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Abstract
In this paper we find exact analytic cosmological solutions for a relativistic dissipative
fluid, in the framework of the causal Israel–Stewart theory.We use a general expression
for the relaxation time, which is related with the bulk viscosity coefficient, the energy
density and pressure of the fluid, and non-adiabatic contribution to the speed of sound.
Through the factorization method we find some new exact parametric solutions for
the special case s = 1/2. For each solution the deceleration parameter, the energy
density, the dissipative pressure, the entropy, and the ratio between the dissipative
pressure and the fluid’s pressure are evaluated as a function of the cosmic time. We
finally discuss the kinematic behavior of the solutions and their relationship with their
thermodynamic behavior.
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1 Introduction

The unified dark matter (UDM) models have been explored as alternative to �CDM
model. One class of them consider a single fluid that behaves as DM, but at late times
display an exotic EoS with an effective negative pressure, which drive accelerated
expansion. Some of them include generalized perfect fluid models [1,2], logotropic
dark fluid [3] or Generalized Chaplygin fluids [4–7]. Other kind of these models are
those which consider one dissipative matter component, which were explored at first
assuming that dissipative processes played a fundamental role in the dynamics of the
early universe. The action of the neutrino viscosity and its effects on the observed
large scale isotropy was investigated in [8]. Other processes involving viscous effects
in the early times are the evolution of cosmic strings, the classical description of the
(quantum) particle production, interaction between matter and radiation, quark and
gluon plasma, interaction between different components of dark matter, etc [9].

Instead of a cosmological constant or some kind of dark energy fluid, the presence
of bulk viscosity in FRW universes can leads to accelerated expansion due to the neg-
ativeness of the viscous pressure and, therefore, could describe the transition observed
in our universe from an expanding decelerated era to an accelerated one at present
times. These types of models were explores for the first time in [10,11] and later
several of them were constrained using cosmological data in [12–17]. Nevertheless,
in UDM models the viscous pressure acts as a dynamical DE and predict the above
transition earlier than the predict by the �CDM model [18,19].

Nowadays the standard model presents problems that have been tackled within
viscous models, such as H0 [12] tension and an excess of radiation in reionization
epoch, about z ≈ 17, measured by the Experiment to Detect the Global EoR Signature
(EDGES) [20].

The description of viscous fluids in the framework of the Eckart’s theory [21] has
been investigated at the background level in the late time cosmology [22] and in
inflationary scenarios [10]. Nevertheless, a causal description of non-perfect fluids is
necessary to avoid non physical effects such as instabilities and superluminal propaga-
tion of the viscous effects. The Israel–Stewart (IS) theory [23–26] describes relativistic
non-perfect fluids satisfying causality, but the price to pay is to solve nonlinear ordi-
nary differential equations (ODE) associated to the Hubble parameter. The study of
the possible solutions to be found presents the challenge to encounter scenarios which
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consistently describe the kinematics of the universe, and also thermodynamic condi-
tions required by the theoretical framework. For example, the recent acceleration of the
universe and the constraining of the model parameters using the Type Ia supernovae
data was performed on [27].

The nonlinear ODE for the Hubble rate which raises within the IS theory has been
previously addressed by many authors. The corresponding study of the dynamical
system associated to the truncated and full version was undertaken in [28,29]. An
extension of these studies, including also radiation and interactions with dark energy,
was performed in [30]. More recently, a numerical study of the dynamical analysis for
pressureless DM was investigated in [31].

In [9,32–38] several exact solutions for the Einstein field equations (FE) in the
framework of dissipative cosmologies have been found for the special case where the
coefficient of dissipation is proportional to the square root of the energy density. In
all these works the analytic solutions found take the adiabatic contribution equal to
one, which simplified calculations, but take for granted that the dissipative effect is
propagating at the speed of light. As we show below, in this work, we will take a
general expression where the propagation velocity appears as a free parameter.

The aim of this paper is to find new exact solutions to the nonlinear ODE which
drives the evolution of a homogeneous and isotropic FRWuniverse, filledwith a simple
viscous fluid in the framework of the full causal theory of IS, taking into account a
general expression which relates the relaxation time, τ , the bulk viscosity coefficient,
ξ , and the pressure and energy density of the fluid, found in [26]

ξ

(ρ + p) τ
= c2b, (1)

where cb is the speed of bulk viscous perturbations (non-adiabatic contribution to the
speed of sound in a dissipative fluid without heat flux or shear viscosity). Since the
speed of sound within the fluid is given by the expression

v2 = c2s + c2b ≤ 1, (2)

where cs is the adiabatic contribution given by

c2s = ∂ p

∂ρ
, (3)

then the non adiabatic contribution can be parameterized in the following form c2b =
ε (2 − γ ) where 0 < ε ≤ 1, which ensures to have a dissipative speed of sound lower
or equal to the speed of light. In various exact solutions found the parameter ε is taken
equal to one, which ensures causality, but simplifies the physics behind a dissipative
fluid.

The equation of evolution is a second order ODE in time for the Hubble parameter,
and it can be solved in a systematic way by using the factorization method [38–42],
which allows to get solutions in an algebraic manner. This method was widely used for
linear ODEs in quantum mechanics since Dirac’s works to solve the spectral problem
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for the quantum oscillator, and had a further development due to Schrodinger’s works
on the factorization of the Sturm-Liouville equation. The basic concept follows the
same pattern already used in linear equations and it works efficiently for ODEs with
polynomial nonlinearities. It has been shown that the method is well adapted to the
Hubble rate ODE, which raises, for instance, in several cosmological models studied
in the context of viscous fluids [38,43,44].

Due to the inclusion of viscosity and the nonlinearity of the evolution equation it is
possible to find a wide variety of possible cosmological scenarios, that we will discuss
in terms of their kinematic properties, i.e., phases of deceleration or acceleration, and
also in terms of their thermodynamic behavior: evolution during the cosmic time of
the viscous pressure and grow of the entropy.

This work is organized as follows: in Sect. 2 we write the main equations of the
model, where a viscous fluid is described in the framework of the causal Israel–Stewart
theory. It is presented the general differential equation for the Hubble parameter, H ,
which is necessary to solve in order to explore the properties of the cosmic evolution.
In Sect. 3, the nonlinear differential equation which drives the evolution of the Hubble
parameter is addressed by using the factorization method. In Sect. 4, we found exact
solutions for the particular case s = 1/2. Finally, in Sect. 5 we present our conclusions
considering the kinematic and thermodynamic behavior of the solutions found.

2 Themodel

In what follows we assume a flat FRW universe filled with only one dissipative matter
component. The line element is therefore given by

ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2

)
, (4)

and the energy-momentum tensor, which contains only a bulk viscous term, takes the
form [25]:

T k
i = (ρ + p + 	) uiu

k + (p + 	) δki , (5)

where ρ is the energy density, p the thermodynamic pressure, 	 the bulk viscous
pressure and ui the four-velocity satisfying the condition uiui = −1. We use the units
8πG = c = 1. The gravitational field equations together with the continuity equation,
T k
i;k = 0, are given by the following expressions

2Ḣ + 3H2 = −p − 	, (6)

3H2 = ρ, (7)

	 + τ	̇ = −3ξH − 1

2
τ	

(
3H + τ̇

τ
− ξ̇

ξ
− Ṫ

T

)
, (8)

ρ̇ = −3 (γρ + 	) H , (9)
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where H = ȧ/a. Note that Eq. (8) is the transport equation for the viscous pressure 	

in the IS framework and takes into account a relaxation time, τ , associated to causal
dissipative process.

In order to close the system of equations we are assuming the following equations
of state [25]

p = (γ − 1) ρ, T = T0ρ
r , (10)

where T is the temperature, γ ∈ [1, 2] and r =
(
1 − 1

γ

)
,

ξ = ξ0ρ
s, (11)

ξ is the bulk viscosity coefficient and ξ0 is a positive constant because of the second
law of thermodynamics [45]. This dependence for the bulk viscosity in terms of the
density has been widely considered as a suitable function. Using the EoS and Eq. (3)
for c2b we obtain that the relaxation time can be written as

τ = ξ0

εγ (2 − γ )
ρs−1 = αρs−1. (12)

It is straightforward to see that in the case of a stiff matter fluid, with γ = 2, Eq.
(12) indicates that τ goes to infinity, which means that in this kind of fluid it is not
possible to have dissipative effects. This fact can be better understood taking into
account the condition τH < 1, in order to have a consistent fluid description. This
physical consistency does not appear in the analytic solutions found in [38], where the
adiabatic contribution was taken to be equal from the beginning and then the pressure
of the fluid must be zero, in order to satisfy the condition given by Eq. (2). In fact,
as we shall show below, the stiff matter case, γ = 2, is singular and must be studied
separately.

The growth of entropy has the following behavior


 (t) ≈ −3k−1
B

∫ t

t0
	Ha3T−1dt, (13)

where kB is the Boltzmann constant.
The Israel–Stewart–Hiscock theory is derived under the assumption that the ther-

modynamical state of the fluid is close to equilibrium, i.e., the non-equilibrium bulk
viscous pressure should be small when compared to the local equilibrium pressure
|	| << p = (γ − 1)ρ. Then, we can define the l(t) parameter by l = |	|/p. If this
condition is violated then one is effectively assuming that the linear theory also holds
in the nonlinear regime far from equilibrium. For a fluid description of the matter, the
condition ought to be satisfied.

To determine if a cosmological model inflates or not it is convenient to introduce
the deceleration parameter q = dH−1/dt − 1. The positive sign of the deceleration
parameter corresponds to standard decelerating models, whereas the negative sign
indicates accelerated expansion.
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The fundamental dynamical equation for the Hubble rate is given by

− 2Ḣ − 3γ H2 = 	, (14)

therefore the time variation of the viscous pressure can be expressed as

	̇ = − (
2Ḧ + 6γ H Ḣ

)
. (15)

Using the Eqs. (10), (11) and (12) we can obtain the sum of terms in the braket of Eq.
(8) in terms of H and Ḣ

τ̇

τ
− ξ̇

ξ
− Ṫ

T
= −2

(
2γ − 1

γ

)
Ḣ

H
. (16)

Introducing Eq. (16) in Eq. (8) we obtain

	 + τ	̇ = −3ξH − 1

2
τ	

(
3H − 2

(
2γ − 1

γ

)
Ḣ

H

)
. (17)

Dividing the above equation by τ , yields

	̇ + 	

τ
+ 3ξH

τ
+ 1

2
	

(
3H − 2

(
2γ − 1

γ

)
Ḣ

H

)
= 0, (18)

where

	

τ
= −2 (3)1−s α−1H2−2s Ḣ − (3)2−s γα−1H4−2s, (19)

3ξH

τ
= 9ξ0α

−1H3, (20)

3

2
	H = −3H Ḣ − 9

2
γ H3, (21)

	

(
2γ − 1

γ

)
Ḣ

H
= 2

(
2γ − 1

γ

)
H−1 Ḣ2 + 3 (2γ − 1) H Ḣ . (22)

If we substitute the above expressions and Eq. (15) into the Eq. (18), then we obtain
the following nonlinear second order ODE for the Hubble rate

Ḧ − A
Ḣ2

H
+

(
BH + CH2(1−s)

)
Ḣ + DH3 + EH2(2−s) = 0, (23)

where

A = (1 + r) = 2 − 1

γ
, B = 3, C = 31−sξ−1

0 εγ (2 − γ ) ,
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D = 9

4
γ

[
1 − 2ε (2 − γ )

]
, E = 1

2
32−sξ−1

0 εγ 2 (2 − γ ) . (24)

The general solution to Eq. (23) has two integration constants whose values can be
obtained through two initial conditions given as follows

H(t0) = H0, (25)

Ḣ(t0) = −H2
0 (q0 + 1) , (26)

where H0 and q0 are the values of H and q, respectively, at time t = t0.
Furthermore, one is able to obtain analytic parametric solutions to Eq. (23) through

the factorization method, as it is shown in the following sections.

3 Solving the Hubble differential equation through factorization.

Let us perform in Eq. (23) the following transformation of the dependent and inde-
pendent variables

H = y1/2, dη = y1/2dt, (27)

then it turns into

d2y

dη2
− A

2y

(
dy

dη

)2

+
(
3 + Cy

1
2−s

) dy

dη
+ 2y(D + Ey

1
2−s) = 0, (28)

with the initial conditions

y(η0) = H2
0 , (29)

dy(η0)

dη
= −2y(η0)(q0 + 1), (30)

where η0 is the value of the variable η at time t0. We consider now the factoriza-
tion method [39,40] which provides a systematic way to solve nonlinear ODEs. The
nonlinear second order equation

y′′ + f (y) y′2 + g(y)y′ + h(y) = 0, (31)

where y′ = dy
dη

= Dηy, can be factorized in the form

[
Dη − φ1(y)y

′ − φ2(y)
] [

Dη − φ3(y)
]
y = 0, (32)

under the conditions

f (y) = −φ1, (33)

g(y) = φ1φ3y − φ2 − φ3 − dφ3

dy
y, (34)
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h(y) = φ2φ3y. (35)

Furthermore, if we assume
[
Dη − φ3(y)

]
y = �(y, η), then the factorized Eq. (32)

can be rewritten as follows

y′ − φ3y = �, (36)

�′ − (
φ1y

′ + φ2
)
� = 0. (37)

The factoring functions φi are introduced by comparing Eqs. (28) and (31). Then,

φ1 = A
2y , φ2 = a−1

1 and φ3 = 2a1(D + Ey
1
2−s), where a1( �= 0) is an arbitrary

constant, are proposed.
The Eq. (37) is easily solved for the chosen factorizing functions giving as result

� = κ1eη/a1 yA/2, where κ1 is an integration constant. Therefore, the Eq. (36) turns
into the following equation

y′ − 2a1
(
D + Ey

1
2−s

)
y − κ1e

η/a1 yA/2 = 0, (38)

whose solution is also solution of Eq. (28).
Also, the following relationship is obtained from Eq. (34),

Aa1D − a−1
1 − 2a1D + a1E(A − 3 + 2s)y

1
2−s = 3 + Cy

1
2−s . (39)

This last equation provides the explicit form of a1 and the relationship among the
parameters entering the Eq. (28). Then, the viscous parameter s as a function of the
parameters (γ, ε) is obtained. By comparing both sides of Eq. (39) leads to obtain

Aa1D − a−1
1 − 2a1D = 3,

a1E(A − 3 + 2s) = C,

which provide the consistency relationships

a1± = 3 ± √
4D (A − 2) + 9

2D (2 − A)
= 2

(−1 ± √
2ε (2 − γ )

)

3 (2ε (γ − 2) + 1)
, (40)

and

s± = 1

2Ea1±
(C + Ea1± (3 − A)) = 1

2
∓

√
ε(1 − γ /2)

γ
, (41)

Furthermore, s+ < 0 for 1 ≤ γ < −1 + √
5 and γ 2

4−2γ < ε ≤ 1.
A noteworthy fact, which represents an advantage of the factorization method as

opposed to different approaches studied by other authors, is given in Eq. (41), since
this equation provides a relationship among parameters in such a way that by fixing
s we are able to get a pair of particular values of γ and ε; although the case γ = 2
decouples the parameter ε.
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The main dynamical variables of the FE are given in parametric form as follows

a (η) = a0 exp (η − η0) , (42)

H (η) = y1/2 (η) , (43)

q(η) = y1/2 (η)
d

dη

(
1

H (η)

)
− 1, (44)

ρ (η) = 3y (η) , (45)

p (η) = 3 (γ − 1) y (η) , (46)

	(η) = −
(
3γ y (η) + dy

dη

)
, (47)

l (η) = |	|
p

, (48)


 (η) = −3k−1
B

∫
	(η)a3(η)H(η)T (η)−1y(η)−1/2dη. (49)

The authors have not been able to find the most general solution of Eq. (38). How-
ever, this equation can be studied for several particular cases providing general and
particular solutions of cosmological interest. In the following section the special case
s = 1/2 is studied.

4 Exact solutions for s = 1/2

4.1 First approach: solutions through Eq. (38) for s = 1/2

In what follows we will restrict to study the highly nonlinear differential equation for
the Hubble parameter given by Eq. (23), for the case s = 1/2.We obtain the following
simplified form:

Ḧ − A
Ḣ2

H
+ (B + C) H Ḣ + (D + E) H3 = 0, (50)

where the constant parameters are given in Eq. (24), and the initial conditions are as
given in Eqs. (25) and (26).

Let us consider now the previous factorization procedure since Eq. (50) is a partic-
ular case of Eq. (23). Then, according to Eqs. (40) and (41), a1 = −2/3 and γ = 2,
respectively. Note that themethod brings us to get only γ = 2. Furthermore, according
to Eq. (38), the Eq. (50) is reduced to the first order differential equation

y′ + 6y − k1e
−3η/2y3/4 = 0, (51)

where k1 is an integration constant, and with general solution given as follows

y (η) = 1

256
e−6η (k1η + 4k2)

4 , (52)
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where k2 is a second integration constant. For the initial conditions given by Eqs. (29)
and (30), we get

k1 = 2H1/2
0 (2 − q0), (53)

k2 = H1/2
0 , (54)

and η0 = 0 without loss of generality. Also, (from t(η) = ∫
y−1/2dη)

t(η) = −48

k21

(
e3η

3η + 12 k2
k1

+ e−12k2/k1Ei

(
1,−3η − 12

k2
k1

))
, (55)

where Ei stands for the exponential integral function.
The Eqs. (52) and (55) represent a parametric general solution of Eq. (50). The FE

main quantities are given in the following parametric form

a (η) = a0 exp (η − η0) , (56)

H (η) = y1/2 (η) , (57)

q(η) = 2

(
1 − k1

k1η + 4k2

)
, (58)

ρ (η) = 3y (η) = p (η) , (59)

	(η) = −4y (η)

(
k1

k1η + 4k2

)
, (60)

l (η) = 4

3

∣∣∣∣
k1

k1η + 4k2

∣∣∣∣ , (61)


 (η) =
√
3

8

a30e
−3η0

kBT0
(k1η + 4k2)

2 . (62)

However, according to Eq. (12) it is pointed out that this solution is unphysical
since the dissipative effects do not vanish as it is expected.

A particular solution can be obtained by setting q0 = 2, which leads to k1 = 0 in
Eq. (52) providing the simplified form

y (η) = k42e
−6η, (63)

and therefore the time variable

t (η) = 1

3k22
e3η, (64)

so we may recover the scaling solution

a = ā0t
1/3, where ā0 = a0e

−η0 3
√
3k22, (65)
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H = 1

3t
, (66)

q = 2, (67)

ρ = 1

3t2
. (68)

It is pointed out that this solution is self-similar and invariant, since it may be obtained
as invariant solution from one of the two admitted symmetries (X2 = [t,−H ]) of Eq.
(50). This suggests us that from the dynamical system point of view, the solution is a
singularity and probably a future attractor.

Note that this solution was found in [46], where it was written in the more general
form

H (t) = A (ts − t)−1 , (69)

which allows to explore scenarios with phantom behavior, where a big rip singularity
occurs at a finite time ts in the future. Also the expression

H (t) = A (t − ts)
−1 , (70)

is a solution and, depending on the values of the constant A, leads to cosmic evolution
with decelerated, linear or accelerated expansions, with constant q parameter [47]. In
this sense, the solution found corresponds to a particular case with q = 2.

The consistency relationship (41) for the viscous parameter does not allow to study
the case s = 1/2 for values of γ within the interval [1, 2). However, this constraint is
overcome in the following section B.

4.2 Second approach: solutions for s = 1/2 and � ∈ [1, 2)

In order to study other cosmological scenarios of interest, we consider for the viscous
parameter s = 1/2 and γ ∈ [1, 2). The Hubble rate equation (23) reduces to the same
form of Eq. (50). However, we perform the more suitable change of variables given
in the form

H = y1/2, dη = (3 + C) Hdt . (71)

Therefore, Eq. (50) turns into

y′′ − A

2y
y′2 + y′ + 2Ky = 0, (72)

where K = (D+E)

(3+C)2
.

The Eq. (72) admits the factorization

[
Dη − A

2y
y′ − a−1

1

] [
Dη − 2a1K

]
y = 0, (73)
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under the consistency condition

(A − 2) a1K − a−1
1 = 1,

which yields the relationship

a1± = 1 ± √
4K (A − 2) + 1

2K (A − 2)
. (74)

If we consider
[
Dη − 2a1K

]
y = �(y, η), then the factorized Eq. (73) can be

rewritten as follows

y′ − 2a1Ky = �, (75)

�′ −
(

A

2y
y′ − a−1

1

)
� = 0. (76)

The Eq. (76) provides

� = k1e
η
a1 yA/2,

where k1 is an integration constant. So, the Eq. (75) is rewritten in equivalent form

y′ − 2a1Ky − k1e
η/a1 yA/2 = 0, (77)

with general solution

y (η) = 41/(A−2)e2a1Kη

(−k1a1(A − 2)

B̄
eB̄η/a1 + 2k2

) 2
2−A

, (78)

where k2 is an integration constant, B̄ = Ka21(A − 2) + 1, and the parameter a1 is
restricted to values given by Eq. (74). We emphasize the fact that the constant B̄ = 0
when γ = 2, and for this reason this particular and special case must be studied
separately.

For the initial conditions given in Eqs. (29) and (30), we get

k1 = −2H2−A
0

3 + C
(q0 + 1 + a1K (3 + C)) , (79)

k2 = H2−A
0

(
1 + a1(2 − A)

B̄

(
q0 + 1

3 + C
+ a1K

))
, (80)

and η0 = 0 without loss of generality.
Also, it is possible to find an explicit parametric equation for the time variable using

the Eqs. (71) and (78), as follows

t (η) = 1

3 + C

∫
y−1/2dη
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= − k1/A−2
2

a1K (3 + C)
2F1

(
1

2 − A
, k3, 1 + k3, μ (η)

)
, (81)

being 2F1[., ., ., .] the hyper-geometric function with respective arguments, where

k3 = − a21K

B̄
and μ (η) = a1k1(A−2)eB̄η/a1

2B̄k2
.

The FE main dynamical variables are given in the following parametric form

a (η) = a0 exp

(
η − η0

3 + C

)
, (82)

H (η) = y1/2 (η) , (83)

q(η) = −1

2

(
(3 + C)

(
βeδη (2γ δ + α) + 2k2α

)

βeδη + 2k2

)
− 1, (84)

ρ (η) = 3y (η) , (85)

p (η) = 3(γ − 1)y (η) , (86)

	(η) = −yγ

(
3 + 2(3 + C)βδ

eδη

βeδη + 2k2

)
, (87)

l (η) =
∣∣∣∣∣

γ

(γ − 1)
+ 2γ (3 + C)βδ

3(γ − 1)

eδη

(
βeδη + 2k2

)
∣∣∣∣∣ , (88)


 (η) = − 3

(3 + C)kB

∫
	a3T−1dη, (89)

where α = 2a1K , β =
(−k1a1(A−2)

2B̄

)
and δ = B̄

a1
.

In order to show the behavior of the solutions we plot the parameters found in terms
of the dimensionless variable t H0, therefore in the following Figures the parameter t
corresponds to t H0. It is straightforward to see, for example, in the solution for the
time given by Eq. (91) that introducing k1 in this expression naturally a factor H−1

0
appears in the right hand side, allowing to rewrite expression (91) in terms of t H0.
The constant k1 is redefined dimensionless to be used in the plots.

In Figure 1, the behavior of the FE main variables is displayed. The first point to
highlight in this solution is that theq(t) parameter can present a transition frompositive
values in the past to negative values in the present era for some values of γ . This means
that we have in these cases, solutions representing an expanding decelerated universe
in the past, which at some time began to accelerate until to our times. In the �CDM
model this transition occurred when the energy density associated to the cosmological
constant begin to be the dominant component over the dark matter component. In our
solution this transition is due mainly to the evolution of the negative pressure due to
dissipation. As it is displayed in Figure 1, |	(t))| is a decreasing function of time,
which goes to zero as the cosmic time evolves, like the energy density of the matter
component does. Nevertheless, in the case γ = 1, which corresponds to pressureless
dark mater, like the matter assumed in the�CDMmodel, the total pressure of the fluid
is negative due to 	(t) and it is possible to have accelerated expansion at late times.
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Fig. 1 Plots of general solution
given by Eqs. (78)–(81) for
k1 = 5, k2 = 1, ε = .25, ξ0 = 3,
and γ = 1 (solid line), γ = 4/3
(dashed line), γ = 1.9 (dotted
line)
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In other cases, for example, when γ = 1.9, the positive pressure of the fluid is larger
than |	(t))| and the total pressure is positive, leading to a decelerated expansion for
all cosmic times.

Since all the cases correspond to non-perfect fluids, where a dissipative term is
present, the entropy production is always positive.

For the chosen values of the initial conditions through the values of (k1, k2) and
the parameters ε and ξ , the parameter l = |	| /p can be much lower than one only
in the case γ = 1.9, which corresponds to a rather stiff matter fluid. For lower γ this
condition can not be fulfilled. In other words, the near equilibrium condition, assumed
in the formulation of relativistic non-perfect fluids, requires fluids with an EoS close
to γ = 2 in this solution.

4.2.1 Particular solution 1

It is possible to find a particular solution from Eq. (78) by setting q0 = −1− 3+C
a1(2−A)

,
which leads to k2 = 0. For this case, the parametric solution simplifies as follows

y (η) = e2a1Kη

(−k1a1(A − 2)

2B̄
eB̄η/a1

)2/(2−A)

, (90)

and

t (η) = 21/(2−A)a1(A − 2)

3 + C
e−a1Kη

×
(−k1a1(A − 2)

B̄
eB̄η/a1

)1/(A−2)

, (91)

where k1 = 2B̄
a1(2−A)

H2−A
0 .

Then, the FE main quantities are given in the following form

a (η) = a0 exp

(
η − η0

3 + C

)
, (92)

H (η) = y1/2 (η) , (93)

q(η) = −1 − 3 + C

a1(2 − A)
, (94)

ρ (η) = 3y (η) , (95)

p (η) = 3(γ − 1)y (η) , (96)

	(η) = −y (η) (3γ + (3 + C)ᾱ) , (97)

l (η) =
∣∣∣∣
3γ + ᾱ(3 + C)

3(γ − 1)

∣∣∣∣ , (98)


 (η) = 31/γ
(3γ + ᾱ(3 + C))

(3 + C)

a30
kBT0

∫
e
3(η−η0)
3+C y2−Adη, (99)
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where ᾱ = 2a1K + 2B̄
a1(2−A)

.
In Figure 2, the evolution of the FE main variables of this solution is displayed.

Note that this solution represents accelerated or decelerated expansion with constant
q(t) parameter. Therefore, independently of the γ value there is no transition from
decelerated to accelerated expansion, or vice versa. In this sense, these behaviors are
unlike �CDM model.

As in the previous solution, |	(t))| is a decreasing function of time, which goes
to zero as the cosmic time evolves, like the energy density of the matter component
does. The total pressure of the fluid is negative for γ = 1 and γ = 4/3 leading to
continuous accelerated expansion. In the cases γ = 1.9, the total pressure is always
positive leading to a decelerated expansion for all cosmic times.

As in the previous solution the entropy production is always positive.
The condition l = |	| /p < 1 can be fulfilled only in the case γ = 1.9. As in the

previous solution, the near equilibrium requires γ values close to 2.

4.2.2 Particular solution 2

A second particular solution can be obtained by setting q0 = −1−a1K (3+C), which
leads to k1 = 0 in Eq. (78) providing the simplified solution given by

y = k2e
2a1Kη, (100)

and

t (η) = − 1

(3 + C)
√
k2a1K

e−a1Kη. (101)

where k2 = H2−A
0 .

The FE main quantities are given in the following form

a (η) = a0 exp

(
η − η0

3 + C

)
, (102)

H (η) = y1/2 (η) , (103)

q(η) = −Ka1(3 + C) − 1, (104)

ρ (η) = 3y (η) (105)

p (η) = 3(γ − 1)y (η) , (106)

	(η) = −y (η) (3γ + 2Ka1(3 + C)) , (107)

l (η) =
∣∣∣∣
3γ + 2Ka1(3 + C)

3(γ − 1)

∣∣∣∣ , (108)


 (η) = 31/γ
(3γ + 2Ka1(3 + C))

(3 + C)

a30
kBT0

∫
e
3(η−η0)
3+C y2−Adη. (109)

Plots of the FE main variables are shown in Figure 3.
Furthermore, it is possible to recover the known scaling solution which has been

widely studied by several authors [38,43,47]. The Eqs. (100) and (101) together with
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Fig. 2 Plots of particular
solution given by Eqs. (90)–(91)
for k1 = 1, ε = .25, ξ0 = 3, and
γ = 1 (solid line), γ = 4/3
(dashed line), γ = 1.9 (dotted
line)
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the Eqs. (102)–(109) provide the following results

a = ā0t
H0 , where ā0 = a0e

− η0
(3+C)

(
H0√
k2

)−H0

, (110)

H (t) = H0t
−1, where H0 = − 1

(3 + C) a1K
, (111)

q(t) = H−1
0 − 1, (112)

ρ (t) = ρ0t
−2, (113)

p (t) = 3 (γ − 1) ρ0t
−2, (114)

	(t) = −	0ρ (t) , where	0 =
(

γ + 2

3
(3 + C) a1K

)
, (115)

l (t) = 	0

(γ − 1)
, (116)


 (t) = 3γρ2−A
0 	0H0

(3H0γ − 2)

ā30
kBT0

t3H0− 2
γ . (117)

It is straightforward to see fromFigure 3 that these solutions represent accelerated or
decelerated expansion with constant q(t) parameter like the above one and, therefore,
there is no transition from decelerated to accelerated expansion for all γ values. Note
that the only case with accelerated expansion corresponds to γ = 1, nevertheless in
the former solution accelerated expansion occurs for γ = 1 and γ = 4/3. This is an
indication that in this solution the |	(t))| takes smaller values than the corresponding
to the previous case as the cosmic time evolves, which can be seen directly comparing
|	(t))| in both Figures, 3 and 2.

As in the previous solutions, |	(t))| is a decreasing function of time and the entropy
production is always positive.

The parameter l = |	| /p can be much lower than one only in the case γ = 1.9,
as in the previous solution. For lower γ this condition can not be fulfilled and clearly
for γ ≈ 1 the parameter l is too large to be represented in the Figure 3 due to the scale
size used.

It is necessary to point out that the three solutions found showed that the condition
l = |	| /p < 1 requires barotropic fluids with γ close to 2. Nevertheless, to be
more precise, in these solutions particular values of the initial conditions through
the values of (k1, k2) and the parameters ε and ξ0 were chosen. Therefore, making
numerical calculations with other values of the parameters involved, is possible to
find that, for example, l < 1 for γ ≥ 1.5. A general criteria appears when the type of
expansion driven by the solutions is related to the parameter l: if l < 1, then q > 0,
and the solution represents a decelerated expansion; and when l > 1, then q < 0,
corresponding to a solution describing accelerated expansion.

Unlike the solutions found in [38], which all of them represents accelerated expan-
sion, these new ones display a wider behavior, as it was discussed above. Nevertheless,
like in the former results found in [38], for our solutions accelerated expansion also
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Fig. 3 Plots of particular
solution given by Eqs.
(100)–(101) for k2 = 1, ε = .1,
ξ0 = 1, and γ = 1 (solid line),
γ = 4/3 (dashed line), γ = 1.9
(dotted line)
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occurs with l >> 1, indicating the impossibility to satisfy the near equilibrium con-
dition in this case.

5 Conclusion

The nonlinear differential equation for the Hubble parameter, which allows to explore
the cosmic evolution, has been solved through the factorization technique for the
viscous parameter s = 1/2. Some new exact parametric solutions have been found
once a transformation of coordinates is performed on the Hubble rate equation. As
a first approach, we have obtained the known particular polynomial scaling solution
which describes a stiff matter fluid, with γ = 2, and where the dissipative effects
vanish as it is expected. A second approach has been performed to find solutions
for other cosmological scenarios of interest for γ ∈ [1, 2). Then, we have found
a new general and two particular cosmological solutions for a universe filled with
one dissipative matter component, obeying a barotropic EoS. The general solution
displays the transition between an expanding decelerated phase and accelerated one at
late times, like the �CDMmodel. Although, unlike the �CDMmodel, this transition
is due to the negative pressure from dissipation and not to a cosmological constant or
even some kind of dark energy.

In the second and third particular solutions, the expansion is accelerated or deceler-
ated with constant q(t) parameter, depending on the γ value and no transition exists.

In all these solutions, |	(t))| is a decreasing function of time like the energy density
of the matter component, and the entropy production is always positive.

Also, for the three solutions the condition l = |	| /p < 1 is fulfilled only in the
case γ = 1.9. But, as it was pointed out before, in general happens to be that l < 1 for
γ ≥ 1.5, and for those cases the solutions represent decelerated expansion (q > 0).
When l > 1 the solutions describe an accelerated expansion. As a conclusion, we can
say that the near equilibrium condition requires high pressure fluids in the solutions
found within the causal framework of relativistic non-perfect fluids.

The general expression for the relaxation time given by Eq. (1), where the adi-
abatic contribution to the propagation speed is parameterized by ε, has shown to
lead to a nonlinear differential equation of the causal formalism, whose solutions can
describe consistently the effects of viscosity under the condition of near equilibrium.
Besides, the general solution displays the transition between decelerated and acceler-
ated expansion, mimicking the behavior of �CDM model. As we mentioned before,
the solutions found in [38], where the propagation speed was assumed to be one, only
exhibit accelerated expansion with l >> 1.

The analytical solutions were found for the particular case s = 1/2, which intro-
duces important simplifications to the nonlinear differential equation of the formalism.
There is no clear physical reason behind this election, on the contrary, negative s val-
ues could be more representative of a dissipative dark matter that in the past behaves
more like a perfect fluid. We expect to undertake this investigation in a future work.
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