
General Relativity and Gravitation (2021) 53:102
https://doi.org/10.1007/s10714-021-02871-7

EDITOR ’S CHOICE (RESEARCH ART ICLE )

Helicity and spin conservation in linearized gravity

Sajad Aghapour1 · Lars Andersson1 · Reebhu Bhattacharyya2

Received: 23 November 2020 / Accepted: 19 October 2021 / Published online: 12 November 2021
© The Author(s) 2021

Abstract
The duality-symmetric, Maxwell-like, formulation of linearized gravity introduced by
Barnett (New J Phys 16, 2014) is used to generalize the conservation laws for helicity,
the spin part of angular momentum, and spin-flux, to the case of linearized gravity.
These conservation laws have been shown to follow from the conservation property of
the helicity array, an analog of Lipkin’s zilch tensor. The analog of the helicity array
for linearized gravity is constructed and is shown to be conserved.
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1 Introduction

The recent observation of gravitational waves provides a good motivation to further
analyse the wave nature of Einstein theory and to explore its symmetries and conser-
vation laws, as well as its analogies to Maxwell theory. Symmetries and conservation
laws are fundamental features of any field theory. In the case of Maxwell equations,
in addition to the Lorentz, conformal, and duality symmetries which were found by
Lorentz, Heaviside, Larmor and Bateman roughly in the period 1890-1910, further
non-trivial symmetries were found by Lipkin [26] in the 1964, and by Fushchich and
Nikitin during the 1970’s and 80’s, cf. [24] and references therein. See Anco and
Pohjanpelto [4] for a classification of the local conservation laws for the Maxwell
equations as well as its generalization to spin s ≥ 1

2 , and especially for our purposes
for linearized gravity [5–7]. Anco and The [8] carried out a classification of local
conservation laws for a duality-symmetric formulation for Maxwell theory. The non-
classical conservation laws discussed there include Lipkin’s zilches and the helicity,
originally found by Candlin [20]. The zilch tensor and its associated currents arises
as Noether currents for a variational symmetry of the duality-symmetric Maxwell
Lagrangian, cf. [2].

Remarkably, a new set of conservation laws including intrinsic spin and orbital
angular momentum for Maxwell theory were found in the early 1990’s by Allen et al.
[3] and van Enk and Nijenhuis [29]. The decomposition of total angular momentum
into spin and orbital angular momentum parts is well known but these have been
viewed as not representing physical observables. The new conservation laws found in
the just cited papers, whichwere excluded, due to locality assumptions, by the analysis
of Anco et al., turn out to play an important role in experiments, and their discovery
has led to a burst of activity in the optical literature. These new conservation laws,
which include intrinsic orbital angular momentum, spin, and spin flux or infra-zilch,
were analysed in the work of Barnett et al. [9,11,18] and Bliokh et al. [17]. See also
references in these papers for background. A systematic use of a duality-symmetric
formulation of Maxwell theory plays a central role in this work. In particular, in the
work of Barnett et al., the symmetries of the Maxwell equations giving rise to the new
conservation laws via Noether’s theorem were discussed. Further, Cameron et al. have
introduced an analog of Lipkin’s zilch tensor, called the helicity array, cf. [19]. The
helicity array is conserved, and this property implies the conservation laws for helicity,
spin and infra-zilch which were just mentioned. The analysis of the conservation laws
for intrinsic spin and related quantities in the above mentioned papers is carried out
for the Maxwell field in transverse gauge. This gauge condition, and hence also the
helicity array fails to be Lorentz invariant. In [1] a Lorentz covariant tensor has been
introduced that is conserved for theMaxwell field in Lorenz gauge, andwhich contains
the same information as the helicity array.

The analogy between Maxwell theory and gravity is particularly close if we con-
sider the weak field theory. A Maxwell-like and duality-symmetric formulation for
linearized gravity on Minkowski space was introduced by Barnett [10], where the
analog of helicity for linearized gravity was derived as the Noether current for the
action of duality symmetry. It is worth mentioning at this point that helicity and dual-
ity symmetry for Maxwell theory and linearized gravity have previously been studied
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in terms of the standard formulation, and from a Hamiltonian point of view by Deser
and Teitelboim [23], and Henneaux and Teitelboim [25] (for additional discussion on
this approach and the generalization to higher spins see [21,22]).

In this paper we shall use the duality-symmetric formulation of linearized gravity
introduced by Barnett in the just cited paper to derive generalizations of the helicity,
spin, and infra-zilch conservation laws, and a generalization of the helicity array for
linearized gravity on Minkowski space. In view of the role of spin and orbital angu-
lar momentum in the interaction of light with matter it is interesting to explore the
analogous effects in gravity.

Overview of this paper

Section 2 presents the duality-symmetric formulation of linearized gravity on
Minkowski space. Section 3 presents the hierarchy of conservation laws for linearized
gravity. The conservation of helicity for linearized gravity is presented in Sect. 3.1,
energy-momentum in Sect. 3.2, angular momentum in section and the decomposi-
tion of angular momentum into its spin and orbital parts is given in Sect. 3.3. The
helicity array for linearized gravity is presented in Sect. 3.4. Section 4 contains some
concluding remarks.

2 duality-symmetric formulation of linearized gravity

We shall consider fields on Minkowski space with signature (−,+,+,+), using
index notation with Greek indices α, β, · · · taking values 0, · · · , 3, and lowercase
Latin indices i, j, · · · taking values 1, 2, 3. Let (xα) be Cartesian coordinates on
Minkowski space with temporal coordinate x0 = t and spatial coordinates (xi ), so
that the Minkowski metric takes the form

ηαβdx
αdxβ = −dt2 + δi j dx

i dx j , (2.1)

where δi j is the Kronecker delta.
Truncating the Einstein-Hilbert Lagrangian

LEH =
√−g

16πG
R, (2.2)

yields a Lagrangian for linearized gravity which, after adding a total derivative and
setting 32πG = 1, takes the form

LLG = 1
2 (∂βh

α
α ∂βhγ

γ − 2 ∂βh
α

α ∂γ hβ
γ − ∂γ hαβ ∂γ hαβ + 2 ∂γ hαβ ∂βhαγ )

(2.3)

where hαβ = h(αβ) is the linearized metric [15]. In the transverse-traceless gauge,

h0α = 0 , hi j
, j = 0 , hi i = 0, (2.4)

123



102 Page 4 of 11 S. Aghapour et al.

which may be consistently imposed on Minkowski space, the Lagrangian LLG takes
the form

LLG = 1
2 (ḣi j ḣ

i j − hi j,k h
i j,k + 2 hi j,k h

ik, j ) . (2.5)

Adding a total derivative term gives the dynamically equivalent Lagrangian

L′
LG = LLG − 1

2 (h jk h
ik, j ),i

= 1
2 (ḣi j ḣ

i j − hi j,k h
i j,k + hi j,k h

ik, j ) (2.6)

We shall make use of analogues of vector calculus operations for symmetric 2-
tensors here, and now introduce the notation which will be used. Let ci j , di j be
symmetric 2-tensors. We use bold faced letters c for a symmetric, traceless 2-tensor
like ci j . Further, we shall use several binary operations. These are

the scalar dot product c · d = ci j d
i j , (2.7a)

the cross product (c× d)i = εi
jk c jl dk

l , (2.7b)

2-tensor dot product (c : d)i j = ck(i d j)
k , (2.7c)

and the wedge product (c∧ d)i j = εi
kl ε j

mn ckm dln . (2.7d)

We also define the divergence and curl of a symmetric 2-tensor ei j as

(∇ · e)i = ei j
, j , (∇ × e)i j = ε kl

(i e j)l,k (2.8)

The symmetric, traceless 2-tensor fields

ei j = −ḣi j , bi j = ε lm
i h jm,l (2.9)

will play the role of analogues of the electric and magnetic fields in Maxwell theory.
Using the notation we have just introduced, we have

L′
LG = 1

2

[
ḣ · ḣ − (∇ × h) · (∇ × h)

]

= 1
2 (e · e − b · b) , (2.10)

which is closely analogous to the standard Lagrangian for Maxwell theory. The Euler-
Lagrange equations which follow from this Lagrangian, when written in our current
notation, take the form

∇ · e = 0 , ∇ · b = 0 , ∇ × e = −ḃ , ∇ × b = ė, (2.11)

which is close to the free Maxwell equations.
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2.1 Duality-symmetric Lagrangian

Barnett [10] exploited the analogy of gravity with Maxwell theory to introduce a
duality-symmetric Lagrangian for linearized gravity on Minkowski space, and used
this to derive the helicity of the gravitational field. We shall now consider this
Lagrangian in the notation introduced above. Let hi j , ki j be a pair of symmetric
2-tensors in transverse-traceless gauge (2.4). Here, ki j is a second (auxiliary) gravi-
tational potential, which is the analogue of the 4-potential Cα in duality-symmetric
Maxwell theory. The Lagrangian takes the form

LLG-ds = 1
4

[
ḣ · ḣ − (∇ × h) · (∇ × h) + k̇ · k̇ − (∇ × k) · (∇ × k)

]
, (2.12)

cf. [16,18] for analogs in the Maxwell case. The Lagrangian in (2.12) is manifestly
invariant under the duality reflection

hi j → ki j , ki j → −hi j (2.13)

which generates the continuous U (1) duality rotation

hi j → hi j cos θ + ki j sin θ , ki j → ki j cos θ − hi j sin θ . (2.14)

In the following, unless otherwise stated, we shall impose the duality constraint

ḣ = ∇ × k (2.15a)

k̇ = − ∇ × h (2.15b)

and the transverse traceless gauge condition,

hi j
, j = 0, hi i = 0 (2.16a)

ki j
, j = 0, ki i = 0. (2.16b)

It follows from the Euler-Lagrange equations forLLG-ds that the duality constraint holds
globally if it holds at t = 0. The Maxwellian gravitational fields ei j and bi j in terms
of these potentials are

e = − ∇ × k (2.17a)

b = ∇ × h , (2.17b)

which satisfy the Maxwellian equations of motion (2.11), provided that the duality
constraint (2.15) is imposed.

2.2 Relation to curvature tensor

The Weyl curvature tensor is the only non-vanishing part of the curvature, and hence
governing the propagation of gravitational waves, through free space. The decompo-
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sition of the Weyl curvature tensor into ‘electric’ and ‘magnetic’ parts Ei j and Bi j is
defined as

Ei j = Ci0 j0 , Bi j = ∗Ci0 j0 (2.18)

where Cαβγ δ is the Weyl curvature tensor and ∗Cαβγ δ = 1
2εαβμν Cμν

γ δ is its Hodge
dual. From Gauss-Codazzi equations for vacuum spacetime, we can find

− (∇ × K )i j = Bi j (2.19a)
3Ri j − Kim Km

j + Ki j tr K = Ei j (2.19b)

where Ki j is the second fundamental form given by Ki j = − 1
2 ḣi j = − 1

2 ei j . The
Ricci tensor of spacial slices is 3Ri j = − 1

2 ∂k∂
k hi j = 1

2 (∇×b)i j . Hence from (2.19a)

1
2 ∇ × e = B , (2.20)

and from (2.19b), using the linearized field equations,

1
2 ∇ × b = E . (2.21)

These relations allows us to state the generalization of the Biot-Savart operator to the
spin-2 case. That is

e = 2∇−2 ∇ × B , b = 2∇−2 ∇ × E , (2.22)

where

∇−2 ∇ × B =
∫ ∇ × B

|x − x′|
d3x ′

4π
. (2.23)

One may interpret the fields h and k as constructed from b and e, using the above non-
local operator. In this way, provided that E, B have suitable regularity and fall-off,
the fields e, b, h, k are naturally defined in a gauge invariant manner.

3 Conservation laws of linearized gravity

3.1 Helicity

Invariance of the Lagrangian density (2.12) under the duality transformation (2.14)
leads to the conservation of the current

Jα = ∂LLG-ds

∂(hi j,α)
ki j − ∂LLG-ds

∂(ki j,α)
hi j , ∂α Jα = 0 , (3.1)
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whose components in transverse-traceless gauge are

J 0 = 1
2 (ḣi j k

i j − k̇i j h
i j ) = 1

2 (h · b − k · e) (3.2a)

J i = 1
2 εi jk(el j h

l
k + bl j k

l
k) = 1

2 (e × h + b × k)k . (3.2b)

This current is analogous to the electromagnetic helicity current (cf. [19,28]), but it
will be shown later that the flux J k is one half of the spin density vector Sk , which
is the consequence of describing the gravitational field by a symmetric 2-tensor. Thus
we define the helicity H and spin S of the gravitational field to be1

H ≡ 2 J 0 = h · b − k · e , (3.3)

S ≡ 2 J = e × h + b × k . (3.4)

The helicity conservation law is

Ḣ + ∇ · S = 0 . (3.5)

3.2 Energy-momentum tensor

The canonical energy-momentum tensor for the duality-symmetric Lagrangian (2.12)
is

Tα
β = δα

β LLG-ds − ∂LLG-ds

∂(hi j,β)
hi j,α − ∂LLG-ds

∂(ki j,β)
ki j,α , ∂β Tα

β = 0 , (3.6)

whose components in transverse-traceless gauge are

−T0
0 ≡ E = 1

2 (ḣi j ḣ
i j + k̇i j k̇

i j ) = 1
2 (e · e + b · b) (3.7a)

−T0
i ≡ Pi = − 1

2 (εi jk bnj ḣ
n
k − εi jk enj k̇

n
k) = (e × b)i (3.7b)

Ti
0 ≡ Po

i = − 1
2 (ḣ jk h jk,i + k̇ jk k jk,i ) = 1

2 [e · (∇)h + b · (∇)k]i (3.7c)

Ti
j ≡ σi

j = 1
2 (−ε jkl bnk hnl,i + ε jkl enk knl,i ) (3.7d)

where we have used the notation [e · (∇)h]i = e jk h jk,i . Here, E is the energy density,
Pi is the energy flux density, Po

i is the orbital momentum density and σi
j is the spacial

stress tensor, cf. [16].

3.3 Angular momentum

Like in Maxwell theory [27], the canonical angular momentum current in linearized
gravity can be separated as

Mαβγ = L̃αβγ + S̃αβγ , ∂α Mαβγ = 0 (3.8)

1 This definition of gravitational helicity differs from the one defined in [10] by a factor of 2.
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where the nonconserved orbital and spin angular momenta, L̃αβγ and S̃αβγ , are

L̃αβγ = rαT βγ − rβT αγ (3.9a)

L̃i j0 = ekl h
kl,[ j r i] + bkl k

kl,[ j r i] (3.9b)

L̃i jk = εlmn b
m
p h pn,[i r j] + εlmn e

m
p k pn,[i r j] (3.9c)

and with (Mi j )ml = 2δm[iδ j]l ,

S̃i j
γ = ∂LLG-ds

∂(∂γ hmn)

[
(Mi j )ml hln + (Mi j )nl hml

]

+ ∂LLG-ds

∂(∂γ kmn)

[
(Mi j )ml kln + (Mi j )nl kml

]
(3.10a)

S̃i j
0 = 1

2 (en[i h j]n + bn[i k j]n) (3.10b)

S̃i j
k = 1

4 (εkln hl[i b j]n − εkl[i h j]n bnl − εkln kl[i e j]n + εkl[i k j]n enl) (3.10c)

and the spin density 3-vector is obtained as

Si = 1
2 εi jk S̃

jk0 = εi jk (emj hm
k + bmj km

k) = (e × h + b × k)i . (3.11)

Similarly to the Maxwell case, the conservation of spin and orbital angular momenta
of the gravitational field cannot be found directly from S̃αβγ , L̃αβγ which are not
separately conserved. We have

∂γ S̃αβγ = −∂γ L̃αβγ = T αβ − T βα 
= 0. (3.12)

To find the proper conservation laws, we need to modify the spin and orbital angu-
lar momentum fluxes in a way that total angular momentum conservation remains
unchanged [16]. The false spin flux obtained from nonconserved spin current S̃αβγ in
(3.10c) is

̃i j = 1
2 εikl S̃

kl
j = δi j H − bki h

k
j − 1

2 bkj h
k
i + eki k

k
j + 1

2 ek j k
k
i (3.13)

Working in the transverse-traceless gauge, we define �αβγ by

�αβ0 = �00γ = 0 (3.14a)

�i0 j = −�0i j = 1
2 (hki e

k
j + kki b

k
j ) (3.14b)

�i jk = 1
2 εi jl (hml b

m
k − kml e

m
k) (3.14c)

The first of these three equations is the condition for not altering the spin and orbital
angular momentum densities. The second one modifies the boost angular momentum
flux and the third one modifies the spin and orbital angular momentum fluxes. The
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latter modification results in (symmetric) spin flux

i j = 1
2 εikl (S̃

kl
j − �kl

j ) = δi j H + 2 ek(i k j)
k − 2 bk(i h j)

k , (3.15)

which together with the spin density (3.11) satisfies the continuity relation

Ṡi + ∂ j i
j = 0 . (3.16)

3.4 Helicity array for linearized gravity

Similar to the Maxwell case, the spin flux of the linearized gravitational field is con-
served,

̇i j + ∂k Ni j
k = 0 (3.17)

where the flux Ni jk can be obtained easily by computing the time derivative of i j

and observe that it is in fact a total derivative. This results in

Ni jk = δi j Sk − 2 hn(i k j)n,k + 2 kn(i h j)n,k (3.18)

The helicity array for linearized gravity can then can be constructed as

N 000 ≡ H = h · b − k · e , (3.19a)

N 0i0 = N 00i ≡ Si = (e × h + b × k)i , (3.19b)

N i j0 = N 0i j ≡ i j = δi j H + 2 ek
(i k j)k − 2 bk

(i h j)k , (3.19c)

N i jk ≡ Ni jk = δi j Sk − 2 hl
(i k j)l,k + 2 kl

(i h j)l,k , (3.19d)

with the symmetry N αβγ = N (αβ)γ . The equation

∂γ N αβγ = 0 (3.20)

contains the linked conservation laws

Ḣ + ∂i S
i = 0, (3.21a)

Ṡi + ∂ j
j

i = 0, (3.21b)

̇i j + ∂k N
k

i j = 0. (3.21c)

4 Conclusion

We have presented the duality-symmetric formulation of linearized gravity on
Minkowski space, and derived the generalization from Maxwell theory of the con-
servation laws for helicity, spin, and infra-zilch to the gravitational case.
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The fact that the spin and orbital parts of angular momentum are separately con-
served and therefore physical observables has had a tremendous impact in optics and
in our understanding of the interaction of light and matter. Here we have shown that
the spin and orbital parts of angular momentum are separately conserved also in lin-
earized gravity on Minkowski space. It is now interesting to analyse the consequences
of this fact for the interaction of gravity with matter as well as with other fields. We
remark that Bialynicki-Birula and Bialynicki-Birula [13] have constructed beams of
gravitational waves carrying orbital angular momentum. Recently [14], the interaction
of such beams with matter has been investigated.

It has been shown by Bialynicki-Birula and Bialynicki-Birula [12] that a gauge-
invariant, but non-local, expression for spin and orbital angular momentum of the
Maxwell field can be given by using the Biot-Savart law. In effect, this means that
from the gauge-invariant fields E, B, the potentials A,C are determined by inverting
the curl operator∇×. The analogous situation holds for linearized gravity. In particular,
there is an analog of the Biot-Savart operator for the spin-2 case, which allows one to
write the fields e, b in terms of the electric andmagnetic parts E, B of theWeyl tensor.
Similarly, the fields h, k can be expressed using the Biot-Savart operator in terms of
e, b. See Sect. 2.2 for details. In future work, we plan to illustrate these conservation
laws to some families of solutions of the linearized field equations. We also plan to
investigate the generalization of the Lorentz invariant helicity tensor introduced in [1]
to the case of gravity.
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