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Abstract
The reentrant phase transition (RPT) is composed of at least two phase transition,
which has previously been observed in the Condensed Matter Theory/systems, and
nowhas been foundwith a renewal interest in black hole thermodynamics. For theRPT,
there exist always two and several critical points; while the first order phase transition
always corresponds to a single critical point. In this paper, we present a black hole
thermodynamical systems with a single critical point possessing the RPT, other than
a first order phase transition. Concretely, we focus on the Hayward-AdS black hole,
i.e. the AdS black hole in the gravity with a nonlinear electrodynamics, consider its
extended thermodynamics, and investigate its critical phenomena and phase structure,
especially the RPT in detail. The number of critical points and the types of phase
transition depend on the strength constant of the nonlinear electromagnetic field. We
introduce an unexpected RPT with a single physical critical point for the first time.
We also present all distinct and physical critical RPT points in the phase diagrams.
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1 Introduction

Black hole thermodynamics is one of great importance subjects in gravitational theory,
since it could provide a further insight into the understanding of quantum theories of
gravity. Actually, black holes can always behave like an ordinary thermodynamical
systems and undergo the phase transition, which is amost remarkable property in black
hole thermodynamics and can relate a gravitational system to an accessible experimen-
tal system. The pioneering work on black holes phase transition was done by Hawking
and Page, who proved that a first order phase transition occurs between a large AdS
black hole and a thermal AdS vacuum [1]. Especially, this so-called Hawking-Page
phase transition could be explained as the confinement/deconfinement phase transi-
tion of gauge field [2], inspired by the AdS/CFT correspondence [3–5]. These open a
grand window to explore the holographic and quantum understanding of critical phe-
nomena and phase transition in general AdS spacetime. Later, it has been claimed that
the first order phase transition of RN-AdS black hole [6,7] is similar to the liquid/gas
phase transition of the van der Waals fluid. After treating the cosmological constant as
a thermodynamic pressure and its conjugate quantity as thermodynamic volume [8–
13], the SBH/LBH phase transition of RN-AdS black hole is established [14], which
is precisely analogous to the liquid/gas phase transition of the van derWaals fluid (See
also [15,16] for reviews). More complicated phase structure also emerge in black hole
thermodynamics, including the RPT [17,18] and superfluid phase transition [19].

The RPT is composed of at least two phase transition, which has previously been
observed in a nicotine/water mixture [20], granular superconductors, liquid crystals,
binary gases, ferroelectrics and gels (see [21] and the references therein). Recently, it
revealed that there exist a RPT between the IBH/SBH/LBH in AdS spacetime [17,18].
This RPT is accompanied by a finite jump in the Gibbs free energy, which referred to a
zeroth-order phase transition that has been observed in superfluidity and superconduc-
tivity [22]. The study were also generalized to various setups [23–32]. Furthermore,
microscopic origin of the RPTs for AdS black holes has been explored in [33], which
is closely related to a quantum statistical systems. These may shed some lights on the
microcosmic and quantum understanding of black hole thermodynamics and phase
transition.

It is interesting to consider the relationship between RPT and the number of critical
points. No matter in classical thermodynamical systems (e.g. van der Waals gas),
or in quantum thermodynamical systems (e.g. black hole), the relationship between
phase transition and the number of critical points is subtle. It is well known that a first
order phase transition always corresponds to a single critical point (e.g. SBH/LBH
phase transition of AdS black hole [14]); a second order phase transition always
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corresponds to infinity critical points (e.g. superfluid phase transition of AdS black
hole [19]); while for RPT, there are always two and several critical points. It is worth
noting that in all referencesmentioned above, the RPTs of AdS black holes correspond
to two and several physical critical points. However, we get that a thermodynamical
systems with a single critical point can possess RPT, other than a first order phase
transition. Concretely, we take the Hayward-AdS black hole, i.e. the AdS black hole
in the gravity with a nonlinear electrodynamics as an example and we investigate its
critical phenomena and phase structure in detail.

The interest for nonlinear electrodynamics has started with the precursor work of
Born and Infeld, in order to modify the standard Maxwell theory and eliminate the
problem of infinite energy of the electron [34]. Recent, the nonlinear electrodynamics
havebeenproved to be excellent laboratories in order to circumvent someproblems that
occur in the standard Maxwell theory. Indeed, the nonlinear electrodynamics theory
can emerge naturally in the context of low-energy limit of heterotic string theory [35].
Due to the fact that the nonlinear electrodynamics theory is a powerful tool for the
construction of regular black hole solutions [36,37], it becomes more popular and
attracts a great attentions (e.g. [38–50]). Actually, the black hole with a nonlinear
electrodynamics presented in this paper, i.e. the Hayward-AdS black hole, can reduce
to the famous Hayward black hole, which is just a regular black hole solution. Besides,
the thermodynamics properties of the gravity with a nonlinear electrodynamics is
also an active research area in the current literature (e.g. [51–60].) For example, the
Born-Infeld AdS black hole has a SBH/LBH phase transition and a RPT between
the IBH/SBH/LBH due to the different strength of the nonlinear electrodynamics
[17]. These property render more attractive the studies of the gravity with a nonlinear
electrodynamics. For the Hayward-AdS black hole case studied in this paper, it also
has a complicated phase structure. Especially, an unexpected RPTwill be presented for
the first time, which only corresponds to a single physical critical point; while usually
the RPT should correspond to two physical critical points. The whole phase structure
of the Hayward-AdS black hole is also discussed. The number of critical points and
the types of phase transition depend on the constant of the nonlinear electromagnetic
field, i.e. the strength of the nonlinear electrodynamics. Moreover, we present the way
obtaining the critical RPT points (Tz, Pz) and (Tt , Pt ), and give their exact values.
Especially for the unexpected RPT, Pz may be negative and physically unacceptable;
hence we also derive the physical critical RPT point (T0, 0).

The paper is organized as follows. We will firstly revisit the Hayward-AdS black
hole and its extended thermodynamics in next sections. In Sects. 3 and 4, we study the
critical behavior and phase transition, respectively. Finally some concluding remarks
are given in Sect. 5.

2 The black hole system and its extended thermodynamics

We firstly revisit the Hayward-AdS black hole, which is a general two-parameters
family black hole solution in the gravity with a nonlinear electrodynamics [39]
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ds2 = − f (r)dt2 + dr2

f (r)
+ r2

(
dθ2 + sin2 θdφ

)
, (1)

f (r) = 1 − 2Mef f

r
− 2q3r2

α(r3 + q3)
+ r2

�2
, A = Qm cos θdφ, (2)

where � = − 3
�2

is the cosmological constant the constant α > 0 characterizes
the strength of the nonlinear electrodynamics field and has the dimension of length
squared. q is the parameter related to the magnetic charge of the Hayward-AdS black
hole

Qm = q2√
2α

. (3)

The AMD mass of the Hayward-AdS black hole is

MADM = Mef f + q3

α
, (4)

which can be read off from the behavior of the metric function at asymptotic infinity

f (r) = r2

�2
+ 1 + 2(Mef f + q3/α)

r
+ O(

1

r4
).

As in the neutral limit, the solution reduces to the Schwarzschild AdS black hole, one
can refer to Mef f as the Schwarzschild mass. Besides, for any non-vanishing Mef f ,
the above black hole solution behaves singular at the origin, which could never be
unavoidable. When Mef f is vanishing, the solution reduces to the Hayward black
hole [38,39], which is a famous regular black hole, since its curvature polynomials
R, RμνRμν, Rμνρσ Rμνρσ all have a regular limit at the origin. The critical phenomena
of the Hayward black hole was study in detail in [39], and a liquid/gas phase transition
was found.

Other thermodynamical quantities are also presented in [39]. The black hole tem-
perature, entropy and electric potential are

T = 1

4π r+
− 3q6r+

2πα(q3 + r3+)2
+ 3r+

4π�2
,

S = π r2+, � = 3q4(2r3+ + q3)√
2α(r3+ + q3)2

, (5)

respectively, where r+ is the radius of the event horizon. In the following paper, we
will discuss thermodynamics in the extended phase space, where the cosmological
constant is treated as a thermodynamic variable, i.e.

P = − �

8π
= 3

8π�2
, (6)
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with the conjugated thermodynamic volume being V = ∂MADM
∂P |(S,Qm ,α) = 4π r3+

3 .
Then it is easy to check the first law of thermodynamics

dMADM = T dS + �dQm + V dP + �dα, (7)

where � = ∂MADM
∂α

|(S,Qm ,P) = q6(2r3+−q3)

4α2(r3++q3)2
conjugates to α. Besides, the Smarr

relation becomes

MADM = 2T S + � Qm − 2PV + 2α�, (8)

which is perfectly consistent with the scaling dimensional argument. Finally, in order
to observe the global thermodynamic stability, we introduce the Gibbs free energy

G = MADM − T S = r+
3

− 1

3
πr2+T + q6

α(q3 + r3+)
+ q6r3+

α(q3 + r3+)2
. (9)

3 Critical behavior

3.1 Equation of state and critical points

We firstly calculate the critical points of the system. Based on the temperature Eq. (5),
we can directly derive the equation of state

P = T

2r+
− 1

8πr2+
+ 3q6

4πα(r3+ + q3)2
. (10)

Comparing with the van der Waals fluid equation, it is easy to find the specific volume
v = 2r+. Therefore we will choose the horizon radius r+ as the thermodynamical
variable in the equation of state for the black hole system hereafter in this paper,
instead of the specific volume v.

Always the critical point occurs when P has an inflection point, i.e.

∂P

∂r+
|(T=Tc,r+=rc) = ∂2P

∂r2+
|(T=Tc,r+=rc) = 0, (11)

where the subscript c stands for the quantities at the critical point. We can obtain the
critical pressure and temperature

Pc = 1

8πr2+
+ 3q6(q3 − 5r3+)

απ(q3 + r3+)3
, (12)

Tc = 1

2πr+
+ 9q6r4+

απ(q3 + r3+)3
(13)
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with the critical horizon radius rc which is the root of the equation

α(q3 + r3+)4 + 18q6r5+(4q3 − 5r3+) = 0. (14)

In order to explore the critical points, wewould like to introduce some reduced ther-
modynamical quantities. We first list the length dimensions of the relevant parameters
and thermodynamic quantities:

� = [L], q = [L], α = [L]2, P = [L]−2, T = [L]−1, (15)

therefor we can choose the reduced thermodynamical quantities for the critical point
and the reduced constant of the electromagnetic field as

Pc = pc
8πr2c

, Tc = tc
2πrc

, rc = Rq, α = γ q2. (16)

Now we can simplify the critical points as

pc = 60R2(R3 − R3
P )(R3 − R3

P1)

γ (R3 + 1)4
, tc = 72R5(R3 − R3

T )

γ (R3 + 1)4
, RT = 101/3

2
≈ 1.08, (17)

RP = (800 + 300
√
6)1/3

10
≈ 1.15, RP1 = (800 − 300

√
6)1/3

10
≈ 0.40, (18)

where the equation for the critical horizon radius is

γ = γ (R) = 18R5(5R3 − 4)

(R3 + 1)4
. (19)

For positive pressure p, we find a constraint 0 < R < RP1 or R > RP ; while positive
temperature τ leads to

R > RT . (20)

To sum up, we find that the physical critical points with positive temperature and
pressure require

R > RP . (21)

Since we focus on the physical critical points, we plot the curve of γ − R in Fig.
1. It is easy to observe that there exist some special values of γ : γm corresponds to
the maxima of γ (R); γP and γT denote the states with vanishing critical pressure
and temperature, respectively. Then the discussion about the number of the physical
critical points could be divided into the following subcases:

• When γ > γm , there exists no value of R, namely one can never find a critical
horizon radius, hence there is no critical point;
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Fig. 1 Curve of γ − R, which characterizes different cases for the physical critical points. The (red) dashed
line denotes the physical critical points with positive temperature and pressure, while the (black) solid line
corresponds to the critical points with positive temperature and negative pressure, and the (black) dotted
one corresponds to the critical points with negative temperature and pressure (colour figure online)

• When γ = γm , the case corresponds to a double critical horizon radius R = Rm .
As Rm > RP > RT , the critical pressure and temperature both are positive, there
exists a single critical points. Since

∂γ (R)

∂R
= −360R4(R3 − R3

m)(R3 − R3
0)

(R3 + 1)5
, (22)

Rm = (1700 + 300
√
21)1/3

10
≈ 1.45, R0 = (1700 − 300

√
21)1/3

10
≈ 0.69,

(23)

we can get γm = γ (R)|R=Rm = 1000
9(1700+300

√
21)1/3(

√
21−3)

≈ 4.83.

• When γP < γ < γm , each γ corresponds to two critical horizon radius R with
positive pressure and temperature, therefore one can find two physical critical
points;

• When γT < γ ≤ γP , there is a single physical critical point, while another
corresponds to zero or negative pressure and positive temperature. We can obtain
γP = γ (R)|R=RP = 1000

9(800+300
√
6)1/3(11

√
6−24)

≈ 3.27.

• When γ ≤ γT , there also exists a single critical horizon radius; while another
corresponds to negative pressure and temperature (or zero), thus physically unac-
ceptable. Here we can get γT = γ (R)|R=RT = 40

8110
2/3 ≈ 2.29.
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Table 1 The behaviors of critical points for different values of γ (or α). The values of special γ are
γm ≈ 4.83, γP ≈ 3.27, γT ≈ 2.29

γ γ ≤ γT γT < γ ≤ γP γP < γ < γm γ = γm γ > γm

Number of critical points 1 1 2 1 0

Fig. 2 Pcvc
Tc

vs γ . The
two-values part of curve denotes
the cases with two physical
critical points

We summarize the critical points for different γ in the Table 1. On the other hand,
we can calculate the interesting relation Pcvc

Tc
, which is a universal constant for different

γ as shown in Fig. 2. The constants are slightly different from the value 3
8 of the van

der Waals fluid. The curves of Pcvc
Tc

−γ could be divided into two branches: the above

branch decreases as γ increases, while γ enlarges the constant Pcvc
Tc

in the below one.

When R → +∞, then γ → 0, and the constant Pcvc
Tc

reaches the maxima 5
12 .

3.2 Critical exponents and coexistence states

Here we would like to explore the critical exponents and coexistence states, which
will be useful of the discussion about the complicated phase structure.

For γ ≤ γm , there always exist critical points, we firstly calculate the critical
exponents.We still follow the transformation Eq. (16) and define the following dimen-
sionless thermodynamical variables

� = P

Pc
, ω = T

Tc
− 1, φ = r

rc
− 1. (24)

Then we can obtain the dimensionless equation of state, which has a complicated form
and we do not list here. After taking a Taylor expansion, and using the relation Eq.
(19), we can derive
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� = 1 − aω(φ − 1) − bφ3 + O(ωφ2, φ4), (25)

where a = 12R3(R3−R3
T )

5(R3−R3
P )(R3−R3

P1)
, b = 2R3(R3−R3

m )(R3−R3
0)

(R3+1)(R3−R3
P )(R3−R3

P1)
. It is clear from Eq. (25)

that the critical exponents are

α = 0, β = 1

2
, γ = 1, δ = 3, (26)

which govern the behaviour of the specific heat at constant volume CV ∝ |ω|−α , the
order parameter φ ∝ |ω|β , the susceptibility/compressibility ∂φ

∂�
|ω ∝ |ω|−γ and the

ordering field � ∝ |φ|δ near a critical point, respectively.
Now we using Maxwell’s equal area law to study the coexistence states for the first

order phase transition. From Eq. (25), one can obtain the following equation

0 =
∫ φ2

φ1

φ
d�

dφ
dφ ⇒ 3

4
b(φ4

1 − φ4
2) + 1

2
aω(φ2

1 − φ2
2) = 0, (27)

where the subscripts 1 and 2 stand for the LBH and SBH phases, respectively. On the
other hand, the physical phase equilibriumcondition (i.e. the isobar pressure condition)
gives

�|φ1 = �|φ2 ⇒ aω(φ1 − φ2) + b(φ3
1 − φ3

2) = 0. (28)

Equations (27) and (28) together give a unique non-trivial solution (φ1 
= φ2)

φ1,2 = ±
√

−a

b
ω, (29)

where

a

b
= 6(R3 − R3

T )(R3 + 1)

5(R3 − R3
m)(R3 − R3

0)
. (30)

Then when a/b < 0, we conclude that the coexistence of smaller and larger black hole
phases requires ω > 0; in other words, only when T > Tc can the two stable black
hole phases exist at the same pressure. Conversely, if a/b > 0, the phase transition
will occur when T < Tc. Noting that the coexistence states depend on the relationship
between R and Rm, RT (since all R ar bigger that R0).

4 Phase structure

4.1 No phase transition when � ≥ �m

When γ > γm , there is no critical point. The curves of P − r+ and G − P are
depicted in Fig. 3, where one can not find the P − r+ oscillatory behavior and the
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Fig. 3 Curves of P − r+ and G − P for the cases with γ > γm . There exists no critical phenomena and
phase transition. In both plots, the temperature of isotherms increase from left to right

Fig. 4 Curves of P − r+ and G − P for the case with γ = γm . There exists no critical phenomena and
phase transition. In left plot, the temperature of isotherms decrease from left to right, while they increase
from left to right in the right plot

classical “swallow tail”. Therefore, one can never find the critical phenomena and
phase transition.

When γ = γm , the situation becomes interesting, as there exists a double critical
horizon radius R = Rm . We plot the diagrams of P − r+ and G − P in Fig. 4, and
there exists no P − r+ oscillatory behavior and the classical “swallow tail” as well.
Thus, there is no critical phenomena and phase transition, even this case of the system
possess a critical point. One can understand the unexpected phenomena by explore
the coexistence states. From Eq. (30), one can find a

b diverges when R = Rm (i.e.
γ = γm). As a result, there exists no coexistence state as φ1 = φ2 → ∞. The double
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Fig. 5 Curves of P − r+ and G − P for the cases with γ ≤ γT . There are the P − r+ oscillatory behavior
and the classical “swallow tail” characterizing the SBH/LBH phase transition. In both plots, the temperature
of isotherms increase from left to right

critical point (p = pc, t = tc, R = Rm) could not characterize the existence of a first
order SBH/LBH phase transition.

4.2 First order SBH/LBH phase transition when � ≤ �T

When γ ≤ γT , there is a single physical critical point, while another positive critical
horizon radius corresponds to negative pressure and negative/zero temperature, thus
physically unacceptable. As shown in Fig. 5, one can find the P − r+ oscillatory
behavior and the classical “swallow tail" characterizing the SBH/LBH phase transition
when T < Tc, which is denoted as the (red) solid line. This is consistent with the
discussion about the coexistence states in the last section. Actually, from Fig. 1, we
can obtain that the physical critical horizon radius has the relationship R > Rm >

RT > R0 when γ ≤ γT . Considering this relationship and Eq. (30) together, we
can find a

b > 0, which leads to ω < 0 and indicates the first order phase transition
occurring when T < Tc.

4.3 RPT when �P < � < �m

When γP < γ < γm , there is two physical critical points which always indicates the
existence of a RPT. The behavior of pressure P and Gibbs free energy G are depicted
in Fig. 6. For the isotherms with temperature Tc1 < T < Tc2 which is denoted as
the (gold) solid line, we can observe two P − r+ oscillatory behavior and multi-
characteristic “swallow tail” behavior characterizing the possible phase transition.
We can study the coexistence states to confirm this result. When γP < γ < γm ,
we can find the relationship of two physical critical horizon radius from Fig. 1, i.e.
R1 > Rm > R2 > RP > RT > R0. Then Eq. (30) leads to a

b > 0 near the critical
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Fig. 6 Curves of P − r+ and G − P for the cases with γP < γ < γm . There exists a RPT. In P − r+ plot,
the temperature of isotherms decrease from left to right, while they increase from left to right in G − P plot

Fig. 7 Characteristic behavior of RPT

point (R1, Tc1, Pc1) implying that the phase transition will occur when T < Tc1; while
near another critical point (R2, Tc2, Pc2), it is a

b < 0 and the phase transition will occur
when T > Tc2; ultimately, a phase transition (at least two “swallow tail”) should occur
when Tc2 < T < Tc1.

Considering the phase transitionwhen Tc2 < T < Tc1, it is the first order SBH/LBH
phase transition occurring for T < Tc1 and terminating at T = Tt . Especially, there
exists a certain range of temperatures T ∈ (Tt , Tz), where the global minimum of
Gibbs free energy G is discontinuous as shown in the right one of Fig. 6. This results
in the so-called “zeroth-order phase transition”, for which two separate branches of
IBH and SBH coexist and meanwhile are separated by a finite jump in G. In this range
of temperatures, the first order SBH/LBH phase transition and the “zeroth-order phase
transition” between the IBH and SBH both appear, which just corresponds to the RPT.

One can denote (Tt , Pt ) and (Tz, Pz) as the critical RPT points, which are difficult
to obtain analytically. Here we present the way to calculate their values, so that one
can obtain the exact critical RPT points by the numerical method. The cases for the
critical RPT points are depicted in Fig. 7. From the left one in Fig. 7, we see that at the
critical RPT point (Tz, Pz), the two extremal points of ∂P

∂r+ = 0 have the same value of
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Table 2 The critical points and the critical RPT points in triple phase diagram when γp < γ < γm

γ (τc2, pc2) (τc1, pc1) (τz , pz ) (τt , pt )

4.8 (0.439785, 0.207235) (0.439962, 0.207478) (0.439867, 0.207352) (0.439517, 0.206846)

4.5 (0.419590, 0.184261) (0.427108, 0.194600) (0.423349, 0.190314) (0.422695, 0.189239)

4 (0.373121, 0.128990) (0.407473, 0.176242) (0.390323, 0.159300) (0.388315, 0.155643)

3.5 (0.307386, 0.048211) (0.388256, 0.159438) (0.348077, 0.124851) (0.344906, 0.118613)

10/3 (0.279898, 0.013885) (0.381787, 0.154012) (0.331299, 0.112656) (0.327836, 0.105684)

P , i.e. Pz . From the right one in Fig. 7, we find that at the critical RPT point (Tt , Pt ),
one extremal point of ∂P

∂r+ = 0 has the same value of P (i.e. Pt ) and G with a SBH
(which we denote its thermodynamical quantities as (rc, Tc, Pc)). After introducing
the transformation

P = p

8πq2
, T = τ

2πq
, r+ = Rq, α = γ q2, (31)

we can obtain the equations for (τz, pz) and (τt , pt ), namely,

∂ p

∂R
|(τ=τz ,R=Ra) = ∂ p

∂R
|(τ=τz ,R=Rb) = 0, pz = pa = pb, (32)

and

∂ p

∂R
|(τ=τt ,R=Ra) = 0, pt = pa = pc, Gt = Ga = Gc. (33)

respectively. Finding out this point, we can derive the values of the critical RPT points
(τt , pt ) and (τz, pz). We present these points for γp < γ < γm together with the
critical point (τc1,c2, pc1,c2) in Table 2.

Finally, this novel RPT can be also clearly illustrated in the p − τ diagrams (i.e.
P − T diagrams) as shown in Fig. 8. There exists a SBH/LBH line of coexistence
states, which ends in a critical point (τc1, pc1) and begins at (τt , pt ). Meanwhile, there
exhibits an IBH/SBH line of coexistence states that terminates at (τz, pz) and begins
at (τt , pt ). Especially, a “triple point" between the SBH, IBH and LBH appears in the
point (τt , pt ). We plot the p − τ diagrams for different γ in the right one of Fig. 9,
it is shown that the values of critical points in p − τ diagrams, i.e. (τc1, pc1), (τt , pt )
and (τz, pz) increases as γ increases.

4.4 Unexpected RPT when �T < � ≤ �P

When γT < γ ≤ γP , there exists a single physical critical point, while another
positive critical horizon radius corresponds to zero/negative pressure and positive
critical temperature, thus physically unobservable. Usually, a single critical point will
indicate the first order SBH/LBH phase transition as presented in Sect. 4.2, while
two critical points correspond to the RPT as shown in Sect. 4.3. However, when
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Fig. 8 p − τ diagram for RPT when γP < γ < γm . The first order SBH/LBH phase transition is depicted
by a thick solid line, while the zero oder IBH/SBH phase transition is denoted as the solid line. In the right
one, the values of γ for p − τ curves increases from the left to right

Fig. 9 Curves of P − r+ and G − P for the cases with γT < γ ≤ γP . There exists an unexpected RPT. In
P − r+ plot, the temperature of isotherms decrease from left to right, while they increase from left to right
in G − P plot

γT < γ ≤ γP , it will be interesting to observe an unexpected RPT with a single
physical critical point for the first time.

The P − r+ and G − P diagrams are depicted in Fig. 9. One can also find two
P − r+ oscillatory behavior and multi-characteristic “swallow tail" behavior for the
isotherms with temperature 0 < T < Tc2 (as Tc1 < 0) denoted as the (gold) solid
line. Similarly to the case in last Sect. 4.3, a RPT can occur, which comprises of a first
order SBH/LBH phase transition arising in the range of temperatures T ∈ (Tt , Tc1),
and a “zero order” IBH/SBH phase transition happening in the range of temperatures
T ∈ (Tt , Tz). Now we consider the coexistence states to explain this unexpected RPT
with a single physical critical point. When γT < γ ≤ γP , we can find R1 > Rm >

RP > R2 > RT > R0 from Fig. 1. Thus Eq. (30) indicates as well that a phase
transition (at least two “swallow tail”) should occur when Tc2 < T < Tc1. Therefore,
one can expect that there should exist an unexpected RPT. Since Tc2 corresponds to a
vanishing or negative pressure Pc2, the pressure of the theoretical critical RPT point
may be negative. As an effect of the physically unobservable critical point (Tc2, Pc2),
the range of this RPT temperatures T ∈ (Tt , Tz) may be smaller than the theoretical
one, comparing with the normal RPT case in last Sect. 4.3.

We follow the same procedure, i.e. Eqs. (31), (32) and (33) to calculate the theoret-
ical critical RPT points (τt , pt ) and (τz, pz) for the cases with γT < γ ≤ γP . They are
list in Table 3. Even there is a single critical point (τc1, pc1), as pc2 are always negative,
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Table 3 The critical points and the theoretical critical RPT points (τt , pt ) and (τz , pz ) in triple phase
diagram when γT < γ ≤ γP . For γ = 12

5 and 5
2 , pz both become negative and could not be physically

observed

γ (τc2, pc2) (τc1, pc1) (τz , pz ) (τt , pt )

3 (0.213914, − 0.069404) (0.368603, 0.143292) (0.292263, 0.086975) (0.288595, 0.079275)

2.8 (0.165561, − 0.131049) (0.360467, 0.136897) (0.264673, 0.070810) (0.261041, 0.063379)

2.75 (0.152231, − 0.148117) (0.358400, 0.135298) (0.256045, 0.064783) (0.253589, 0.059442)

2.5 (0.076657, − 0.245371) (0.347824, 0.127282) (0.206684, − 0.022839) (0.212307, 0.040243)

2.4 (0.041572, − 0.290762) (0.343466, 0.124056) (0.134922, − 0.098192) (0.193619, 0.032950)

the critical RPT points (τt , pt ) and (τz, pz) could be physical with positive temperature
and pressure, e.g. the cases with γ = 3, 14

5 , 11
4 . This novel RPT can be also seen in the

p − τ diagrams (i.e. P − T diagrams) as shown in the left one of Fig. 10. However,
when γ continues to decrease, the theoretical critical pressure pz of the RPT may be
negative, e.g. the cases with γ = 12

5 , 5
2 (See Table 3 and the right one of Fig. 10). We

choose γ = 12
5 as an example shown in Fig. 11. In the left one of Fig. 11, it is easy to

find that these is no qualitative change for the first order SBH/LBH phase transition
beginning at (τt , pt ) and ending in (τc1, pc1); and the “triple point” (τt , pt ) between
the SBH, IBH and LBH. For the “zero” order IBH/SBH phase transition, it seems
to begin at a physically unobservable point (τz, pz) (i.e. (0.134922,−0.098192)) and
ending in (τt , pt ). Actually, the physical beginning of the “zero” order IBH/SBHphase
transition should be (τ0, 0), which is denoted in the right one of Fig. 11. τ0 could be
directly derived by choosing pz = 0 in Eq. (32), namely

∂ p

∂R
|(τ=τz ,R=Ra) = ∂ p

∂R
|(τ=τz ,R=Rb) = 0, pa = pb = 0. (34)

For γ = 12
5 and 5

2 , τ0 ≈ 0.179081 and 0.194280, respectively (See the left one of
Fig. 12). For other cases with theoretical critical pressure of RPT pz < 0, τ0 of the
physical critical RPT for different γ are shown in the right one of Fig. 12.

5 Conclusion

In this paper, we present the critical phenomena and phase structure of the Hayward-
AdS black hole. The phase structure are very complicated, as there exist not only the
liquid/gas like phase transition between LBH and SBH, but also the RPT between the
LBH, IBH and SBH. The number of critical points and the types of phase transition
depend on the values of γ (i.e. the strength constant α of the nonlinear electrodynam-
ics), which are summarized in the Table 4. It is interesting to find an unexpected RPT
with a single physical critical point for the first time, while usually the RPT should
correspond to two physical critical points. Besides, the relation Pcvc

Tc
is always a uni-

versal constant for different γ , which are slightly different from the value 3
8 of the van

der Waals fluid. We also derive the critical exponents and the coexistence states. For
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Fig. 10 Theoretical p − τ diagram for unexpected RPT when γT < γ ≤ γP . In the both plots, the values
of γ for p − τ curves increases from the left to right

Fig. 11 Theoretical and physical p− τ diagram for unexpected RPT with γ = 12
5 . As pz < 0, the physical

beginning of the “zero” order IBH/SBH phase transition should be (τ0, 0)

the RPT, it comprises of a first order SBH/LBH phase transition beginning at (Tt , Pt )
and ending in (Tc1, Pc1), and a “zero” order IBH/SBH phase transition beginning at
(Tz, Pz) and ending in (Tt , Pt ). We have presented the way obtaining the critical RPT
points (Tz, Pz) and (Tt , Pt ), and given their exact values. Especially for the unexpected
RPT, if Pz becomes negative, the physical beginning of the “zero” order IBH/SBH
phase transition should be (T0, 0), which is also derived.

It is interesting to find this unexpected RPT with a single critical point in other
AdS black hole background, e.g. the Born-Infeld AdS black hole, Gauss-Bonnet AdS
black holes, LoveLock AdS black holes and massive AdS black holes, even the Kerr
and other rotating AdS black holes, etc. Besides, it would be of great importance to
explore the existence of the RPT with a single critical point beyond the black hole
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Fig. 12 The left plot is the physical p− τ diagram for unexpected RPT with γ = 12
5 and 5

2 . If pz < 0, the
physical beginning of the “zero” order IBH/SBH phase transition should be (τ0, 0), where τ0 = 0.179081
and 0.194280 for γ = 12

5 and 5
2 , respectively. For other cases with theoretical pz < 0, physical τ0 for

different γ are shown in the right plot

Table 4 The behaviors of critical points and phase transition for different values of γ (or α). The values of
special γ are γm ≈ 4.83, γP ≈ 3.27, γT ≈ 2.29

γ γ ≤ γT γT < γ ≤ γP γP < γ < γm γ = γm γ > γm

Number of critical points 1 1 2 1 0

Types of phase transition First order Reentrant Reentrant No No

system, namely the quantum multi-body system with interaction, e.g. nicotine/water
mixture [20], granular superconductors, liquid crystals, binary gases, ferroelectrics
and gels [21], etc. These are all left as the future tasks.
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