinematics and
dynamics in a flat space–time.Hence any theory of gravity should reduce to Special
Relativity when gravity is turned off. This requirement is also important for the
development of quantum theory of gravity, since existing theories of quantum
physics are constructed to be consistent with the special theory of relativity.

4. Theory must have the correct Newtonian limit: Before GR, Newton’s theory
of gravity was considered to be the standard description of gravity. It has been
consistent with various terrestrial and solar system experiments and observations
indicating that in most of the weak field and non-relativistic situations, Newton’s
theory of gravity is valid. Hence any theory of gravity should reproduce Newton’s
laws in the weak gravitational fields and slow motion.

We now translate these criteria in the effective field theory language.

4.2 Translating the criteria in the language of effective field theory

Effective field theories are, by definition, quantumfield theories based on the principles
of relativity and quantum mechanics but without the restriction of renormalizability.
Although our analysis is strictly classical, the effective field theory language is useful
for comprehending the potential issues we may face while constructing MG theories.
Like in any effective theory, any MG theory must have the following four ingredients:

• Decoupling: Details of very small-distance phenomena are largely irrelevant for
the description ofmuch larger systems. In this regard, the strong gravity corrections
toGR andmodifications toGR in the cosmological scales should not be decoupled.
For instance, the Horava–Lifshitz model has strong coupling problems, extend-
ing all the way into the deep infra-red [68]. 1/R gravity, which can explain the
current acceleration of the Universe [69], suffers from violent instabilities and is
inconsistent with solar-system test [70, 71]. Thus, any MGmodel with the correct
Newtonian limit should have clear separate energy scales.

• Degrees of Freedom: We need to know what DOF is relevant to describe the
physical system we are interested in. Once the relevant degrees of freedom are
identified, the description of the natural phenomena can be much simpler. In the
case of GR, the degrees of freedom are determined by the independent components
of the metric tensor; however, for MG theories, there can be extra degrees of
freedom like the scalar degree of freedom in scalar-tensor theories. However, for
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the modified theory to be complete and self-consistent, the number of degrees
of freedom must be unique and make testable predictions. Hence, in any scalar-
tensor theories of gravity, the number of scalar fields is usually one or two, and
these decouple at low-energies [30]

• Expansion parameters: In principle, action can have infinite terms. Therefore,
we expand the action with one or more expansion parameters. For example, the
Einstein–Hilbert action (2) has a linear dependence on the curvature scalar. As
discussed earlier, we need to include higher-order terms while considering strong
gravity.

• Symmetries: Identify the symmetries that describe the system at a given energy
or length scale. GR is diffeomorphism invariant. Thus, any modified theory of
gravity must preserve this and be locally Lorentz-invariant at the low-energy limit.

At energies lower than the Planck scales, Donoghue has shown the quantum theory
ofGRexists and is of the formof an effective field theory [64, 65].More specifically, he
has shown systematically that: (i) Higher-order loops are made finite by counterterms
provided by the higher-order terms in the Lagrangian. (ii) The non-renormalizability
of GR is not a problem; GR can be renormalized perturbatively. (iii) Quantum GR is
an excellent perturbative theory, and one can make reliable predictions.

Recently, the general effective field theory of gravity coupled to the standard model
of particle physics was constructed [66]. The authors systematically showed that the
first gravity operators appear at mass dimension 6 in the series expansion, and these
operators only couple to the standard model Bosons. They also showed that (i) no new
gravity operators appear at mass dimension 7, (ii) in mass dimension 8 the standard
model Fermions appear, and (iii) coupling between the scalar (Higgs) field and the
standard model gauge Bosons appear only at mass dimension 8.

In the next section, we will consider some specific MG models in 4D and list
their salient features. In Sect. 6, we discuss their observational consequences in the
upcoming missions.

5 Modified gravity theories: examples

Earlier in Fig. 3 we classified MG theories according to Lovelock’s theorem [57].
As mentioned earlier, in this review, we only consider modifications arising in 4D
space–time. Specifically, we consider two classes of theories—higher-order derivative
theories ( f (R), Stelle gravity, Chern–Simons (CS) gravity) and scalar-tensor theories.

5.1 Classical route to higher derivative gravity

Assume that we wish to construct a geometrical theory of gravity using the concept of
least action. One approach to accomplish this is using Einstein’s theory as a paradigm
is to write the gravitational action as:

SGrav =
∫

d4x
√−g G (16)
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where G is a scalar that is geometry-dependent or, in other words, is a function of
gμν and its derivatives but is otherwise arbitrary. To keep the discussion as general
as possible, we demand that the above action is invariant under arbitrary continuous
coordinate transformations:

xμ → xμ + ξμ

Under the infinitesimal transformation, the action becomes:

δSGrav = −2
∫

d4x
√−g ξμ ∇νGμν

where

Gμν := 1√−g

{
∂(

√−gG)

∂gμν
− ∂α

∂(
√−gG)

∂∂αgμν
+ ∂α∂β

∂(
√−gG)

∂∂α∂βgμν
− . . .

}
(17)

For the action to be stationary under these infinitesimal transformations and ξμ being
arbitrary, leads to:

∇νGμν = 0 (18)

In the case of GR, the above expression is contracted Bianchi identities. Since the
above expression is general, we can say that the above expression is a consequence of
the invariance of the action (16) under general coordinate transformations [72].

Note that the above expression is generic and does not require us to assume any
form of G. The two simplest choices of G are (cosmological) constant and R (the Ricci
scalar). This is one of the possible scalar invariants, and a plethora of invariants can
be constructed for an arbitrary 4D space–time. If we limit to those invariants whose
curvature tensor is quadratic in its ordinary contractions, we then have:

R2, Rμν Rμν, Rαβγ δ Rαβγ δ

Thus, the general higher-derivative gravity theory is given by:

G = � + 1

2κ2 R + αR2 − β Rμν Rμν (19)

where α and β are arbitrary coupling parameters, and we have used the Gauss–Bonnet
theorem

δ

∫ √−gd4x
(

Rαβγ δ Rαβγ δ − 4Rαβ Rαβ + R2
)

≡ 0 ,

to rewrite Riemann-square in terms of Ricci scalar and tensor.
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5.2 Stelle gravity

The most general quadratic (Stelle) gravity action is:

SStelle =
∫

d4x
√−g

(
1

2κ2 R + β R2 − αRμν Rμν

)
(20)

As opposed to GR which has one mode, Stelle gravity has three modes: one graviton
(1/r potential) and two massive Yukawa modes (scalar and spin-2) with masses 1

κ
√
2α

and 1
κ
√
4(3β−α)

respectively [73, 74]. Demanding that the masses are real and the
Hamiltonian is bounded from below lead to the conditions α ≥ 0, and 3β ≥ α. It has
been shown that Stelle Gravity does not contain malicious ghosts [75, 76].

Recently, using a generalized uncertainty principle (GUP) modeling maximal
momentum, it was shown that the GUP modified dynamics of a massless spin-2 field
corresponds to Stelle gravity action (20) with suitably constrained parameters [77].
More specifically, for α = 2β = γ /κ2 (γ is GUP parameter), Stelle gravity is the
minimally modified, metric-only theory of gravity which models the effects of maxi-
mal momentum. Thus, Stelle gravity can be regarded as the classical manifestation of
the imposition of a momentum cutoff at the quantum gravity level.

The mapping provided two physical insights about the Stelle parameters α and β:
first, when α = 2β, the additional gauge bosons mentioned earlier have equal masses.
In this sense, GUPMG is a degenerate theory. Second, Stelle parameters are ameasure
of the momentum cutoff. Using CMB data, the constraints on the Stelle parameters
are [77]:

10−28 GeV−2 ≤ γ ≤ 10−23 GeV−2 (21)

5.3 f(R) gravity

Although Stelle gravity is the simplest modification to GR, the equations are com-
plicated, and it is not easy to obtain exact non-trivial BH solutions. Another simple
extension of GR can be obtained by replacing R in the Einstein–Hilbert action (2)
with a general function of R, leading to f (R) theories of gravity. The f (R) gravity
action is:

SJ = 1

2κ2

∫
d4x

√−g f (R) +
∫

d4x
√−gLm . (22)

The variation of the above action leads to the following field equation:

F Rμν − 1

2
f (R)gμν − ∇μ∇ν F + gμν�F = κ2T (M)

μν (23)

where F ≡ ∂ f /∂ R. As mentioned above, Bianchi identities ensure that∇μT (M)
μν = 0.

The trace of the above field equation leads to:

RF(R) + 3�F(R) − 2 f (R) = κ2T (M). (24)
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Since �F(R) does not vanish for arbitrary f (R), the above equation indicates a
propagating scalar degree of freedom, which is absent in GR. The following two
features make the f (R) gravity an attractive candidate for the alternatives to GR:

1. f (R) are general enough that higher-order Ricci scalar terms can encapsulate high
energy modifications to GR. Nevertheless, the equations of motion are simple
enough that it is possible to solve them!

2. f (R) theories do not suffer from Oströgradsky instability [78].

The above field Eq. (23) contain higher-derivative terms, and hence, like Stelle
gravity, it is not possible to obtain exact solutions. However, by conformal rescaling
of the metric, it is possible to transform the above action (22) to Einstein–Hilbert
action with a minimally coupled scalar field. To avoid instabilities and ghosts, any
viable f (R) theory of gravity should satisfy the following conditions [79]:

∂ f /∂ R > 0, ∂2 f /∂ R2 > 0, for R ≥ R0 > 0 (25)

where R0 is the present value of R. The first successful f (R) gravity model was the
inflationary model proposed by Starobinsky [80]:

f (R) = R + R2

6M2 (26)

where M is a new parameter. This model has two key features:

1. When R2 dominates, leads to exact de Sitter expansion without extra scalar field!
2. When R dominates leads to exit from inflation.

An approximate solution for the model is given by

H � Hi − M2

6
(t − ti ) ; a � ai e

[Hi (t−ti )−(M2/12)(t−ti )2]. (27)

where Hi is theHubble parameter and ai is the scale factor at the beginning of inflation.
It has been shown that the Starobinsky model is consistent with the Planck-2018
data [81].

Viable f (R) gravity models have been constructed in the low energy scales. The
following models describe the late time acceleration of the Universe [79, 82]:

f (R) = R − μRc
(R/Rc)

2n

(R/Rc)
2n + 1

n, μ, Rc > 0 (28)

f (R) = R − μRc

[
1 −

(
1 + R2/R2

c

)−n
]

n, μ, Rc > 0. (29)

Interestingly, the Birkhoff theorem is not valid in f (R) theories [83]. Recently, it was
shown that an infinite number of exact static spherically symmetric vacuum solutions
exist for a class of f (R) gravity. For example, in GR, the zero-spin (J → 0) limit
of Kerr BH uniquely leads to the Schwarzschild solution. Thus, if there exists a large
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number of spherically symmetric vacuum solutions in f (R), the results suggest that
the no-hair theorem also may not hold for f (R) theories. As we discuss in Sect. 6,
this has important implications for the future gravitational wave detectors.

Camanho et al. [84] present one of the most stringent theoretical limits on MG
by considering higher derivative corrections to the graviton three-point coupling in
a weakly coupled theory of gravity. They argue that the causality constrains these
corrections. Additionally, they propose a thought experiment involving a high-energy
scattering mechanism that violates causality in terms of the existence of closed time-
like curves in these theories. Due to causality conditions, any limited number of terms
on the gravitational action functional is ruled out, and it can only be corrected by adding
an endless tower of extra massive particles with higher spins [85, 86]. Recently, in
Refs. [87, 88], the authors use Classical Regge Growth Conjecture to constrain the
extensions to GR. Their objective is to constrain classical theories by establishing a
limit on the Regge development of classical scattering amplitudes. In the context of
holography, the so-called chaotic bounds motivate this constraint.

5.4 Chern–Simonsmodified gravity

GR can be extended in an explicitly parity-violating manner by adding a dynamical
pseudoscalar field� and making it couple non-trivially with the curvature. CS gravity
is a 4D extension of GR that captures leading-order gravitational parity violation
arising from the Pontryagin density ∗ R R [29, 89]. Thus, the action is

S =
∫

d4x
√−g

[
R

2κ2 + α

4
�∗ R R − β

2
(∇�)2

]
;

where ∗ R R = 1

2
Rμνρσ εμναβ R ρσ

αβ . (30)

CS theories are of two types: first is referred to as canonical CS [89]. In this case,�
is a constant with no kinetic and potential term. The second is referred to as dynamical
CS (dCS). In this case, � is a fully dynamical field [90]. Parity violating theories
introduce corrections to the frame-dragging effects of spinning bodies and hence have
been used as an explanation for the anomalous gyroscopic precession observed in the
LAGEOS mission [90].

For spherically symmetric space–times, the Pontryagin density vanishes, leading
to standard GRwith a scalar field potential. Owing to the no-hair theorem, for a spher-
ically symmetric background, the only stable solution possible is the Schwarzschild.
Hence, Schwarzschild space–time is a solution of both kinds of CS theories [89].
In the case of axisymmetric solutions, the Pontryagin density does not vanish, and
hence, axisymmetric solutions are non-trivial to construct in CS theories [91]. So
far in the literature, no closed-form fast-spinning Kerr-like analytic solution exists in
either kind of CS theory. However, it is possible to construct axisymmetric solutions
from spherically symmetric solutions perturbatively in spin [92].

Like Schwarzschild, FLRW space–time (8) is an exact solution. This is because
Pontryagin density vanishes for homogenous and isotropic space–times. Interestingly,
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CS modification can provide a mechanism for Baryogenesis [93]. In Sect. 6, we show
that it is possible to distinguish CS and GR using the QNM frequencies of the resultant
BH from binary mergers.

5.5 Scalar-tensor gravity theories

Among MG theories, scalar-tensor theories have received more attention than others.
Although the scalar fields are hypothetical, they naturally occur in the standard model
of particle physics and unified field theories starting from Kaluza–Klein. Jordan’s
starting point was Kaluza–Klein’s unified field theory in a 5D space–time which can
be rewritten as projective 4D space–time with extra space dimension appearing as a
space–time scalar. (for a historical review, see [94].] Interestingly, this scalar field also
nicely fitted with Dirac’s Large number hypothesis [94–96]. Dirac was intrigued by
coincidental approximate equality between important physical quantities expressed
in a dimension-free manner, i. e.,

electrical force between electron and proton

gravitational force between electron and proton
= e2

Gm pme
≈ 1040 (31)

Age of the Universe

time taken by light to cross an atom
= tUniv

e2/(me c2)
≈ 1040 (32)

Assuming that these hold at all times after the instant of the Big Bang and the atomic
parameters do not vary with time, Dirac went on to suggest that

e2

Gm pme
∝ tUniv �⇒ G ∝ 1

tUniv
(33)

Since the mass of elementary particles and the charge of the electron is fixed to
be constants by experiments, the above relation indicates that G can vary in time.
This possibility was explored in the scalar-tensor theory: Jordan–Brans–Dicke theory,
which introduced a time-varying gravitational “constant” represented by a scalar field
ϕ [97]. This is the simplest way of introducing a time-dependent gravitational constant.

SJ B D = 1

16π

∫
d4x

√−g

(
ϕR − ωBD

ϕ
∂μϕ∂μϕ

)
+

∫
d4x

√−gLM (34)

whereωB D is the dimensionlessBrans–Dicke coupling constant.Gravitational dynam-
ics in the Jordan–Brans–Dicke theory is dictated by the following equations:

Rμν(g) − 1

2
gμν R(g) = 8π

Tμν

ϕ
+ 1

ϕ

(∇μ∇νϕ − gμν�ϕ
)

+ ωBD

ϕ2

[
∂μϕ∂νϕ − 1

2
gμν(∇ϕ)2

]

(3 + 2ωBD)�ϕ = 8πT

(35)
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Through the variation of ϕ, the relation G ∝ t−1
Univ can be realized .

Scalar tensor theories also describe the early Universe inflationary phase in which a
scalar field (inflaton) drives the inflationary expansion [48, 98, 99]. With the discovery
of the accelerated expansion of the late Universe, there has been renewed interest in the
scalar-tensor theories of gravity. They were proposed to generalize the�CDMmodel,
with the scalar field representing the dynamic dark energy component that drives the
accelerated expansion.

A variety of scalar field dark energymodels discussed are proposed in the literature,
like canonical scalar field (also known as quintessence) [100], kinetic dominated scalar
fields (k-essence) [101], Galileons [102]. The simplest among these is quintessence
whose action is:

S =
∫

d4x
√−g

(
1

2κ2 R − 1

2
gμν∇μφ∇νφ − U (φ)

)
+ Sm . (36)

One can define the background energy density and pressure of the scalar field as

ρφ = 1

2
φ̇2 + U (φ), pφ = 1

2
φ̇2 − U (φ) (37)

leading to the time-varying equation of state

wφ = φ̇2 − 2U (φ)

φ̇2 + 2U (φ)
(38)

From the above expression, we see that the wφ can take the values in the range
−1 ≤ wφ ≤ 1. In case of a near flat potential, for which φ̇ � 0, quintessence
mimics the cosmological constant with wφ � −1. The evolution of the scalar field is
determined by the equation of motion

φ̈ + 3H φ̇ + Uφ(φ) = 0 or ρ̇φ + 3H(1 + wφ) = 0 (39)

The evolution in a quintessence model is determined by the form of the scalar
field potential. For example, in quintessence models which satisfy the condition � ≡
UUφφ/U 2

φ ≥ 1, the scalar field follows a common evolutionary path for a wide range
of initial conditions [48]. Hence these models, called ‘tracker models,’ alleviate the
coincidence problem. Examples of the tracker potential, which leads to the accelerated
expansion, include the modified exponential potential U (φ) = U0[cosh(λφ) − 1]p,
and the inverse power-law potential given by U (φ) = U0φ

−α [100]. In this class of
models, initially, the field rolls down the potential and slows down after the Universe
enters the phase of accelerated expansion.

The scalar tensor theory action (36) is related to f (R) theory action (22) by the
mapping:

ϕ = F(R); U (ϕ) = R F − f

2
�⇒ ωB D = 0 (40)

It is consistent with the fact that f (R) gravity theories have an extra scalar degree of
freedom.
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5.6 Extending scalar-tensor theory

We can extend the minimally coupled canonical scalar-tensor theories of gravity by
modifying various terms of the scalar-tensor action and/or introducing new terms. A
few examples of such theories are given below.

• Generalized Kinetic scalar field (e.g., K-essence)

LCan = X − V (φ) �⇒ LNC = K (φ, X) where X = 1

2
gμν∂μφ∂νφ

This model was originally proposed as an inflationary model [101], later applied
to the late time accelerated expansion of the Universe [103]. It has been shown
that k-essence models do not suffer from the fine-tuning problem that plagues the
�CDM model.

• Generalized non-minimal coupling with gravity

S =
∫

d4x
√−g

[
1

2κ2 R + Lφ

]
�⇒ SNM =

∫
d4x

√−g
[

f (φ)R + Lφ

]

Here, there is a non-minimal coupling between the scalar field and the curvature
term. Examples of this type of theory include JBD theory and Higgs inflationary
model [104]. Scalar tensor theories with non-minimal coupling can also describe
dark energy - dark matter interaction [105].

• Including higher derivatives (e.g., Galileons)

LNC = K (φ, X) �⇒ LGal = K (φ, X) + G(φ, X)�φ

In these models, the action contains 2nd or higher-order derivatives of the scalar
field. The Galileon model, which was motivated by instabilities in the 5D DGP
gravity, is a good illustration of this [102]. They are constructed in such a way that
the equations of motion contain only upto 2nd derivative terms. A more general
example of the higher derivative theory is the Horndeski theory [106]. It is con-
structed to be the most general theory of gravity, with action being a function of
metric and scalar field that lead to 2nd order equations of motion. The scalar-tensor
theories mentioned in this section and GR are special cases of Horndeski theories.

It must be noted that theories with higher-order derivatives can result in ghosts. One
needs to bypass the Oströgradsky instability to avoid these instabilities [78]. This is
discussed in the next section.

5.7 By-passing Oströgradsky instability

As seen in the previous sections, one way to construct MG theories is by introducing
higher derivative terms to existing theories. However, these often lead to instabili-
ties. This section discusses avoiding these instabilities by bypassing the Oströgradsky
instability.
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First, we check if Einstein–Hilbert action has any ghost modes. The action (2) can
be rewritten in terms of the Riemann tensor as

SEH = 1

2κ2

∫
d4x

√−gR = 1

2κ2

∫
d4x

√−gRμν gμν = 1

2κ2

∫
d4x

√−g Rλ
μλν gμν. (41)

Expanding the Riemann tensor, we have

Rλ
μλν = ∂λ�

λ
μν − ∂ν�

λ
λμ + 1st order derivatives

= 1

2
∂λ

(
gλρ

(
∂μgνρ + ∂ν gρμ − ∂ρ gμν

)) − 1

2
∂ν

(
gλρ

(
∂μgλρ

)) + 1st order derivatives

= 1

2
gλρ

(
∂λ∂μgνρ + ∂λ∂ν gρμ − ∂λ∂ρ gμν − ∂μ∂ν gλρ

) + 1st order derivatives

Substituting this back in action, we get:

SEH= 1

2κ2

∫
d4x

√−g
1

2
gμνgλρ

(
∂λ∂μgνρ +∂λ∂νgρμ−∂λ∂ρgμν −∂μ∂νgλρ

)+1st

order derivatives (42)

Here the 2nd order derivative terms can be cast into terms containing only the first
derivative using the product rule. The first term above can be recast:

∫
d4x

√−g
1

2
gμνgλρ∂λ∂μgνρ =

∫
d4x∂λ

[√−g
1

2
gμνgλρ∂μgνρ

]

−
∫

d4x∂λ

[√−g
1

2
gμνgλρ

]
∂μgνρ (43)

Here we see that the first term is a total divergence term, and the second term
contains only the first derivatives of the metric. Thus Einstein–Hilbert action does not
have ghost modes.

Next, we look at how to bypass the Oströgradsky instability for a generic model.
One of the key requirements for the Oströgradsky theorem to be applicable is the non-
degeneracy. The non-degeneracy condition refers to ∂L/∂ q̈ to be dependent on q̈ . One
way to break the degeneracy is to consider the Lagrangian for which ∂2L/∂ q̈2 = 0.
In case Lagrangian depends on only a position q and its velocity q̇, then the equations
of motion are first order, which represents not the dynamics but the constraint. If
Lagrangian depends on q, q̇, q̈ , degeneracy implies that equations of motion will have
second-order or higher derivatives, representing the dynamics [78].

Example of these type of models include Galileons which are hypothetical scalar
fields whose Lagrangians involve multilinear terms of first and second derivatives, but
nonlinear field equations are second order. A simple example with a single scalar field
π is given by

SG =
∫

dn x ∂απ ∂απ ∂β∂βπ (44)

123



44 Page 24 of 35 S. Shankaranarayanan, J. P. Johnson

Here SG is invariant under the transformation π → π + bμxμ + c where bμ is a
constant vector. Note that this is similar to the Galilean transformation ẋ → ẋ +V in
particle mechanics.

The action SG leads to the field equation

(∂β∂βπ) (∂α∂απ) − (∂α∂βπ) (∂α∂απ) = 0, (45)

which is invariant under the transformation c + bμxμ.
One can have Galileon models with non-canonical and non-minimally coupled

single-field models leading to second-order equations of motion:

L2 = K (π, X), where X = 1

2
(∇π)2, Gi X ≡ ∂Gi/∂ X

L3 = −G3(π, X)�π

L4 = G4(π, X)R + G4X

[
(�π)2 − (∇μ∇νπ

)2]

L5 = G5(π, X)Gμν∇μ∇νπ − 1

6
G5X

[
(�π)3 − 3(�π)

(∇μ∇νπ
)2 + 2

(∇μ∇νπ
)3]

.

Many of inflation and dark energy models can be understood in a unified manner.
For example, G4 = 1/(2κ2) yields the Einstein–Hilbert action; G4 = f (π) yields a
non-minimal coupling ; G5 ∝ π corresponds to new Higgs inflation.

Horndeski gave themost general 4D action constructed from themetric g, the scalar
field φ, and their derivatives, ∂gμν, ∂

2gμν, ∂
3gμν, . . . , ∂φ, ∂2φ, ∂3φ, · · · leading to

2nd order equations:

LH = δαβγ
μν

[
κ1∇μ∇αφRβγ

νσ + 2

3
κ1X ∇μ∇αφ∇ν∇βφ∇σ ∇γ φ + κ3∇αφ∇μφRβγ

νσ

]

+ 2κ3X ∇αφ∇μφ∇ν∇βφ∇σ ∇γ φ
] − 6

(
Fφ + 2Wφ − Xκ8

)
�φ + κ9

+δαβ
μν

[
(F + 2W )Rαβ

μν + 2FX ∇μ∇αφ∇ν∇βφ + 2κ8∇αφ∇μφ∇ν∇βφ
]

(46)

where κ1, κ3, κ8, κ9, F are functions of φ, X . FX = 2
(
κ3 + 2Xκ3X − κ1φ

)
, W =

W (φ). However, certain Hordenski models have been ruled out after BNS merger
observations [107–109].

6 What are the observational consequences?

From the above discussions, it is clear that there aremanyways ofmodifyingGR in the
strong-gravity and cosmological distances (such as Stelle gravity, f (R), scalar-tensor
and CS gravity), and each model has its unique features. This leads to the following
crucial question: Is there a set of unique signatures that distinguish MG theories
from GR? This section investigates this issue by considering three specific cases:
Testing MG theories using gravitational wave (GW) observations [110–114], low-
energy observational signatures in cosmological observations [115] and non-minimal
coupling of electromagnetic fields leading to observable signatures [116–118].
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6.1 Testingmodified gravity theories in strong gravity regimes

According to GR, three measurable quantities (mass, charge, and angular momentum)
fully characterize the isolated BHs in equilibrium [119]. In other words, any defor-
mations of the horizon will finally settle into a BH configuration that is described
only by the above three quantities. [119]. When two BHs merge to form another BH,
the remnant BH’s event horizon will be highly distorted. As a result, it radiates GWs
until it settles into an equilibrium configuration [5, 120]. GWs emitted, referred to as
quasi-normal modes (QNMs), are a superposition of damped sinusoids and depend
only on the parameters characterizing the BH, namely, its mass and spin (astrophysical
BHs are not likely to be electrically charged) [121–123]. QNMs are the fingerprints
of the final BH. The simplicity of the QNM spectrum allows one to identify the Kerr
solution [124]. If GR is still valid at strong gravity regimes, then the final BH will be
consistent with the no-hair theorem. However, this will not be the case for the MG
theories if GR is modified. Broadly, there are two approaches in which we can test
strong field limit of gravity:

1. Obtain newBH solutions for theMGmodels. Use the templatematching technique
to match GW signals and identify the deviations.

2. Identify MG theories with the same BH solutions as in GR. Obtain the difference
in GW signals in GR and MG theories.

Recently, it has been explicitly shown that the Birkhoff theorem is not valid in f (R)

theories [83]. Thus, if there exists a large number of spherically symmetric vacuum
solutions in f (R), the results suggest that the no-hair theorem also may not hold for
f (R) theories. However, we need to test this conjecture for a larger class of MG
models.

As mentioned earlier, it is known that Kerr is not a solution for the CS theory.
Besides, no closed-form fast-spinning Kerr-like analytic solution exists in either kind
of CS theory. However, it is possible to construct axisymmetric solutions from spher-
ically symmetric solutions perturbatively in spin [92]. Unlike in f (R), even in the
slow-rotating limit, the rotating solution in CS is different from Kerr. In other words,
no hair theoremmay not be a generic property forMGmodels. There have been efforts
in the literature to test the no hair theorem using the first and higher overtones in GW
observations (see, for instance, Refs. [125, 126]). Recently, Psaltis et al. used numer-
ical calculations of shadows and showed that spacetimes that deviate from the Kerr
metric could lead to large changes in the predicted shadows [127].

The spectrum of QNM predicted by GR comprises of two isospectral towers of
modes that are respectively even and odd under parity [128]. Also, GWs emit equal
energy in the two polarization states [128]. As seen before, for modified theories
of gravity, the total emitted energy gets redistributed due to additional propagating
degrees of freedom, and the twopolarization states neednot carry equal energy.Besides
extra polarization modes, alternative gravity theories can introduce three different
effects on QNMs [129]:

1. modify the spectrum of even and odd modes while preserving isospectrality.
2. break isospectrality (do not emit GWs with equal energy in the two polarization

states)
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3. mix the even and odd modes so that there is no longer a distinction between the
two.

In the rest of this section, we heuristically show that polarization provides a unique
tool to distinguish betweenGR andmodified theories of gravity. Consider a spherically
symmetric space–time:

ds2 = −g(r)dt2 + dr2

h(r)
+ r2

(
dθ2 + sin2 θdφ2

)
, (47)

where g(r) and h(r) are arbitrary functions of r . At the linear order, the two modes
of metric perturbations (�1 and �2) of the above space–time satisfy the following
equations [128]:

d2�i

dr2∗
+

[
ω2 − Vi (r∗)

]
�i = 0 where i = 1, 2, (48)

r∗ = ∫
dr/

√
h(r)g(r) is referred to as tortoise coordinate, ω are the complex fre-

quencies of the quasi-normal modes, and Vi (r∗) are the potentials corresponding to
the two modes (�i ). The two potentials are related to each other via Darboux trans-
formations [128]. Hence, the modes have the same reflection coefficients and carry
equal energy [128].

As discussed in Sect. 3, the equations of motion of any generic MG can be written
in the following compact form:

Gμν = κ2 Tμν , (49)

where Gμν is the modified Einstein tensor. Following Eq. (18), in MG, the energy-
momentum tensor is locally conserved (∇μTμν = 0). For f (R)gravity, the generalized
Bianchi identity (18) leads to:

f ′′(R)
(
Rμν∇μ R

) = 0 . (50)

For GR, f (R) = R. Hence, f ′′(R) vanishes and the above equation is trivially
satisfied. However, f ′′(R) is non-zero forMG theories, hence, the generalized Bianchi
identity (50) leads to four constraints on the Ricci tensor. While, GR and f (R) have
four constraints on the field variables, the number of dynamical variables are different.
For f (R) gravity, unlike GR, the trace equation (24) is dynamical.

As a result, f (R) gravity has 11 dynamical variables—10metric variables (gμν ) and
Ricci scalar (R). However, GR has only ten metric variables (gμν). In other words,
in f (R), the scalar curvature R plays a non-trivial role in determining the metric
itself. Since this extra degree of freedom is a scalar, it can be treated as longitudinal
mode [110].

Interestingly, the extra propagationmode is a generic feature for any pure curvature-
modified theories of gravity containing only the higher-order Ricci scalar/tensor terms
and without any additional matter fields. The generalized Bianchi identity (18) leads
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to four non-trivial constraints between the Ricci tensor and Ricci scalar. Thus, any
modifications to GR will have at least one extra dynamical field that plays a non-
trivial role in the determination of the metric itself.

The crucial point in the case of MG theories is that as remnant BH settles down to
an equilibrium state, some energy will be carried by the extra dynamical fields (say,
�new). Thismissing energy signalsmodifications to gravity. This leads us to the crucial
question: How the missing energy can be used to distinguish GR and MG theories
using gravitational wave detectors?

As mentioned above, in the case of GR, the two modes of perturbations satisfy
Eq. (48). However, for MG theories, the two modes of perturbations for spherically
symmetric space–times (47)—that is related to the two polarizations detected by
gravitational-wave detectors—satisfy the following relations [110–112]:

d2�i

dr2∗
+

(
ω2 − Vi

)
�i = Sef f

i (�new) i = 1, 2 (51)

where Sef f
i (�new) are the effective source terms comprising of the new degrees of

freedom. In general, Sef f
1 (�new) �= Sef f

2 (�new). For f (R) theories it can be shown that

Sef f
2 (�new) vanishes while Sef f

2 (�new) is non-zero [110–112]. Thus, the two modes
of perturbation in MG theories do not satisfy isospectral relation (�1 �= �2) leading
to an energetic inequality between the two observable modes in gravitational wave
detectors. This energy inequality can be parameterized by a strong gravity diagnostic
parameter [110–112]:

� =
∣∣dt,��1

∣∣2 − ∣∣dt,��2
∣∣2

∣∣dt,��1
∣∣2 + ∣∣dt,��2

∣∣2 (52)

where the dt,� corresponds to derivative with respect to time and solid angle. This
parameter vanishes only when �1 = �2, hence, vanishes only for GR. For MG
theories, �1 �= �2 and the parameter is non-zero. In the case of f (R) gravity, � ∼
10−7 for 10M� BHs [110, 111]. In the next generation of gravitational-wave detectors
(e.g. the Cosmic Explorer [8]) the signal-to-noise ratio in the quasi-normal mode
regime alone could be as large as SNR > 50 [7]. With such detectors, the above
diagnostic parameter can provide a unique signature for strong gravity.

In the case of slowly-rotating BH solution in dCS gravity, it was recently shown
that dCS corrections are potentially observable when the final BH mass is less than
15M� [114]. Thus, it was shown that future binary Neutron Star events could poten-
tially distinguish dCS and GR.

6.2 Low-energy observational signatures of f(R) gravity

Many different f (R)models have been proposed to account for the late-time accelera-
tion of the Universe. Similarly, many different dark energy models within GR can also
account for the late-time acceleration. This leads to the question: Are there signatures
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distinguishing dark energy and MG models? We can try to answer this in two ways.
The first method assumes a specific form of f (R) and looks for its signatures in the
observational data. Another option is to keep the form of f (R) arbitrary and construct
the tools to detect the departure fromGR using the observational data. Here we present
the latter method, which is model independent [115].

Using the local distance measurements, model independent expansion history of
the late Universe has been constructed [130]. Any cosmological model that describe
the evolution of the late Universe should be consistent with the background expansion
history. Hence we cannot use background evolution to distinguish between MG the-
ories and GR. However, the evolution of scalar perturbations can be a useful tool for
this purpose. Consider the perturbed FLRW space–time in the Newtonian gauge

ds2 = −(1 + 2�)dt2 + a2(t)(1 − 2�)δi j dxi dx j (53)

where � ≡ �
(
t, xi

)
and � ≡ �

(
t, xi

)
are the scalar perturbations. Given the

background expansion history, the evolution of the function F(R) ≡ ∂ f /∂ R can be
obtained using the background field equation:

F̈ − H Ḟ + 2F Ḣ = −κ2 (ρM + PM ) (54)

Bianchi identities ensure that the continuity equation for the matter fluid is applicable
to both GR and f (R) gravity

˙̄ρ + 3H(ρ̄ + P̄) = 0 (55)

Even though the background evolution is identical in both scenarios, there are signif-
icant differences in the evolution of the scalar perturbations. In GR, the evolution of
the perturbations is determined by the equations:

δ̈GR + 2H δ̇GR − κ2

2
ρ̄δGR; k2

a2�GR + κ2

2
ρ̄δGR = 0; �GR − �GR = 0 (56)

In f (R) gravity, the scalar perturbations satisfy the following equations [115]:

�MG − �MG = −δF

F̄
; δ̈MG + 2H δ̇MG − κ2

eff

2
ρ̄δMG = 0

�̇MG +
(

H − F Ḣ

Ḟ
+ F

3Ḟ

k2

a2

)
�MG +

(
F Ḣ

Ḟ
+ F

3Ḟ

k2

a2

)
�MG + κ2ρ̄

3Ḟ
δMG = 0

�̇MG +
(

H − Ḟ

F
− F Ḣ

Ḟ
− F

3Ḟ

k2

a2

)
�MG +

(
2

Ḟ

F
+ F Ḣ

Ḟ
− F

3Ḟ

k2

a2

)

�MG − κ2ρ̄

3Ḟ
δMG = 0 (57)

where κ2
eff = κ2

F

(
1 + 4 k2

a2
∂ln F
∂ R

)
/
(
1 + 3 k2

a2
∂ln F
∂ R

)
.

123



Modified theories of gravity: Why, how and what? Page 29 of 35 44

Here we see the clear difference in the evolution of scalar perturbations. Hence
if we can identify the observable quantities that can be constructed using the scalar
perturbations, those quantities can be used to detect the signatures of MG theories.
Here we provide three such observables.

Weak gravitational lensing: By looking at the spatial part of the geodesic equation
for the perturbed metric in the Newtonian gauge, we see that the quantity � + �

determines the variation in the path of the photon propagation, which leads to the
weak gravitational lensing. Hence weak lensing data can be used to study the spatial
dependence of the metric scalar perturbations � and �, which we can use to detect
the MG signatures.

Integrated Sachs–Wolfe effect: The integrated Sachs–Wolfe (ISW) effect is a sec-
ondary anisotropy of the cosmic microwave background (CMB), which arises because
of the variation in the cosmic gravitational potential between local observers and the
surface of the last scattering. ISW effect is related to the rate of change of (�+�) w.r.t.
conformal time (η). ISW effect provides valuable information about the time evolution
of the scalar perturbations, especially in the late acceleratingUniverse. Even though its
detectability is weaker than weak lensing, it is a powerful tool to study the underlying
cosmology. It can be detected using the cross-correlation between the observational
data on CMB and large-scale structures.

Recently, it was shown that the difference in the growth of the scalar perturbations
can be used to distinguish f (R) gravity from GR in a model-independent manner
using the weak lensing and integrated Sachs–Wolfe effect [115].

6.3 Potential to solve long-standing problems in cosmology and particle physics

The origin of primordial magnetic fields and the origin of the baryon asymmetry of the
Universe are the unresolved issues in modern cosmology and particle physics models.
Both require physics beyond the standard model and pose an exciting question—
are these processes cosmological or particle physics or both? It seems impossible
to generate the observed baryon asymmetry within the standard model of particle
physics framework. Since both require physics beyond the standard model, there is
a tantalizing possibility that the same physics can solve both problems. Recently, it
was shown that non-minimal coupling of the electromagnetic field with the Riemann
tensor could potentially explain magnetogenesis and baryogenesis [116, 117].

As mentioned earlier, the general effective field theory of gravity coupled to the
standard model of particle physics was constructed recently [66]. The authors system-
atically showed that the first gravity operators appear at mass dimension 6 in the series
expansion, and these operators only couple to the standard model Bosons. This leads
to the following action [116]:

S = 1

2κ2

∫
d4x

√−g R +
∫

d4x
√−g

[
1

2
∂μφ∂μφ − V (φ)

]

−1

4

∫
d4x

√−g Fμν Fμν − σ

M2

∫
d4x

√−g Rρσ
αβ Fαβ F̃ρσ (58)
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where Rρσ
αβ is the Riemann tensor, Aμ is the four-vector potential of the electro-

magnetic field, Fμν = ∇μ Aν − ∇ν Aμ and F̃ρσ = 1
2ε

μνρσ Fμν is the dual of Fμν .
εμνρσ = 1√−g

ημνρσ is fully antisymmetric tensor, ημνρσ is Levi-Civita symbol whose

values are ±1 and we set η0123 = 1 = −η0123.
Note that in Eq. (58), the first three terms correspond to Einstein–Hilbert action,

scalar field action, and standard electrodynamics, respectively. However, the presence
of the Riemann tensor term breaks the conformal (and parity) invariance of the action.
The scalar field (φ) drives the inflation in the early Universe. M is the energy scale,
which sets the scale for conformal invariance breaking. We assume that 10−3 ≤
(HInf/M) ≤ 1 where HInf ∼ 1014 GeV is the Hubble scale during inflation. Note
that the Riemann coupling is tiny in the current epoch and will significantly contribute
only in the early Universe.

Since the non-minimal coupling term also breaks parity, during inflation, one
can generate an appreciable amount of helical fields that seeds large-scale magnetic
fields [116]. Interestingly, the generation of the non-zero primordial helical magnetic
fields leads to a chiral anomaly, which results in the imbalance between left and right-
handed fermions. In the presence of an electromagnetic field in curved space–time,
the chiral anomaly is given by the following equation [117]:

∇μ Jμ
A = − 1

384π2 εμνρσ Rμναβ Rαβ
ρσ + e2

16π2 εμναβ Fμν Fαβ (59)

where Jμ
A is the chiral current. In the case of FRWUniverse (8), the non-zero contribu-

tion of the first term arises only in the second-order, like in the case of CS gravity [93].
However, due to the presence of the magnetic fields, the second term in the RHS of
Eq. (59) is non-zero. Thus, the net baryon asymmetry is [117]:

nB = a(η)〈0|J 0
A|0〉 = e2

4π2 a(η)nC S . (60)

where

nC S = 1

a4 εi jk〈0|Ai ∂ j Ak |0〉 = 1

a4

∫ �

μ

dk

k

k4

2π2

(
|A+|2 − |A−|2

)
, (61)

Thus,nC S is non-zero if the primordialmagnetic fields are helical, i. e. |A+| �= |A−|,
hence leading to baryogenesis. Focusing on the modes that leave the horizon around
5 to 10 e-foldings leads to the observed amount of baryon asymmetry ηB ∼ 10−10

with the reheating temperature in the range 1012 − 1014 GeV [117].

7 Future outlook

Technological advancements have fueled research to answer some of the fundamen-
tal questions of the Universe. GR was proven via the direct detection of GWs from
the mergers of the binary BHs and binary neutron stars by the Advanced LIGO and
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Advanced Virgo detectors. These detections confirmed the prediction of GR and pro-
vided the first direct evidence of the existence of stellar-mass BHs. However, the
occurrence of singularities at the centers of BHs suggests that GR is inapplicable
because of the breakdown of the equivalence principle at the singularities. The fact
that these singularities exist indicates that GR cannot be a universal theory of space–
time. Many MG models are currently proposed, like f (R), Stelle and CS gravity.
Since the equations of motions of these theories are non-linear and contain higher
derivatives, we have not obtained spherically symmetric solutions that are distinct and
different from GR. Like for instance, Schwarzschild is also a solution for f (R), Stelle
and CS gravity. The current challenge is to obtain exact black hole solutions that are
unique to modified theories. Non-trivial solutions are obtained in the literature only
for a specific form of f (R) [83].

In the low-energy limit, the theoretical and observational challenges faced by the
�CDM model also indicate that we might have to look beyond GR as the underlying
theory of gravity. Here again, the challenge is to obtain decelerated to accelerated
expanding Universe for generic MG theories without instabilities.

Testing GR using GW observations relies on combining template matching and
polarization measurements. Currently, template matching is used to match the GW
signals with numerical relativity waveforms to constrain deviations from GR. How-
ever, as the number of detectors increases and their sensitivity to the ring-down region,
alternative methods are needed to test for deviations in GW signals. One must obtain
a finite number of parameters vanishing for GR and non-vanishing for MG theories.
In Refs. [112, 113] one such parameter was suggested. More such parameters are
required in the strong and weak gravity limits that can be tested in future missions like
Cosmic Explorer, Einstein telescope, E-LISA, Euclid, GAIA, LOFAR, SKA, uGMRT.

GWs carry a lot of energy, much more than radio waves. For instance, the GWs
that we receive on Earth have the energy of the order of 1020 Jansky [5]. Recently, it
was shown that the energy carried by GWs could have observable effects like in Fast
Radio Bursts [131]. Such high-energy astronomical phenomena are a rich source of
indirect signatures for MG theories.

Two important topics we have not discussed in this review are black hole thermo-
dynamics in MG theories and infrared corrections combining quantummechanics and
gravity. Hawking established the connection between black-hole mechanics and ordi-
nary thermodynamics by showing that the surface gravity of the event horizon equals
2π times the standard temperature of the radiation emitted by the black hole to infinity
[132]. The original derivation of the laws of black hole thermodynamics has nothing
in common with statistical mechanics. Still, there is a general belief that a connection
exists at the quantum level. In the leading order, several approaches using completely
different microscopic degrees of freedom lead to Bekenstein-Hawking entropy. How-
ever, other approaches lead to disparate quantum corrections to Bekenstein-Hawking
entropy [133–137]. Thus, it is unclear whether all the laws of black-hole mechanics
will be satisfied for MG models. For recent reviews, see [138, 139].

Quantum mechanics requires the well-defined notion of generators of translation.
While this is in-general true for well-defined space–times that are asymptotically
flat, it is not guaranteed for asymptotically non-flat space–times [140]. This has led
to conjectures that the commutation relation of a quantum particle will be modified
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in curved geometry [141, 142]. Recently, it has been demonstrated that the infrared
modifications to the position-momentum algebra are proportional to the curvature
invariants (like Ricci scalar, Kretschmann scalar) [143]. This may provide a route to
understandingwhether the GR asymptotic symmetry group should be larger or smaller
than the original Bondi–Metzner–Sachs (BMS) group [144].
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