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Abstract
The only nontrivial exact solutions reported to-date for the field equations of the
null-surface formulation (NSF) of general relativity are for the (2 + 1)-dimensional
version of the theory, where three such solutions are known. This work presents a
new family of NSF solutions. The corresponding general relativistic spacetimes are
shown to span three different Petrov types, depending upon the choices that are made
for various parameters. All of the scalar invariants for the spacetimes are constant, as
are all of the eigenvalues of the Cotton-York tensor. The physical nature of a possible
source term is discussed in detail, and two of the previously known NSF solutions
are presented as special cases. The new family of solutions was derived by assuming
additive separability—meaning that the dependent variable in the field equations is
represented as a sum. This effectively turns the main NSF field equation (which is
a partial differential equation) into an ordinary differential equation that is exactly
solvable. The possibility of adapting this approach to the (3+ 1)-dimensional version
of the NSF is discussed.
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1 Introduction

For each choice of u, the equation u = Z(xa) represents a surface in spacetime. The
null-surface formulation (NSF) of general relativity employs families of surfaces that
are labelled by one or more angular variables [1–5]. The requirement that the surfaces
be null with regard to a spacetime metric gbc(xa), together with the requirement that
the Einstein equations hold, then leads to the field equations for the NSF. These equa-
tions are more complicated than the usual Einstein equations. No nontrivial solutions
have been found for the original (3 + 1)-dimensional NSF, which was first proposed
by Kozameh and Newman [1], and by Frittelli et al. [2–5]. In higher dimensions, no
nontrivial solution has been found for the (n + 1)-dimensional NSF (n > 3), due to
Gallo [6]. Being a theory of null surfaces, the NSF does not distinguish between space-
times that are related by a conformal transformation. Saying that an NSF solution is
nontrivial means that the solution corresponds to a spacetime that is not conformally
flat. The NSF does not exist in 1+1 dimensions because all (1+1)-dimensional space-
times are conformally flat. However, (2+ 1)-dimensional NSF, which was introduced
by Forni et al. [7, 8], Tanimoto [9], and Silva-Ortigoza [10], has been widely studied.

The interest in the NSF in 2+ 1 dimensions stems partly from the correspondence
with the early work of Cartan on classifying third-order ordinary differential equations
[11–14]. Although simpler than in higher dimensions, the (2 + 1)-dimensional field
equations have nonetheless proved difficult to solve. Only three nontrivial solutions
have been found to date [15–18]. The purpose of the present paper is to introduce a
new family of (2 + 1)-dimensional solutions. It encompasses different Petrov types
and includes two of the previously known solutions as special cases. Although the
results are only valid in 2+ 1 dimensions, the approach could be applicable to higher
dimensions.

A brief review of the NSF in 2 + 1 dimensions is given in the next section. The
subsequent sections present the new family of solutions and investigate their properties.

2 NSF in 2+ 1 dimensions

Consider the NSF in 2 + 1 dimensions [7–10]. A family of surfaces is described by
the equation u = Z(xa;ϕ), where xa (a = 0, 1, 2) are spacetime coordinates and
ϕ ∈ S1 is an angular variable whose role is to label the surfaces. For fixed (u, ϕ),
this equation defines a surface S(u,ϕ). The NSF requires S(u,ϕ) be a null with respect
to some spacetime metric gbc(xa). Thus for arbitrary values of the parameter ϕ, the
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gradient of Z satisfies

gbc(xa)Z,b(x
a;ϕ) Z,c(x

a;ϕ) = 0, (1)

where Z,a ≡ ∂a Z ≡ ∂Z/∂xa . Equation (1) and its derivatives with respect to ϕ lead
tometricity conditions. These ensure that the requirement of nullness can be satisfied.
The first step in deriving the metricity conditions is to introduce coordinates, known
as intrinsic coordinates, that are naturally adapted to the surfaces [3, 7–9]:

u := Z(xa;ϕ),

ω := ∂u ≡ ∂Z(xa;ϕ),

ρ := ∂ω ≡ ∂2u ≡ ∂2Z(xa;ϕ),

where ∂ := ∂/∂ϕ denotes the derivative with respect to ϕ when the xa are held fixed.
In principle, the equations above can be inverted to give

xa = xa(u, ω, ρ, ϕ). (2)

Instead of using Z as the dependent variable in the NSF, it is simpler to use its third
derivative. This is denoted by � and, using Eq. (2), is defined by

�(u, ω, ρ, ϕ) := ∂3Z(xa(u, ω, ρ, ϕ);ϕ).

The field equations of the NSF and the metric gab are expressed in terms of �, rather
than in terms of Z [7–10].

The intrinsic coordinates u, ω and ρ are ϕ-dependent, and it can be shown that the
action of the differential operator ∂ on a function f (u, ω, ρ, ϕ) is given by [7–9]

∂ = ∂ ′ + ω ∂u + ρ∂ω + �∂ρ, (3)

where ∂ ′ denotes the derivative with respect to ϕ when u, ω and ρ are held fixed. The
(inverse) metric gbc(xa) does not depend on ϕ. Thus ∂gbc = 0. Using the ∂ operator
of Eq. (3) to repeatedly differentiate Eq. (1) gives the components of the inverse metric
gi j with respect to the u, ω, ϕ coordinates,

gi j = gab∂ i Z,a∂
j Z,b, (4)

where ∂ i indicates differentiating i times, i = 0, 1, 2. In general, gi j will depend on
ϕ. Equations (1) and (4) immediately imply

g00 ≡ guu = gabZ,a Z,b = 0,

and

g01 ≡ guω = gabZ,a ∂Z,b = 0.
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An overall multiplicative factor can be extracted by defining

�2 := g11 ≡ gωω = gab∂Z,a∂Z,b,

(or, alternatively, �2 := −g02 ≡ −guρ). It is convenient to introduce γ i j by gi j =
�2γ i j . The final result is [7, 9]

[gi j ] = �2[γ i j ] = �2

⎛
⎝

0 0 −1
0 1 1

3∂ρ�

−1 1
3∂ρ� 1

3∂(∂ρ�) − 1
9 (∂ρ�)2 − ∂ω�

⎞
⎠ . (5)

In the present paper, the (− + +) signature convention is adopted for the metric gab

and consequently, by Eq. (4), for the metric gi j . It is straightforward to show that the
components of the metric gi j are given by

[gi j ] = �−2[γi j ] = �−2

⎛
⎝

− 1
3∂(∂ρ�) + 2

9 (∂ρ�)2 + ∂ω� 1
3∂ρ� −1

1
3∂ρ� 1 0
−1 0 0

⎞
⎠ , (6)

where γi j is called the unphysical metric or the conformal metric [1, p. 2481]. Thus
the unphysical line element can be written

ds2γ =
(

−1

3
∂(∂ρ�) + 2

9
(∂ρ�)2 + ∂ω�

)
du2 + 2

3
∂ρ� dudω − 2dudρ + dω2.

Equations (1) and (6) imply the following metricity conditions [7, 9]:

2[∂(∂ρ�) − ∂ω� − 2

9
(∂ρ�)2]∂ρ� − ∂2(∂ρ�) + 3∂(∂ω�) − 6∂u� = 0, (7)

3∂� = �∂ρ�. (8)

Equations (7) and (8) ensure that � will determine a null surface with respect to some
spacetime metric gbc(xa). Equation (7) is the main metricity condition. Equation (8)
is the secondary metricity condition and fixes the ϕ-dependence of �. Despite the
conformal invariance of the theory, � cannot be chosen arbitrarily since �2 must
equal gωω.

If the twometricity conditions are satisfied, then theEinstein equations,Gi j = κTi j ,
will be satisfied if the following equation holds [7]:

∂2ρ� = κTρρ�. (9)

As usual, the gravitational constant will be assumed to be positive: κ > 0. Saying that
Eq. (9) holds means that it is satisfied when using the same Tρρ that occurs on the right
side of the Einstein equations, Gi j = κTi j , with the Gi j being determined from the
gi j and gi j that are found from Eqs. (5) and (6) by a choice of � and � that satisfies
the metricity conditions.
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Collectively, Eqs. (7), (8), and (9) constitute the (coupled set of) field equations
that must be solved in order to find � and �. To be nontrivial, the solution must not
correspond to a spacetime that is conformally flat.

3 Solutions of the NSF field equations

Equation (3) displays the differential operator ∂ as a sum of separate terms. This
suggests expressing � in a like manner. Thus solutions will be assumed to take the
following additively separable form,

�(u, ω, ρ) = −aω − bρ + h(ρ + au + bω) = −aω − bρ + h(x), (10)

where a and b are constants, and where x is defined as x := ρ + au + bω. The aω

and bρ terms are motivated by the coefficients in front of the partial derivatives in
Eq. (3). Equations (3) and (10) then lead to an expression for ∂(∂ρ�) that is simple
and is independent of ω: ∂(∂ρ�) = h ∂2ρh. Both γuu and ∂γuu are also independent of
ω. The main metricity condition, Eq. (7), becomes an ordinary differential equation
with x as the independent variable:

h2
d3h

dx3
− h

dh

dx

d2h

dx2
+ 4

9

(
dh

dx

)3

+ 4a
dh

dx

− b h
d2h

dx2
+ 2

3
b

(
dh

dx

)2

− 2

3
b2

dh

dx
− 4

9
b3 + 2ab = 0. (11)

The solution of Eq. (11), together with Eq. (10), represents a solution of the main
metricity condition. However, Eq. (11) is so complicated that it is difficult to draw
conclusions about the nature of the solution and, in particular, about the properties
of the spacetime that the solution represents. For this reason, the constant b will
henceforth be assumed to be zero, thereby removing the last five terms on the left side
of Eq. (11). Further simplification will be achieved by introducing a new dependent
variable y := h2/3. After replacing h by y3/2 and writing x = ρ + au, Eq. (10)
becomes

�(u, ω, ρ) = −aω + [y(ρ + au)]3/2 ≡ −aω + [y(x)]3/2, (12)

and Eq. (11), which represents the main metricity condition, becomes

d3y

dx3
+ 4ay−3 dy

dx
= 0.

This equation is equivalent to

d

dx

(
d2y

dx2
− 2ay−2

)
= 0,
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and leads to

d2y

dx2
− 2ay−2 = k, (13)

where k is a constant. A further integration can be achieved by multiplying Eq. (13)
by dy/dx to give

dy

dx

d2y

dx2
− 2ay−2 dy

dx
− k

dy

dx
= 0,

which can be written

d

dx

{
1

2

(
dy

dx

)2
+ 2ay−1 − ky

}
= 0.

Thus

(
dy

dx

)2
+ 4ay−1 − 2ky + A = 0, (14)

where A is a constant. It follows from Eq. (14) that

dy

dx
= ±

(
2ky − A − 4ay−1

)1/2
,

and so

x = ±
∫

dy√
2ky − A − 4ay−1

,

= ±
∫

y dy√
y (2ky2 − Ay − 4a)

. (15)

Equation (15) expresses y as an implicit function of x and, together with Eq. (12),
represents an exact solution of the main metricity condition, Eq. (7). Although the
right side of Eq. (15) can be evaluated in terms of elliptic integrals of the first and
second kinds, the result is too complicated for the equation to be inverted to give y as
explicit function of x .

Now consider the secondary metricity condition, Eq. (8),

3 ∂� = �∂ρ�.

As with �, assume that � depends upon u and ρ through the combination ρ + au,
but assume that � is independent of ω. Thus � = �(ρ + au) = �(x). Using
� = −aω + h = −aω + y3/2, it follows from Eq. (8) that

� = h1/3 = y1/2. (16)
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A family of (implicit) solutions of the (2 + 1)-dimensional null-surface formulation
has now been found, and is given by Eqs. (15) and (16). Equation (15) gives an exact
answer for y, which, using Eq. (12), gives the answer for �, the main dependent
variable of the NSF. Finding � can be considered an end in itself. Nonetheless, it is
still of interest to explore the link with general relativity and to require the third NSF
field equation to be satisfied. This will ensure that the Einstein equations hold.

The third NSF field equation, Eq. (9),

∂2ρ� = κTρρ�,

implies

Tρρ = 1

2κ y2

{
y
d2y

dx2
− 1

2

(
dy

dx

)2}
. (17)

Using Eqs. (13) and (14), it follows from Eq. (17) that

Tρρ = 1

4κ y2
(A + 8ay−1) = 1

4κ y2
W , (18)

where W is defined by

W := A + 8ay−1. (19)

For any null vector V , the null-energy condition requires Ri j V i V j ≥ 0 or, equiva-
lently, Gi j V i V j ≥ 0. The vector V ρ = ∂ρ ≡ (0, 0, 1) satisfies gi j V i V j = 0 and is
therefore null. Hence Tρρ ≥ 0, or equivalently W ≥ 0, is a necessary condition for
the null-energy condition to hold.

The properties of the general relativistic spacetime derived from the solutions for
� and �, Eqs. (15) and (16), will be explored in the next section, and in the sections
that follow.

4 Metric and curvature

Equations (13) and (14) imply following useful equations:

∂2ρ y = 2ay−2 + k, (20)

and

(∂ρ y)
2 = 2ky − A − 4ay−1. (21)
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34 Page 8 of 20 T. A. Harriott, J. G. Williams

Equations (6), (12), (16), (20), and (21) then lead to the following expression for the
metric gi j :

[gi j ] = �−2[γi j ] =
⎛
⎝

− ( 1
4 A + 3ay−1

) 1
2 y

−1/2 ∂ρ y −y−1

1
2 y

−1/2 ∂ρ y y−1 0
−y−1 0 0

⎞
⎠ . (22)

Thus

ds2 = 1

y

[
−

(
1

4
Ay + 3a

)
du2 + y1/2 ∂ρ y dudω − 2dudρ + dω2

]
.

Hence g := det[gi j ] = −y−3. The inverse metric is

[gi j ] = �2[γ i j ] =
⎛
⎝

0 0 −y
0 y 1

2 y
3/2 ∂ρ y

−y 1
2 y

3/2 ∂ρ y
1
2ky

3 + 2ay

⎞
⎠ . (23)

The Christoffel symbols, the Ricci tensor Ri j , and the Einstein tensor Gi j are listed in
the “Appendix”. In 2 + 1 dimensions, there are three independent curvature scalars:
R, Ri j Ri j ≡ Ri

j R
j
i , and det[Ri j ]/ det[gi j ] [19, p. 145]. All are found to be constant:

R = 1

32
A2 + ka, (24)

Ri j R
i j = 3

1024
A4 + 1

8
A2 ka + (ka)2 =

(
1

16
A2 + R

)
R, (25)

det[Ri j ]
det[gi j ] = − 1

32
A2

(
1

32
A2 + ka

)2
= − 1

32
A2R2. (26)

The spacetime can be analysed further by considering a null congruence, generated
by a null vector n. Choose n = (0, 0,�2) = (0, 0, y), which is not only null but is
tangent to a null geodesic: ni; j n

j = 0. In 3 + 1 dimensions, three (optical) scalar

invariants ω̃, σ̃ , and θ̃ represent, respectively, rotation (twist), shear, and expansion.
(The tilde ˜ has been inserted to distinguish the optical invariants from the analogous
invariants for a fluid with timelike velocity vector U , which will be discussed later.)
In 2 + 1 dimensions, ω̃ and σ̃ are always zero. Hence, as pointed out by Chow et
al. [20] and emphasized by Podolsky et al. [21], a (2+1)-dimensional spacetime must
be either Robinson-Trautman (τ̃ = σ̃ = 0, θ̃ �= 0) or else Kundt (τ̃ = σ̃ = θ̃ = 0).
The spacetime of the present paper has nonzero expansion,

θ̃ = −1

2
ni; i = −1

4
∂ρ y = ∓1

4

(
2ky − A − 4ay−1

)1/2
,

and, consequently, the spacetime is Robinson-Trautman (except for the trivial case of
flat spacetime: k = A = a = 0).
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5 Petrov classification

In 2+1 dimensions, theWeyl tensor is identically zero. Its role is filled by the Cotton-
York tensor, Ci

j . The Cotton-York tensor is defined by [22]

Ci
j := εikp

(
Rpj − 1

4
R gpj

)

; k
(27)

where εikq := −(−g)−1/2[ikq], with [ikq] denoting the antisymmetric symbol and
[uωρ] = 1. The matrix whose elements are Ci

j will be denoted by [Ci
j ]. The Cotton-

York tensor is identically zero if and only if the 2 + 1 spacetime is conformally
flat. For the solution considered in the present paper, the components Ci

j are listed

in the “Appendix”. Clearly, [Ci
j ] �= 0, and so the spacetime is not conformally flat

and is hence nontrivial (apart from the exceptional circumstance in which two of the
integration constants are zero: A = 0 plus either k = 0 or a = 0, which would imply
that the spacetime is flat: R = 0).

The Cotton-York tensor is traceless, and so its eigenvalues sum to zero:

λ1 + λ2 + λ3 = 0.

The eigenvalues provide a Petrov-type classification. According to the classification
scheme of Garcia-Diaz [22, page 419],

(1) If there are three different eigenvalues (two independent) then, either all eigen-
values are real and the spacetime is of Petrov-type I, or one eigenvalue is real and
two are complex, and the spacetime is of Petrov-type I′.

(2) If there are two different eigenvalues (one independent, so that λ1 = λ2 and
λ3 = −2λ1) then consider the matrix Q ≡ [Qi

j ] whose elements Qi
j are

defined by

Qi
j :=

(
Ci

k − λ3 δi k

) (
Ck

j + 1

2
λ3 δk j

)
.

If Q = 0, the spacetime is of Petrov-type D. If Q �= 0, the spacetime is of
Petrov-type II.

(3) If all eigenvalues are zero, then, either thematrix of theCotton-York tensor compo-
nents is zero, [Ci

k] = 0, and the spacetime is of Petrov-type O and is conformally

flat and so is trivial, or [Ci
k] �= 0 and [Ci

j C
j
k] = 0 and the spacetime is of

Petrov-type N, or else, if neither [Ci
k] nor [Ci

j C
j
k] is zero then the spacetime

is of Petrov-type III.

The present authors have reported an NSF solution corresponding to a spacetime of
Petrov-type N in an earlier work [18]. For the solution in the present paper, given by
Eqs. (12) and (15), the Cotton-York tensor is complicated function of y(x). In spite
of this, the eigenvalues of Ci

j are all constant, and can be simply expressed in terms
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34 Page 10 of 20 T. A. Harriott, J. G. Williams

of A and the scalar curvature R:

λ1 = 1

4
AR, (28)

λ2 = −1

8
AR + 2−1/2R1/2

(
1

16
A2 + R

)
, (29)

λ3 = −1

8
AR − 2−1/2R1/2

(
1

16
A2 + R

)
. (30)

In general, the eigenvalues are all different. If they are all real, the solution represents a
spacetime of Petrov-type I. If one eigenvalue is real and two are complex, the solution
represents a spacetime of Petrov-type I′. By Eqs. (29) and (30), eigenvalues can only
be complex if R < 0. By Eq. (24), this would imply ka < 0 and |ka| > A2/32.

For the special case a = 0, A �= 0, k �= 0, the eigenvalues are:

λ1 = λ2 = 1

128
A3, λ3 = − 1

64
A3, (31)

which leads to

Qi
j :=

(
Ci

k + 1

64
A3 δi k

) (
Ck

j − 1

128
A3 δk j

)
= 0.

Thus the spacetime is of Petrov-type D. This solution corresponds to a perfect fluid
solution that was found earlier by the present authors [15]. A subcase of this solution
comes from choosing a = k = 0, A �= 0. The eigenvalues remain the same as those
given in Eq. (31). The expression for Ci

j still leads to Q = 0, which means that the
solution is still of Petrov-type D. This solution was also reported earlier by the present
authors, but is unphysical because the energy conditions are violated [16].

For the special case k = 0, a �= 0, A �= 0, the eigenvalues are again the same as
those given in Eq. (31), but the Cotton-York tensor Ci

j leads to the following nonzero
answer for Q:

[Qi
j ] = 3

(32)2
A4ay−2

⎛
⎝

−a 0 −1
1
2 y

1/2∂ρ y 0 1
2 y

1/2∂ρ y
a2 0 a

⎞
⎠ .

Hence this solution is of Petrov-type II.
Another special case in which two eigenvalues are the same comes from making

the specific choice

ka = 3

32
A2.

It follows that

λ1 = λ2 = 1

32
A3, λ3 = − 1

16
A3,
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and that Q = 0. Hence the corresponding spacetime is of Petrov-type D.
The special case A = 0, k �= 0, a �= 0 was previously reported by the present

authors and corresponds to a spacetime with a non-minimally coupled scalar field
source [17]. From Eqs. (28), (29), and (30), it follows that the eigenvalues of the
corresponding Cotton-York tensor are:

λ1 = 0, λ2 = 2−1/2(ka)3/2, λ3 = −2−1/2(ka)3/2.

These three eigenvalues are all different from each other, and so the spacetime is either
of Petrov-type I (all eigenvalues real), or of Petrov-type I′ (one eigenvalue real, two
eigenvalues complex). Complex eigenvalues would arise if (ka)3/2 were imaginary,
which would imply ka < 0 and would result from k and a taking opposite signs.
However, Eq. (15), (with A = 0), then implies k > 0 and a < 0 (for y > 0), or else
k < 0 and a > 0 (for y < 0). Both of these alternatives, when combinedwith Eqs. (18)
and (19), (for A = 0), lead to a violation of the null energy condition. Thus, if the
spacetime is required to satisfy the null-energy condition, there will be no complex
eigenvalues and the spacetime will be of Petrov-type I.

6 Source

As noted above, the family of NSF solutions introduced in the present paper has a
special case, a = 0, A �= 0, k �= 0, where the corresponding spacetime is of Petrov-
type D and is known to be consistent with a perfect fluid source [15]. The family of
solutions also has a special case, A = 0, k �= 0, a �= 0, where the corresponding
spacetime is of Petrov-type I and is known to be consistent with a minimally coupled
scalar field source [17]. It is well known that spacetimes consistent with a minimally
coupled scalar field source are also consistent with a perfect fluid source [23–25].
Thus it is reasonable to explore the possibility that the family of solutions given in the
present paper will be consistent with a (possibly imperfect) fluid source. The form of
the Ricci tensor, Ri j , given in the “Appendix” then suggests the following convenient
choice for the fluid velocity vector U ,

(
Uu, Uω, Uρ

) := a−1/2y1/2
(
1, 0, −1

8
Wy

)
,

(
Uu, Uω, Uρ

) = a−1/2y−1/2
(

−1

8
Wy − a,

1

2
y1/2 ∂ρ y, −1

)
.

The covariant derivative Ui ; j can be written as a sum [26, p. 85], [27, p. 5293]

Ui ; j = ωi j + σi j + 1

2
θ hi j − U̇i U j ,
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where the projection tensor hi j , the acceleration vector U̇i , the vorticity tensor ωi j ,
the expansion θ , and the shear tensor σi j are defined by

hi j := gi j +UiU j ,

U̇i := Ui ; j U j ,

ωi j := 1

2
(Ui ; k hkj −Uj ; k hki ),

θ := Ui
; i ,

σi j := 1

2
(Ui ; k hkj +Uj ; k hki ) − 1

2
θ hi j .

The coefficient of θ , both in the expression for Ui ; j and in the expression for σi j ,
is 1

2 (instead of 1
3 , as would be the case in 3 + 1 dimensions). This follows because

the trace hii of the projection tensor is 2 (instead of 3). The components of Ui ; j and
other kinematic quantities are listed in the “Appendix”. Despite the complexity of the
solution� (or, equivalently, gab), the scalar expansion θ , scalar vorticity ω, and scalar
shear σ are simply expressed:

θ := Ui
; i = 0,

ω2 := 1

2
ωi j ωi j = 1

4
R2a−2y2,

σ 2 := 1

2
σ i j σi j = 1

128
A2Ra−2y2.

In analysing the Einstein field equations, Gi j = Ri j − 1
2 R gi j , the velocity Ui and

the projection tensor hi j can be used to write the stress energy tensor as a sum of
separate terms [26, p. 91], [27, p. 5294]

Ti j = μUiU j + p hi j + qiU j +Uiq j + πi j ,

where qiUi = 0, πi jU j = 0, and π i
i = 0. The function μ denotes the total mass-

energy density, p the isotropic pressure, qi the heat-flux vector, and πi j the trace-free
anisotropic pressure. It follows that

T i
i = 2p − μ,

and

κ (2p − μ) = −1

2
R.

Hence the Einstein field equations can be rewritten

Ri j = κ[Ti j − (2p − μ)gi j ],
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and then decomposed using Ui and h j
k to produce the following equivalent set of

equations:

Ri j U
iU j = 2κ p,

Ri j U
ih j

m = −κ qm,

Ri j h
i
m h j

n = κ (μ − p) hmn + κ πmn .

The choice of velocity vector Ui leads to relatively simple expressions for the com-
ponents qi of the heat-flux vector (which are given in the “Appendix”), and for the
pressure p and the mass-energy density μ:

p = 1

16κ
a−1yAR,

μ = 1

8κ
a−1yAR + 1

2κ
R.

Heat flow is related to temperature and acceleration by the temperature gradient
law [26, p. 96],

qi = −λ hi j
(
T, j + T U̇ j

)
,

where λ denotes the coefficient of thermal conductivity. It can be checked that, for the
spacetime currently being considered, this law is satisfied identically. However, the
usual phenomenological equation of state relating anisotropic pressure to the shear
is not satisfied: πi j �= −2ησi j (η being the coefficient of shear viscosity). Situations
where this equation of state may not hold have been discussed by MacCallum et
al. [28].

7 Results and future prospects

A family of (2+1)-dimensional null-surface formulation solutions has been presented
and involves three parameters, A, a, and k. This family of NSF solutions is then
used to deduce the metric for the corresponding general relativistic spacetimes. The
scalar invariants for the spacetimes are listed in Eqs. (24), (25), and (26), and are all
constant. The eigenvalues of the Cotton-York tensor are also constant. They are listed
in Eqs. (28), (29), and (30), and provide a Petrov-type classification. An imperfect
fluid was introduced as a possible source, and simple formulas were derived for the
mass-energy density, the pressure, the scalar vorticity, the scalar shear, and for the
scalar expansion (which was found to be zero). The temperature gradient law was
satisfied. The usual phenomenological equation of state relating anisotropic pressure
to the shear did not hold.

The idea of solving the NSF field equations and using the resulting NSF solution
to determine a general relativistic spacetime metric raises the question of whether
or not new or difficult-to-find general relativistic solutions could be found by this
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method—namely by first solving the NSF equations, and then using the NSF solution
to determine a spacetime metric that solves the Einstein equations. Present and past
experience suggests that this is true. For the family of solutions given in the present
paper, the special choice {k �= 0, a �= 0, A = 0} corresponds to a solution that was
reported earlier by the present authors. This solution belongs to a general class of
2 + 1 solutions with minimally coupled scalar field sources, but the solution had not
been explicitly constructed prior to the NSF approach [17, 29]. A second example
is provided by an NSF solution, found by the present authors but not related to the
present paper, where the corresponding spacetime metric (of Petrov type N and with
nonconstant curvature scalars) did not correspond to any previously known solution
of the Einstein equations [18].

Since the solutions that make up the family all satisfy the NSF main metricity
condition, they automatically satisfy Cartan’s metricity condition [8, 11–14, 30, 31].
Cartan was concerned with classifying third-order ordinary differential equations and
the link between (2 + 1)-dimensional NSF and Cartan’s analysis can be seen in the
definition of � given in Sect. 2,

�(u, ω, ρ, ϕ) := ∂3Z(xa(u, ω, ρ, ϕ);ϕ),

with u = Z(xa;ϕ) denoting the family of null surfaces, i.e. the null foliation of the
spacetime. The differential operator ∂ indicates differentiationwith respect to the angle
ϕ and can be conveniently indicated by a prime′. Thus [8, p. 1584]

Z ′′′ = �(Z , Z ′, Z ′′, ϕ), (32)

where, following the definitions in Sect. 1, u := Z , ω := Z ′, and ρ := Z ′′. It follows
that, for the family of solutions for � given by Eqs. (12) and (15), the third-order
equation given in Eq. (32) can be written:

Z ′′′ = −aZ ′ + [y(aZ + Z ′′)]3/2. (33)

Equation (33) would need to be solved in order to find the null surfaces, Z . This
has already been achieved and reported for the solutions of the present paper in the
special case where a = 0, A �= 0, k �= 0 [15]. An explicit answer for Z can also
be found for another special case of the solution of the present paper, namely when
a = k = 0, A �= 0. In this instance, � is simply [16]:

� = ρ3/2,

which corresponds to choosing A = −1 in Eq. (14). In spite of its simplicity, this
solution is nontrivial, i.e. the resulting spacetime is not conformally flat. The fact that
� = Z ′′′ = ρ′ gives

ρ′ = ρ3/2,
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which can be integrated to give

ρ = 4

(ϕ + x)2
,

where x is a constant of integration. By writing ρ = ω′, the equation can be integrated
with respect to ϕ a second time to give

ω = − 4

(ϕ + x)
+ y,

where y is a constant of integration.After noting thatω = u′ ≡ Z ′, a further integration
yields the answer for Z :

Z = −4 ln(ϕ + x) + yϕ + z, (34)

where z is a constant of integration. (The integration constants are denoted by x , y, and
z because they can be regarded as spacetime coordinates.) Although special choices
of the parameters a, A, and k lead to simple answers for Z , such as that given in
Eq. (34), it is not possible to find an exact solution of Eq. (33) for general values of
the parameters—particularly since y(aZ + Z ′′) is a complicated implicit function of
u ≡ Z and ρ ≡ Z ′′.

The search for NSF solutions in 2 + 1 dimensions is motivated by the wish to
discover clues for finding NSF solutions in 3 + 1 dimensions (where no nontrivial
solutions have been found to-date). It should also be noted that the relationship between
the (2 + 1)-dimensional NSF and Cartan’s theory of ordinary differential equations
generalizes to higher dimensions, where (3 + 1)-dimensional NSF is related to the
theory of coupled partial differential equations [30–32]. However, the NSF in 3 + 1
dimensions is complicated by the fact that � is complex and is a quantity of spin-
weight 2 [33, 34]. Surfaces are labelled by two angular variables, which are usually
chosen to be the complex stereographic coordinate ζ and its complex conjugate ζ̄ , with
ζ = eiϕ cot(θ/2). Thus, for each constant choice of u, the equation u = Z(xa; ζ, ζ̄ )

represents a family of surfaces that is parametrized by ζ and ζ̄ [1–5].
In 3 + 1 dimensions, instead of ∂ , the appropriate covariant differential operators

are ð (called eth) and ð̄, and were first introduced by Newman and Penrose [33].When
operating on a quantity η of spinweight s, the operators ð and ð̄ are defined by [33–35]

ðη = 2[(1 + ζ ζ̄ )/2]1−s ∂
{[(1 + ζ ζ̄ )/2]sη}

/∂ζ,

ð̄η = 2[(1 + ζ ζ̄ )/2]1+s ∂
{[(1 + ζ ζ̄ )/2]−sη

}
/∂ζ̄ .

The operator ð causes spin weight to increase by one, and ð̄ causes spin weight to
decrease by one. The fact that � is of spin-weight 2 is a consequence of its definition,
� := ð2Z , and of Z (i.e. u) being of spin-weight zero. The four so-called intrinsic
coordinates result from operating on Z with ð and ð̄ [3, p. 4988]. The coordinates u
and ρ are real and of spin-weight zero. (In 3+ 1 dimensions, ρ is often denoted by R
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or r [1–5, 36].) In moving from 2+ 1 to 3+ 1, the single coordinate ω is replaced by
two complex coordinates, ω and its complex conjugate ω̄, which are of spin weights
+1 and −1, respectively.

The (2+ 1)-dimensional solution given in the present paper assumes additive sep-
arability,

�(u, ω, ρ) = −aω − bρ + h(ρ + au + bω) = −aω − bρ + h(x), (35)

(with b possibly chosen as zero), and is based upon the expression for ∂ given in
Eq. (3), namely:

∂ = ∂ ′ + ω ∂u + ρ ∂ω + �∂ρ.

The corresponding equation for ð is [3, p. 5000]

ð = ð
′ + ω ∂u + �∂ω + ρ ∂ω̄ + K ∂ρ, (36)

where

K := ð̄� − 2ω = (1 − ∂ρ� ∂ρ�̄)−1 ( J̄ ∂ρ� + J ),

and

J := −2ω + ω̄ ∂u� + ð̄
′� + ρ ∂ω� + �̄ ∂ω̄�.

Despite the added complication of spin-weight, and of� andω being complex instead
of real, the hope would be that Eq. (36) can be a starting point which, combined with
an additive separability assumption analogous to that in Eq. (35), could lead to a
nontrivial solution in 3 + 1 dimensions.
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Appendix: Christoffel symbols and curvature tensors

The Christoffel symbols are

�u
uu = −a�u

ωω = −a�ω
ωρ = 2−1ay−1 ∂ρ y,

�u
uω = 8−1Ay−1/2 + ay−3/2,

�u
uρ = �u

ωρ = �u
ρρ = �ω

ρρ = 0,

�ω
uu = 2−1Aay−1/2 + 3a2y−3/2 − 2−1kay1/2,
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�ω
uω = −(16−1A + ay−1) ∂ρ y,

�ω
uρ = 8−1Ay−1/2 + ay−3/2,

�ω
ωω = −4−1Ay−1/2 − ay−3/2 + 2−1ky1/2,

�ρ
uu = −2−1a (−4−1A + 3ay−1 + 2−1ky) ∂ρ y,

�ρ
uω = −(16−1Aky3/2 + a2y−3/2 + kay1/2),

�ρ
uρ = (16−1A − ay−1) ∂ρ y,

�ρ
ωω = (2−1 ay−1 + 4−1 ky) ∂ρ y,

�ρ
ωρ = 8−1Ay−1/2 − 2−1ky1/2,

�ρ
ρρ = −y−1 ∂ρ y.

Using the abbreviation W := A+ 8a y−1, the Ricci tensor can be written as a matrix,
[Ri j ]:

[Ri j ] =
⎛
⎜⎝

1
256 (A3 + W 3) + 1

8 Aka − 1
64 AW y−1/2 ∂ρ y

1
32 W

2 y−1

− 1
64 AW y−1/2 ∂ρ y − 1

32 A2 y−1 + 1
8 Ak − 1

8 A y−3/2 ∂ρ y
1
32 W

2 y−1 − 1
8 A y−3/2 ∂ρ y

1
4 W y−2

⎞
⎟⎠ .

The scalar curvature, R, is given in Eq. (24).
The components of the Einstein tensor, Gi j = Ri j − 1

2 Rgi j , are

Guu = 1

256
(A3 + W 3) + 1

8
R(A + 12ay−1) + 1

8
Aka,

Guω = − 1

64
(AW + 16R)y−1/2 ∂ρ y,

Guρ = 1

32
y−1(W 2 + 16R),

Gωω = − 1

32
y−1(A2 + 16R) + 1

8
Ak,

Gωρ = −1

8
Ay−3/2 ∂ρ y,

Gρρ = 1

4
Wy−2.

The covariant derivatives of the velocity can be written as a matrix, [Ui ; j ]:
⎛
⎜⎝

− 1
8a

1/2y−1/2 W ∂ρ y − 1
64a

−1/2 W 2 − 1
16a

−1/2y−1/2 W ∂ρ y

a−1/2
( 1
2ka − 1

64W
2 + a2y−2

) 1
16a

−1/2y−1/2 A ∂ρ y
1
2a

−1/2y−1
(
ky − 1

4 A
)

−a1/2y−3/2 ∂ρ y − 1
8a

−1/2y−1 W − 1
2a

−1/2y−3/2 ∂ρ y

⎞
⎟⎠ .
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The acceleration vector, U̇i , is defined by U̇i := Ui ; j U j , and its components are

U̇ u =
(
1 − 1

16
Wa−1y

)
∂ρ y,

U̇ω = 1

4
Wy1/2

(
1 − 1

16
Wa−1y

)
− 1

2
Ra−1y3/2,

= a−1y3/2
(

−R + 1

2
ka + a2y−2

)
,

U̇ρ = −a

(
1 − 1

16
Wa−1y

)
∂ρ y − 1

4
Ra−1y2 ∂ρ y.

The components of the heat-flux vector qi are

qu = 1

64κ
a−3/2y3/2AW R,

qω = − 1

16κ
a−3/2yAR ∂ρ y,

qρ = 1

8κ
a−3/2y1/2AR.

The only nonzero components of the vorticity tensor, ωi j , are

ωuω = −ωωu = − 1

16
WRa−3/2y,

ωωρ = −ωρω = 1

2
Ra−3/2.

The components of the shear tensor, σi j , are

σuu = − 1

1024
AW 2a−3/2y3/2 ∂ρ y,

σuω = σωu = 1

128
W 2ka−3/2y2 − 1

16
WRa−3/2y,

σuρ = σuρ = − 1

128
AWa−3/2y1/2 ∂ρ y,

σωω = − 1

32
Aka−3/2y3/2 ∂ρ y,

σωρ = σρω = 1

16
Wka−3/2y − 1

2
Ra−3/2,

σρρ = − 1

16
Aa−3/2y−1/2 ∂ρ y.
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The components of the Cotton-York tensor, Ci
j , are defined in Eq. (27) and are as

follows:

Cu
u = −1

4
W

(
R + 1

32
AW

)
,

= −1

4
A

(
R + 1

32
W 2

)
− 2Ray−1,

Cu
ω = y−1/2

(
1

2
R + 1

32
A2

)
∂ρ y,

Cu
ρ = −Ry−1 − 1

16
AWy−1,

Cω
u = ay−1/2

(
1

2
R + 1

32
AW

)
∂ρ y,

Cω
ω = 1

128
A2W + Ray−1,

Cω
ρ = 1

4
Aay−3/2 ∂ρ y,

Cρ
u = 1

128
AW 2a − 2Ra2y−1 + 1

2
RWa,

Cρ
ω = −ay−1/2

(
1

2
R + 1

32
A2

)
∂ρ y,

Cρ
ρ = 1

2
Aa2y−2 − 2ka2y−1 + 1

4
AR + 3Ray−1,

= 1

16
AWay−1 + 1

4
AR + Ray−1.
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