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Abstract
In this article we study Hawking radiation and particle dynamics for the recently
discovered accelerating non-Kerr black holes. A critical analysis of incoming and out-
going, charged and uncharged scalar and Dirac particles, has been done. The Hawking
temperature of massive andmassless Dirac particles has been found in the background
of accelerating non-Kerr black holes. The centre of mass energy of colliding particles
has also been calculated and presented graphically. The classical expression of action
for the massive and massless charged fermions is also worked out. We have compared
our results with those that exist in the literature.
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1 Introduction

Classically, black holes are considered as a mysterious prison because anything that
goes inside the hole never comes back. Therefore, the classical black hole can only
grow bigger with time as it swallows everything and escape is not possible. In 1975,
the astonishing discovery of Stephan Hawking [1] shook the existing theories as he
demonstrated that black holes could actually radiate particles, quantum mechanically.
These objects could shrink by losing energy and eventually evaporate by the emission
of the so-called Hawking radiation [2–7]. But this discovery set up a long-standing
puzzle that what happens to the information when the evaporation takes place? Other
related issues have also been discussed in the literature [8,9].

The notion of information loss during the process of radiation base on two pillars.
Numerous results show that the the emission spectrumof black holes is entirely thermal
and the no-hair theorem is valid [10,11]. Since the thermal spectrum is completely
determined by the parameter, temperature, therefore the outgoing radiation does not
contain any information in pure thermal emission. Also, the no-hair theorem ensures
that the geometry, outside a black hole, can be specified by itsmass, charge and angular
momentum. Thus the spacetime geometry does not have any significant information
either. But if both the radiation and geometry do not carry any information then there
must be no trace of collapsed matter left. The result of information loss is also in
agreement with quantum mechanics.

But if we could show that there are few grains whose features are correlated with
the collapsed matter, it will indicate that some information would have returned. So
this moment reflects that both thermal emission and no-hair theorem cannot be con-
sidered at face value. If one of these conditions is strictly satisfied it could violate the
conservation of energy. Hence the background geometry is considered to be fixed and
conservation of energy is also not enforced during the radiation process. To ensure
energy conservation, it was shown [10] that radiation could be entirely non-thermal
and a black hole’s emission spectrum can be viewed as quantum tunneling of particles
by taking the dynamical background geometry.

To study the tunneling effect, a well behaved coordinate system (Painlevé coordi-
nate system) is introduced [10,12], through which the behaviour of particles can be
viewed across the horizon unlike the Schwarzschild metric (which is not regular at
horizon). Thus the tunneling phenomenon provides an opportunity to study the emit-
ted particles through Hawking radiation. In this approach, the imaginary part of the
action is formulated for outgoing particles across the horizon. The tunneling probabil-
ity is calculated for the particles coming from inside to outside the horizon. Then the
expression for Hawking temperature of the hole using the Boltzmann factor [4,13] is
found. There are two different methods used in the literature to find imaginary part of
the classical action: one is based on null geodesics while the other uses the Hamilton-
Jacobi ansatz which is an extension of the complex path analysis [4,12]. Initially, the
tunneling approach was applied to the Schwarzschild black hole, and later, it was
extended to a variety of charged, rotating and other black holes [14–17].
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Several semi-classical approaches were employed to investigate the tunneling pro-
cess of scalar and Dirac particles. The tunneling process of charged and uncharged
Dirac particles for Gödel, Taub-NUT, Kerr and Kerr-Newman spacetimes has been
studied [18–20]. This approach was extended to various three and four dimensional
spacetimes [21–30] to investigate the process thoroughly. The tunneling probabilities
of accelerating Kerr black holes by fermion and scalar particles with electric charge
have also been studied [28–31] using WKB approximation. In this paper, we extend
this study to the accelerating non-Kerr black holes.

Non-Kerr black holes were presented by Johannsen and Psaltis [11], which satisfy
the no-hair theorem and one solution of some theory of gravity which is beyond
Einstein’s general relativity. This spacetime is ideal to perform the strong field test
of the no-hair theorem, and possesses novelty in itself because of its salient features.
Firstly, it does not impose any restriction on rotation parameter a due to the presence of
deformation parameter ε. For the positive value of ε, the non-Kerr black hole has two
disconnected horizons for higher values of rotation parameter a and has no horizon
for a > M . For the negative value of ε, the horizon of non-Kerr black hole exists for
any arbitrary a and topology of the horizon is toroidal. Because of these important
features of the non-Kerr black holes, they have been studied extensively [32–40].

Accelerating and rotating frames are really important in black hole physics. In
this paper, our focus is as to how tunneling occurs in non-Kerr black holes in the
presence of acceleration and what are the effects of the acceleration parameter on
Hawking temperature. We calculate the tunneling probabilities of charged, uncharged
Dirac particles and scalar particles to work out the Hawking temperature. For this
purpose, we employ the Hamilton-Jacobi anstaz using WKB approximation. In our
approach, we use the Klein-Gordon equation (for the charged and uncharged scalar
particles) and Dirac equation (for fermions) to find the tunneling probabilities of
particles crossing the horizon. The centre of mass energy has also been studied for
the charged accelerating non-Kerr black holes. This paper is arranged as follows.
Section 2 introduces the mathematical structure of the background spacetime. In Sect.
3, quantum tunneling of Dirac uncharged and charged particles is studied. Section 4
deals with the tunneling phenomena andHawking temperature for scalar particles. The
expression for the centre of mass energy is found in Sect. 5 and concluding remarks
are given in the last section.

2 Charged accelerating non-Kerr black hole

Johannsen and Psaltis [11] tested the gravity in the region of strong field by introducing
a new metric. They started with a deformed Schwarzschild solution and applied the
Newman-Janis transformation to obtain a deformed Kerr metric, which is now known
as the non-Kerr spacetime. The accelerating non-Kerr metric in spherical coordinates
(using the Plebański-Demiański metric) can be written as [41–46]

ds2 = 1

�2

{
−
( Q

ρ2 − a2P sin2 θ

ρ2

)
(1 + h) dt2 + ρ2 (1 + h)

Q + a2h sin2 θ
dr2 + ρ2

P
dθ2
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+
[(

P(r2 + a2)2

ρ2 −Qa2 (1 + h) sin2 θ

ρ2

)
sin2 θ

+a2 sin4 θ

(
2h + a2h sin2 θ

ρ2

)]
dφ2

}

− 2a
[
P
(
r2 + a2

)−Q
]
(1+h) sin2 θ

ρ2�2 dφdt, (2.1)

where

� = −αr cos θ+1, (2.2)

ρ2 = a2 cos2 θ + r2, (2.3)

P = 1 + α2
(
a2 + e2

)
cos2 θ − 2αM cos θ, (2.4)

Q = (a2 + e2 + r2 − 2Mr)(1 − α2r2), (2.5)

h = εM3

r3
. (2.6)

Here a, M , α and ε denote the rotation, mass, acceleration and deformation parameter
of the black hole, respectively. Now using the notation of Refs. [18,29,30], the above
metric can be written as

ds2 = dr2

g(r , θ)
− f (r , θ)dt2 + �(r , θ)dθ2 − 2H(r , θ)dtdφ + K (r , θ)dφ2, (2.7)

where g(r , θ), f (r , θ), �(r , θ), H(r , θ) and K (r , θ) are defined below:

f (r , θ) =
(
Q − Pa2 sin2 θ

ρ2�2

)
(1 + h) , (2.8)

g(r , θ) = �2
(
ah sin2 θ + Q

)

ρ2(1 + h)
, (2.9)

�(r , θ) = ρ2

P�2 , (2.10)

K (r , θ) =
(
P
(
a2 + r2

)2
ρ2 − a2Q sin2 θ(h + 1)

ρ2

)
sin2 θ

+a2 sin4 θ

(
a2h sin2 θ

ρ2 + 2h

)
, (2.11)

H(r , θ) = −2a sin2 θ
[
P
(
r2 + a2

)−Q
]
(1+h)

ρ2�2 . (2.12)

The equation 1/grr = 0 gives the horizon. It leads to two possibilities given as

�2 = 0, Q + a2h sin2 θ = 0. (2.13)
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The first factor gives the accelerating horizon i.e. the horizon due to acceleration

r = 1

α cos θ
. (2.14)

The outer horizon of accelerating non-Kerr black hole is denoted by r+. The main
difference between the present and earlier works comes from complexity of the event
horizon equation.Here, this equation is of fifth order givingfive roots: two are complex,
one is negative and the other two are positive, which give us horizons. We have used
the outer most root in our tunneling analysis. In the case of accelerating Kerr black
holes [29,30] we only have a quadratic equation from which roots can be calculated
in exact form. In the present case of accelerating non-Kerr black holes we could only
calculate the position of the horizon numerically which is r+ = 1.7923. The function
F(r , θ) and angular velocity at the outer horizon �H are defined as [21]

F(r , θ) = H(r , θ) + f (r , θ)K (r , θ)

K (r , θ)
, (2.15)

�H = H(r+, θ)

K (r+, θ)
. (2.16)

Using f (r , θ), H(r , θ) and K (r , θ) from Eqs. (2.8), (2.11) and (2.12), we obtain

F(r , θ) = (h + 1)

�2ρ2

(
2a2ρ2

(
a4P + 2a2Pr2 + Pr4 − Q

)

a4h sin4 θ − a2 sin2 θ(hQ − 2hρ2 + Q) + P
(
a2 + r2

)2

+Q − a2P sin2 θ

)
, (2.17)

�H = 2a2(h + 1)
(
a4P + 2a2Pr2 + Pr4 − Q

)

�2
(
P
(
a2 + r2

)2 + a4h sin4 θ − a2 sin2 θ [hQ − 2hρ2 + Q]
) , (2.18)

where r+ represents the event horizon of the accelerating non-Kerr black hole given by
the solution of the second factor in Eq. (2.13). The calculations are done for the spin-up
case. The calculations for the spin-down case are similar and there is a difference of
sign only between the two cases.

3 Quantum tunneling of Dirac particles

In this section we will study the tunneling of uncharged and charged fermions. For
this Dirac equations in the background of accelerating non-Kerr black holes.
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3.1 Uncharged Dirac particles

We solve the Dirac equation to find the Hawking temperature at the outer horizon. The
Dirac equation [18,20] for fermions can be written in terms of the wave function 	 as

iγ μ(Dμ)	 + m

�
	 = 0. (3.1)

Here μ takes the values (0, 1, 2, 3), m is the mass of the fermion particles, � is the
Planck constant and

Dμ = ∂μ + 1

8
i2�αβ

μ [ϒα,ϒβ ]. (3.2)

where �
αβ
μ represent the Christoffel symbols and the γ α satisfy the commutative law

[γ β, γ α] = −[γ α, γ β ], α �= β,

0 = [γ α, γ β ], α = β. (3.3)

By giving variation to α and β, Dμ takes the form

Dμ = ∂μ + 1

8
i2
[
�00

μ [γ 0, γ 0] + �01
μ [γ 0, γ 1] + �02

μ [γ 0, γ 2]

+�03
μ [γ 0, γ 03] + �10

μ [γ 1, γ 0]
+�11

μ [γ 1, γ 1] + �12
μ [γ 1, γ 2] + �13

μ [γ 1, γ 3] + �20
μ [γ 2, γ 0]

+�21
μ [γ 2, γ 1] + �22

μ [γ 2, γ 2]
+�23

μ [γ 2, γ 3] + �30
μ [γ 3, γ 0] + �31

μ [γ 3, γ 1]

+�32
μ [γ 3, γ 2] + �33

μ [γ 3, γ 3]
]
. (3.4)

By using the commutative law, all the terms in Eq. (3.4) cancel out except ∂μ. Thus
Eq. (3.1) takes the form

m

�
	 + (iγ r∂r + iγ t∂t + iγ θ∂θ + iγ φ∂φ)	 = 0. (3.5)

We define the γ α for the metric (2.7)

γ t =
√

�2
[
P(a2 + r2)2 − Qa2 sin2 θ

]

QPρ2 (1 + h)
γ 0, γ r =

√(
Q + a2h sin2 θ

)
�2

ρ2 γ 3,

γ θ =
√

P�2

ρ2 γ 1,
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γ φ = ρ�γ 2

sin θ

√[
P(a2 + r2)2 − a2Q sin2 θ

]
(1 + h)

+ a(P(a2 + r2) − Q)γ 0

√
F(r , Q)(P(a2 + r2)2 − a2Q sin2 θ)

. (3.6)

Here

γ 0 =
(

0 I
−I 0

)
, γ 1 =

(
0 σ 1

σ 1 0

)
,

γ 2 =
(

0 σ 2

σ 2 0

)
, γ 3 =

(
0 σ 3

σ 3 0

)
. (3.7)

The Pauli sigma matrices σ i (i = 1, 2, 3) are

σ 1 =
(
0 1
1 0

)
, σ 2 =

(
0 −i
i 0

)
,

σ 3 =
(
1 0
0 −1

)
. (3.8)

The solutions for spin-up/spin-down cases can be respectively assumed to be of the
form [20]

	↑(t, r , θ, φ) =
(
A(t, r , θ, φ)ξ↑
B(t, r , θ, φ)ξ↑

)
exp

[
i

�
I↑(t, r , θ, φ)

]
,

	↓(t, r , θ, φ) =
(
C(t, r , θ, φ)ξ↓
D(t, r , θ, φ)ξ↓

)
exp

[
i

�
I↓(t, r , θ, φ)

]
, (3.9)

where I↑ and I↓ denote the actions of the emitted particles for spin-up and spin-down
cases, respectively. We shall discuss the spin-up case only since the spin-down case
is similar except for a sign change. Here A, B, C and D are arbitrary functions of the
coordinates (t, r , θ, φ). Substituting Eq. (3.9) in Eq. (3.5) and taking leading order
terms in � we obtain the following four equations after some algebra

0 = Am −
{

∂t I↑√
F(r , θ)

+√
g(r , θ)∂r I↑ + �√

F(r , θ)
∂φ I↑

}
B, (3.10)

0 = −
⎧⎨
⎩

√
�2P

ρ2 ∂θ I↑ + i�ρ

sin θ

√[
P(a2 + r2)2 − a2Q sin2 θ

]
(1 + h)

∂φ I↑

⎫⎬
⎭ B,

(3.11)

0 = Bm +
{

∂t I↑√
F(r , θ)

−√
g(r , θ)∂r I↑ + �√

F(r , θ)
∂φ I↑

}
A, (3.12)

123



94 Page 8 of 25 U. A. Gillani, K. Saifullah

0 = −
⎧⎨
⎩

√
�2P

ρ2 ∂θ I↑ + i�ρ

sin θ

√[
P(a2 + r2)2 − a2Q sin2 θ

]
(1 + h)

∂φ I↑

⎫⎬
⎭ A.

(3.13)

We apply the following ansatz for solving the above system of equations [21,30]

I↑ = Jφ − Et + W (r , θ), (3.14)

where E and J are the energy and angular momentum of the particle. With this
substitution the above four equations become

0 = Am −
{ −E√

F(r , θ)
+√

g(r , θ)W ′(r , θ) + �H J√
F(r , θ)

}
B, (3.15)

0 = −
⎧⎨
⎩

√
�2P

ρ2 Wθ (r , θ) + iρ�J

sin θ

√[
P(a2 + r2)2 − a2Q sin2 θ

]
(1 + h)

⎫⎬
⎭ B,

(3.16)

0 = Bm +
{ −E√

F(r , θ)
−√

g(r , θ)W ′(r , θ) + �H J√
F(r , θ)

}
A, (3.17)

0 = −
⎧⎨
⎩

√
�2P

ρ2 Wθ (r , θ) + i�ρ J

sin θ

√[
P(a2 + r2)2 − a2Q sin2 θ

]
(1 + h)

⎫⎬
⎭ A.

(3.18)

Using Taylor’s theorem in Eq. (2.9) and neglecting the squares and higher powers we
obtain

g(r , θ) = g(r+, θ) + (r − r+)gr (r+, θ). (3.19)

At the horizon
g(r+, θ) = 0. (3.20)

Thus Eq. (3.19) becomes

g(r , θ) = (r − r+)gr (r+, θ). (3.21)

Taking partial derivative of Eq. (2.9) with respect to r and evaluating at the horizon,
we get

gr (r+, θ) = �2

ρ2

{
(1 − α2r2+)(2r+ − 2M) − 2αr+(a2 + r2 − 2Mr)

+a2εM sin2 θ

[
1

(a2 cos2 θ + r2+)2
− 4r2+

(a2 cos2 θ + r2+)3

]}
.

(3.22)
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Using Eq. (3.22) in Eq. (3.21) we get

g(r+, θ) = (r − r+)
�2

ρ2

{
(1 − α2r2+)(2r+ − 2M) − 2αr+(a2 + r2 − 2Mr)

+a2εM sin2 θ

[
1

(a2 cos2 θ + r2+)2
− 4r2+

(a2 cos2 θ + r2+)3

]}
. (3.23)

Now, expanding Eqs. (3.15) to (3.18) near the horizon of the black hole and using Eqs.
(3.23) we get

0 = Am −
{

−E√
F(r+, θ)

+√
(r − r+)gr (r+, θ)W ′(r , θ) + �H J√

F(r+, θ)

}
B,

(3.24)

0 = −
⎧⎨
⎩

√
�2P

ρ2 Wθ (r , θ) + iρ�H

sin θ

√[
P(a2 + r2)2 − a2Q sin2 θ

]
(1 + h)

J

⎫⎬
⎭ B,

(3.25)

0 = Bm +
{

−E√
F(r+, θ)

−√
(r − r+)gr (r+, θ)W ′(r , θ) + �H J√

F(r+, θ)

}
A,

(3.26)

0 = −
⎧⎨
⎩

√
�2P

ρ2 Wθ (r , θ) + iρ�H

sin θ

√[
P(a2 + r2)2 − Qa2 sin2 θ

]
(1 + h)

J

⎫⎬
⎭ A.

(3.27)

We neglect the equation which depends upon “θ”. Although these equations could
contribute to the (imaginary part) action, but its total contribution to the tunneling rate
vanishes. Using Eq. (2.18) in Eqs. (3.24) and (3.26) we get

0 = Am −
[

−E + �H J√
F(r+, θ)

+√
(r − r+)gr (r+, θ)W ′(r , θ)

]
B, (3.28)

0 = +Bm +
[

−E + �H J√
F(r+, θ)

−√
(r − r+)gr (r+, θ)W ′(r , θ)

]
A. (3.29)

At the horizon we can further decompose W (r , θ). We shall also divide our solution
into two parts, the massless and the massive cases.
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3.1.1 The massless case

In this case we put m = 0 in Eqs. (3.28)–(3.29), then two possible solutions could
exist

B = 0, W ′(r) = W ′+(r) = (E − �H J )√
F(r+, θ)

√
(r − r+)gr (r+, θ)

. (3.30)

Eq. (3.29) become

A = 0, W ′(r) = W ′−(r) = −(E − �H J )√
F(r+, θ)

√
(r − r+)gr (r+, θ)

. (3.31)

Here prime is the notation of derivative with respect to r and +/− corresponds to
outgoing/incoming solution. To find the outgoing solution of the fermion particle i.e.
W+(r) we integrate Eq. (3.30)

W+(r) =
∫

(E − �H J )dr√
F(r+, θ)gr (r+, θ)

√
(r − r+)

. (3.32)

The above integrand diverges at r = r+. By using the contour integration, we get

W+(r) = 2(i − 1)(E − �H J )√
F(r+, θ)gr (r+, θ)

. (3.33)

Removing the + subscript we can write

W (r) = 2(i − 1)(E − �H J )√
F(r+, θ)gr (r+, θ)

,

ImW = 2(E − �H J )√
F(r+, θ)gr (r+, θ)

. (3.34)

So the tunneling probabilities of fermions are given as [30]

Prob[out] ∝ exp[−2Im I ] = exp[−2(ImW+ + Im�)], (3.35)

Prob[in] ∝ exp[−2Im I ] = exp[−2(ImW− + Im�)] (3.36)

Since ImW+ = −ImW−, the resulting tunneling probability � = exp[−4ImW+]
becomes

� = exp

[
−8(E − �H J )√
F(r+, θ)gr (r+, θ)

]
. (3.37)

Comparing this with the Boltzmann factor of energy, � = exp(−βE) where β =
1/TH , we get

TH =
√
F(r+, θ)gr (r+, θ)

8
. (3.38)
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This is the Hawking temperature for the accelerating non-Kerr black hole at the outer
horizonwhich is decreasing for growing values ofmassM over a certain range contrary
to the accelerating Kerr black hole where temperature is decreasing throughout the
range of M .

3.1.2 The massive case

In the massive case we shall eliminate the contribution of functionW ′(r , θ) from Eqs.
(3.28) and (3.29). We multiply Eq. (3.28) by A, Eq. (3.29) by B and then subtract
these equations to obtain

A2m − B2m + 2
AB(E − J�H )√

F(r+, θ)
= 0. (3.39)

Multiplying the whole equation by the term
√
F(r+, θ) and dividing by B2 we get

m
√
F(r+, θ)(A/B)2 + 2(E − J�H )(A/B) − m

√
F(r+, θ) = 0, (3.40)

A/B = −(E − J�H ) ±√
(E − J�H )2 + m2Fr (r+, θ)(r − r+)

m
√
F(r+, θ)

, (3.41)

where

lim
r→r+

(A/B) = lim
r→r+

(−(E − J�H ) ±√
(E − J�H )2 + m2F(r+, θ)

m
√
F(r+, θ)

)
. (3.42)

Now

lim
r→r+

A/B =
{

0
−∞ , (3.43)

for the upper/lower sign respectively. Consequently, either A/B → 0 or A/B → −∞
at the horizon, i.e. either A → 0 or B → 0. For A → 0, the value of m can be found
from Eq. (3.29) as,

m = −A/B[−E + J�H√
F(r+, θ)

−√
gr (r+, θ)(r − r+)W ′(r)]. (3.44)

Putting in Eq. (3.28) and simplifying we obtain

Wr (r , θ) = W ′+(r) = (E − J�H )√
gr (r+, θ)(r − r+)F(r+, θ)

(1 + A2/B2)/(1 − A2/B2).

(3.45)
Integrating with respect to r we have

W+(r) =
∫

(E − J�H )√
gr (r+, θ)(r − r+)F(r+, θ)

(1 + A2/B2)/(1 − A2/B2)dr . (3.46)
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Fig. 1 Hawking temperature against M for a = 0.2, ε = −0.5, θ = π/2, α = 0.3.

We see that at r = r+ the integrand diverges. So, by using the contour integration
technique, we get

W+(r) = 2(i − 1)(E − �H J )√
F(r+, θ)gr (r+, θ)

. (3.47)

For B → 0 we can simply rewrite the expression in terms of B/A to get

Wr (r , θ) = W ′−(r) = −(E − J�H )√
gr (r+, θ)(r − r+)F(r+, θ)

(1 + B2/A2)/(1 + B2/A2),

(3.48)

Integrating with respect to r and using Eq. (3.43) we obtain

W (r) = −2(i − 1)(E − �H J )√
gr (r+, θ)F(r+, θ)

. (3.49)

The spin-down case is same as the spin-up case, except for the difference of sign. The
equations have the same form as in the spin-up case. The Hawking temperature (3.38)
is recovered for both the cases (the massive and massless cases). Figure 1 shows that
the Hawking temperature decay rapidly with the increase in certain range of mass. The
temperature is plotted in the considered range of mass for accelerating non-Kerr black
hole. The behaviour of the Hawking temperature for accelerating non-Kerr black hole
is different from the accelerating Kerr. We see in Fig. 1 that the temperature has a
critical point because it first decreases for large values of mass M upto a minimum
and then it grows. On the other hand, if we put h = 0 to examine the behaviour of the
Hawking temperature of accelerating Kerr black hole, it only decreases.

3.2 Charged Dirac particles

To study the tunneling process of charged fermions, the Dirac equation with electric
charge will be solved for accelerating non-Kerr black holes. The Dirac equation in
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covariant form with q (electric charge) is

iγ μ

(
Dμ − iq

�
Aμ

)
	 + m

�
	 = 0, (3.50)

where m represents the mass of the particles (fermions) and Dμ = ∂μ + �μ, where

�μ = 1
2 i�

αβ
μ �αβ , and �αβ is antisymmetric i.e. �αβ = 1

4 i
[
γ α, γ β

]
. The electro-

magnetic vector potential for these black holes is given by [43]

A = −er
[
dt − a sin2 θdφ

]− g cos θ
[
adt − (

r2 + a2
)
dφ
]

r2 + a2 cos2 θ
. (3.51)

Since the metric coefficients do not depend on the coordinates t and φ, therefore,
an ansatz [19,20,28] similar to the uncharged case, can be used. We use Taylor’s
expansion of linear order for the terms g (r , θ) near the outer horizon, as has been done
for uncharged particles [28]. Putting the values of At (r+, θ), Aφ(r+, θ),�(r+, θ) and
K (r+, θ) in Eq. (3.50) for the charged case, the following set of equations is obtained.

0 = Am −
⎡
⎣
(
�H J − E + eqr+

(a2+r2)

)
√
F (r+, θ)

+ ∂rW
√

(r − r+) ∂r g (r+, θ)

⎤
⎦ B, (3.52)

0 = −
[√

�2 (r+, θ) P

ρ2 (r+, θ)
∂θW

+ i�(r+, θ) ρ (r+, θ)√
sin2 θ P

(
a2 + r2+

)2

(
J − q

(
ear+ sin2 θ + g

(
a2 + r2+

)
cos θ

a2 cos2 θ + r2+

))]
B,

(3.53)

0 = Bm +

⎡
⎢⎢⎣

(
�H J − E + + eqr+(

a2+r2+
)
)

√
F (r+, θ)

−√
(r − r+) ∂r g (r+, θ)∂rW

⎤
⎥⎥⎦ A, (3.54)

0 = −
[√

�2 (r+, θ) P

ρ2 (r+, θ)
∂θW

+ i�(r+, θ) ρ (r+, θ)√
P
(
a2 + r2+

)2
sin2 θ

(
J − q

(
g
(
r2+ + a2

)
cos θ + ear+ sin2 θ

a2 cos2 θ + r2+

))]
A.

(3.55)

Now, W (r , θ) can be separated near the horizon of black hole as

W (r , θ) = R (r) + �(θ) . (3.56)
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We will solve Eqs. (3.52)–(3.55) for the massless case (i.e. m = 0) first. Considering
the above separation of W (r , θ) and m = 0 we get

0 = −

⎡
⎢⎢⎣

(
�H J − E + eqr+(

a2+r2+
)
)

√
F (r+, θ)

+√
(r − r+) ∂r g (r+, θ)R′ (r)

⎤
⎥⎥⎦ B,

which implies

R′ (r) =

(
−�H J + E − eqr+(

a2+r2+
)
)

√
F(r , φ)gr (r , φ)

√
(r − r+)

= R′+ (r) , (3.57)

where R+ corresponds to the outgoing solution. In a similar pattern, the incoming
solution can be obtained as

R′ (r) = −

(
−�H J + E − eqr+(

a2+r2+
)
)

√
F(r , φ)gr (r , φ)

√
(r − r+)

= R′− (r) . (3.58)

The R+ is

R+(r) =
2(i − 1)

(
−�H J + E − eqr+(

a2+r2+
)
)

√
F(r+, θ)gr (r+, θ)

, (3.59)

and its imaginary part is

ImR+ =
2

(
�H J + E − eqr+(

a2+r2+
)
)

√
F(r+, θ)gr (r+, θ)

. (3.60)

Also,

ImR− = −
2

(
−�H J + E − eqr+(

a2+r2+
)
)

√
F(r+, θ)gr (r+, θ)

, (3.61)

which shows that ImR+ = −ImR−. Using Eq. (3.60), the expression � =
exp

[−4ImR+
]
becomes

� = exp

[
8√

F(r+, θ)gr (r+, θ)

(
−�H J + E − eqr+(

a2 + r2+
)
)]

. (3.62)
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Comparing the above expression with � = exp[−βE], where β = 1/TH , the
Hawking temperature [4,12] is found as

TH =
√
F(r+, θ)gr (r+, θ)

8
. (3.63)

These result for the Kerr-Newman [18] and Reissner-Nordström black holes can be
obtained from the above formulas by eliminating the effects of acceleration and rota-
tion, from Eq. (3.62). It is possible here that for some specific values of E and J ,
Eqs. (3.60)–(3.62) could have the probabilities greater than 1, which is the violation
of unitarity. However, this will not happen here because both the spatial and temporal
parts contribute to the imaginary part Im(E�t) of the action [47,48]. The (shifted)
imaginary amount of time contributes to both the Prob[in] and Prob[out], and yields
a correct value of �. Without this contribution, the Hawking temperature will be twice
the original value [49,50]. The case of massive particles (m �= 0) gives the same value
of temperature as in the massless case because both have the same behaviour near the
horizon [28].

4 Quantum tunneling of scalar particles

This section deals with tunneling of charged and uncharged scalar particles for accel-
erating non-Kerr black hole. The tunneling probability and temperature will be found.

4.1 Uncharged scalar particles

In order to discuss quantum tunneling of scalar particles from accelerating non-Kerr
black holes given in Eq. (2.7), we will solve the Klein-Gordon equation which is given
as

gμν∂μ∂νφ − m2

�2
� = 0. (4.1)

The wave function �(t, r , θ, φ) is defined as

�(t, r , θ, φ) = exp(
i

�
I (t, r , xa) + I1(t, r , x

a) + O(�), (4.2)

where O(�) is considered.
Using Eq. (4.2) in Eq. (4.1) we get

gμν
(
∂μ I

)
(∂ν I ) + m2 = 0, (4.3)

where m, gμν and I represents the mass, the inverse of metric and the action of scalar
particles. Expanding this equation and simplifying we get

− (∂t I )2

F (r , θ)
+g (r , θ) (∂r I )

2 − 2H (r , θ)

F (r , θ) K (r , θ)
(∂t I )

(
∂φ I

)

123



94 Page 16 of 25 U. A. Gillani, K. Saifullah

+ f (r , θ)

F (r , θ) K (r , θ)

(
∂φ I

)2

+ (∂θ I )2

ρ2 (r , θ)
+m2 = 0, (4.4)

where the value of F (r , θ) is given by Eq. (2.17).We shall choose the following ansatz
for the calculation of tunneling probability

I = −Et + W (r) + Jφ. (4.5)

Using Eq. (4.5) in Eq. (4.4) we obtain

− E2

F (r , θ)
+g (r , θ)W ′ 2 (r)+ 2H (r , θ)

F (r , θ) K (r , θ)
E J+ f (r , θ)

F (r , θ) K (r , θ)
J 2+m2 = 0.

(4.6)
After some algebra this takes the form

− 1

F (r , θ)

[
E − H (r , θ)

K (r , θ)
J

]2
+
[
f (r , θ)

F (r , θ)
+ H2 (r , θ)

F (r , θ) K (r , θ)

]
J 2

K (r , θ)

+g (r , θ)W ′ 2 (r) + m2 = 0. (4.7)

Here we will add and subtract the term H2(r ,θ)

F(r ,θ)K 2(r ,θ)
J 2, to make the first term a

complete square. So, this takes the form

− 1

F (r , θ)

[
E − H (r , θ)

K (r , θ)
J

]2
+ J 2

K (r , θ)
+ g (r , θ)W ′ 2 (r) + m2 = 0. (4.8)

Near the horizon r = r+, Eq. (4.8) is expanded in the similar way as in the case of
Dirac particles. Solving the above equation for W (r) we get

W ′ 2 (r) = 1

F(r+, θ)gr (r+, θ) (r − r+)
(E − �H J )2

−
(

J 2

K (r+, θ)
+ m2

)
gr (r+, θ) (r − r+) . (4.9)

Taking square root and integrating yields

W± (r) = ±
∫

dr√
F(r+, θ)gr (r+, θ) (r − r+)

×
√

(E − �H J )2 −
(

J 2

K (r+, θ)
+ m2

)
(r − r+)

gr (r+, θ)
. (4.10)
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Again noting that r = r+ is a singularity in the above integrand, the contour integration
method solves the above integral as

W+(r) = 2(i − 1)(E − �H J )√
F(r+, θ)gr (r+, θ)

. (4.11)

The resulting tunneling probability is

� = exp

[
−8(E − �H J )√
F(r+, θ)gr (r+, θ)

]
. (4.12)

Comparing this expression with � = exp(−βE) where β = 1/TH gives the Hawking
temperature

TH =
√
F(r+, θ)gr (r+, θ)

8
. (4.13)

It can be noted that the Hawking temperature of scalar particles given in Eq. (4.13) is
same as in the case of Dirac particles. Thus we recover the Hawking temperature at
the outer horizon.

4.2 Charged scalar particles

This section studies the tunneling probability, at the outer horizon, of charged scalar
particles from the accelerating non-Kerr black hole in the presence of charge. For the
scalar field � and charge q, the Klein-Gordon equation can be written as

gμν

(
∂ν − iq

�
Aν

)(
∂μ − iq

�
Aμ

)
� − m2

�2
� = 0, (4.14)

where m, q, gμν and Aμ represent the mass of scalar particles, their charge, inverse
metric tensor and vector potential (3.51) respectively. Using an ansatz similar to Eq.
(4.5), as has been done earlier for the case of uncharged particles, the above equation
becomes

gμν
(
∂μ I − q Aμ

)
(∂ν I − q Aν) + m2 = 0. (4.15)

Substituting different quantities in the above and simplifying we have

0 = − (∂t I − q At )
2

F (r , θ)
+ g (r , θ) (∂r I )

2 − 2H (r , θ)

F (r , θ) K (r , θ)
(∂t I − q At )

(
∂φ I − q Aφ

)

+ f (r , θ)

F (r , θ) K (r , θ)

(
∂φ I − q Aφ

)2 + (∂θ I )2

ρ2 (r , θ)
+ m2. (4.16)

To solve this equation, we again use an action of the form given in Eq. (4.5) in the
above equation and evaluate at the horizon. The functions which were defined in Sect.
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2 have the following form in the vicinity of the outer horizon r = r+.

F(r+, θ) = (h + 1)

�2ρ2

(
2a2ρ2

(
a4P + 2a2Pr2+ + Pr4+ − Q

)

a4h sin4 θ − a2 sin2 θ(hQ − 2hρ2 + Q) + P
(
a2 + r2+

)2

+Q − a2P sin2 θ

)
, (4.17)

g (r , θ) = gr (r+, θ) (r − r+)

= �2

ρ2

{
(1 − α2r2+)(2r+ − 2M) − 2αr+(a2 + r2 − 2Mr)

+a2εM sin2 θ

[
1

(a2 cos2 θ + r2+)2
− 4r2+

(a2 cos2 θ + r2+)3

]}
(r − r+) ,

�H = 2a2(h + 1)
(
a4P + 2a2Pr2+ + Pr4+ − Q

)

�2
(
P
(
a2 + r2+

)2 + a4h sin4 θ − a2 sin2 θ [hQ − 2hρ2 + Q]
) , (4.18)

K (r , θ) =
(
P
(
a2 + r2+

)2
ρ2 − a2Q sin2 θ(h + 1)

ρ2

)
sin2 θ

+a2 sin4 θ

(
a2h sin2 θ

ρ2 + 2h

)
, (4.19)

H(r , θ) = −2a sin2 θ
[
P
(
r2+ + a2

)−Q
]
(1+h)

ρ2�2 . (4.20)

Substituting the above values in Eq. (4.16) and expanding near the horizon r = r+ we
obtain

W ′ 2 (r) = 1

F(r+, θ)gr (r+, θ) (r − r+)

(
E − �H J − eqr+(

a2 + r2+
)
)2

−
((

J − q Aφ

)2
K (r+, θ)

+ m2

)
gr (r+, θ) (r − r+) . (4.21)

Taking square root and integrating gives

W± (r) = ±
∫

dr√
F(r+, θ)gr (r+, θ) (r − r+)

×
√√√√
(
E − �H J − qer+(

r2+ + a2
)
)2

−
((

J − q Aφ

)2
K (r+, θ)

+ m2

)
(r − r+)

gr (r+, θ)
.

(4.22)
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Here r = r+ is the singularity, therefore by using the residue theory, integration
yields

W± (r) = ±
2(i − 1)

(
E − �H J − qer+(

r2++a2
)
)

√
F(r+, θ)gr (r+, θ)

. (4.23)

or

ImW± (r) = ±
2

(
E − �H J − qer+(

r2++a2
)
)

√
F(r+, θ)gr (r+, θ)

. (4.24)

Substituting ImW+ in � = exp[−4ImW+] we get the tunneling probability as

� = exp

[
8√

F(r+, θ)gr (r+, θ)

(
E − �H J − qer+(

r2+ + a2
)
)]

. (4.25)

We observe that the scalar and Dirac particles have the same tunneling probabilities,
which means that the emission rate for both the particles is same.

5 The centre of mass energy

Here we calculate the centre of mass energy ECM for the colliding particles, in the
vicinity of the accelerating non-Kerr black hole, having equal masses i.e. m1 = m2 =
m0. Theparticles are falling from infinitywith the sameenergies E1/m1 = E2/m2 = 1
towards the black hole with angular momentum L1 and L2 (which are different). The
motion of particles is considered in the equatorial plane i.e. (θ = π/2). Bañados, Silk
and West (BSW) [51] have given the following expression for the ECM in both the
curved and flat spacetimes.

E2
CM

2m2
0

= 1 − gμνu
μ
1 u

ν
2, (5.1)

where uμ
1 =(ṫ1, ṙ1, θ̇1, φ̇1) and u

μ
2 =(ṫ2, ṙ2, θ̇2, φ̇2) are 4-velocities of both the particles.

The derivative of components with respect to the proper time τ is represented by
overdot. Since we have considered the equatorial plane, therefore, the derivative of θ

vanishes i.e. θ̇1 = θ̇2 = 0. Varying the indices of μ and ν in Eq. (5.1) from 0-3, we
have

E2
CM

2m2
0

= 1 −
(
g00 ṫ1 + g03φ̇1

)
ṫ2 − grr ṙ1ṙ2 − φ̇2

(
gtφ ṫ1 + gφφφ̇1

)
. (5.2)

The 4-velocity components [52–54] of the particle having mass m are given in
Appendix A in Eqs. (A.1)–(A.3). From these we find the expression for E2

CM . Taking
a = 0 = α, in this expression, the centre of mass energy of the Schwarzschild black
hole can be recovered. This expression shows that the centre of mass energy depends
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Fig. 2 Graphs representing the behaviour of centre of mass energy against radius r for varying values of
charge q and rotation parameter a with the values £1 = 1.5, £2 = −2.5, α = 0.1 and ε = 0.2

on the parameters of acceleration α and rotation a. The limiting form r → ∞ of the
above expression gives ECM = 2m0, which is the same as found in flat spacetime
for the colliding particles. Eq. (A.4) shows that the centre of mass energy is finite at
horizon i.e. r = r+ for finite angular momenta £1 and £2 in the slow rotation limit.
This expression diverges at r = 2M . However, when we take the limit r → 2M, it is
finite for finite values of £1 and £2.

The centre of mass energy is plotted in Fig. 2. The plot on the left side shows that
the energy has an inverse relation with the rotation parameter a. For growing values
of a, the ECM is decreasing and the curves merge together for large radius. The right
plot shows the effect of the charge parameter q on the energy. If the charge parameter
increases, it enhances ECM .

6 Conclusion

Black holes could emit Hawking radiations and eventually evaporate away in this
process of radiation leaving nothing behind, over the time. These radiations have
been studied extensively through Hawking radiation by using the null geodesic and
Hamilton-Jacobi methods. In this paper we extend this approach to find the tunneling
probabilities of fermions and scalar particles from accelerating non-Kerr black holes
for massive and massless particles. We have observed an extra term of deformation
parameter ε in the Hawking temperature in Eq. (4.1). When this parameter vanishes
i.e. ε = 0, the results for accelerating and rotating black holes can be recovered [28–
30]. Taking acceleration zero reduces this black hole to the Kerr-Newman, and the
uncharged case recovers the results for the Kerr black hole. It is worth-noting that our
results are independent of the nature of particles (scalar or fermions) and we obtain
the same Hawking temperature in all the cases.

For the scalar particles, we have used the Klein-Gordon equation and noticed that
tunneling probability of charged and uncharged fermions and scalar particles are same
in both the massless and the massive cases which indicates that the emission rate of
both the particles is same. In this study we have considered O(h) in the Klein-Gordon
equation. This approach has two advantages: one is that we get back-reaction that
provides a wide view of quantum process and radiations, and secondly, the grey-body
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effect can be further analysed, contrary to the approach used in Ref. [55], where
gtt → 0 has been taken instead of h → 0. These tunneling probabilities are used
to determine the Hawking temperature. This temperature is plotted in Fig. 1 against
mass and shows that for larger spin parameter a, the temperature of the black hole
decreases rapidly.

Classically, only the outgoing particles confront the barrier but in semi-classical
approach both the incoming and outgoing particles face the tunneling barrier i.e. the
horizon. The tunneling probability of fermions particles is not depending on mass,
rather it depends on the charge of the particle. Particularly, the total flux of fermions
and scalars, emitted from the black hole as a result of quantum tunneling, can vanish
for a critical value of mass, depending on the values of h. The centre of mass energy
equation is also found and the limiting forms are also determined for the unbounded
radius and for r → 2M . The radial dependence of the centre of mass energy has also
been shown in Fig. 2 for the rotation a and charge parameter q. The results show that
arbitrarily high ECM can be achievedwhen the collision at horizon is considered. These
results of Hawking temperature and ECM are reducible to the Kerr and Schwarzschild
black holes by eliminating the effects of acceleration, rotation, deformation and charge
parameters, accordingly.

A Four-velocity components

Here we give the 4-velocity components of the particle in Eq. (5.2)

ṫ =
2aL

(
−2α2Mr3 + 2Mr + q2v + α2r4

)

r2v
(
r(r − 2M) + q2

) − r5ε

v
(
r(r − 2M) + q2

) (
M3ε + r3

)

1

r2v2
(
r(r − 2M) + q2

)2 (M3ε + r3
) −

{
ε

[
4q4v2

(
M3ε + r3

)
+ 8q2rv

+
(
M
(
2 − 2α2r2

)
+ α2r3

) (
M3ε + r3

)
+ r2

(
− 16α2Mr6v + 16M2r3v2

+α2r7
(
4α2r2 − 1

)
+ 4α4M3r6ε − 16α2M4r3εv + 16M5εv2

)]
a2
}
, (A.1)

φ̇ = L
r2

−
2a
(
ε
(
−2α2Mr3 + 2Mr + q2v + α2r4

))

r2v
(
r(r − 2M) + q2

) + 1

r9v
(
r(r − 2M) + q2

)
{
L
{
3q4v2

(
M3ε + r3

)
+ 2q2rv

(
− 6M4εv

+M3rε
(
3α2r2 + 1

)
+ r2

[
12M5εv2

+12M2r3v2 − 12α2Mr6v + 3α4r9 + r5 + 4M4rε
(
−3α4r4 + 2α2r2 + 1

)

+M3r2ε
(
3α4r4 + 2α2r2 − 1

) ])
a2
}}

, (A.2)

ṙ2 =

(
1 − α2r2

) (
r(r − 2M) + q2

)(
− r5ε2

v
(
r(r−2M)+q2

)(
M3ε+r3

) − L2

r2
− 1

)

r2
(
M3ε
r3

+ 1
)
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−
4a
(
Lε
(
q2v + α2r4

))

M3rε + r4
+ 1

r2
(
M3ε
r3

+ 1
)
{(

M3ε

r3
− α2r2 + 1

)

(
− r5ε2

v
(
r(r − 2M) + q2

) (
M3ε + r3

) − L2

r2
− 1

)
−
{
1 − α2r2

[
1

M3ε + r3
r7ε2

[
4q4v2(M3ε + r3) + 8q2rv(M(2 − 2α2r2) + α2r3)(M3ε + r3)

+r2
[
16M2r3v2 − 16α2Mr6vα2 + r7

(
4α2r2 − 1

)
+ 4α4M3r6ε − 16α2M4r3εv

+16M5εv2
]]

L2v +
(
r(r − 2M) + q2

) [
3q4v2

(
M3ε + r3

)
+ 2q2rv − 6M4εv

+M3rε
(
3α2r2 + 1

)
+ M

(
6r3 − 6α2r5

)
+ 3α2r6 + r2

(
− 12α2Mr6 + 3α4r9

+r512M5εv2 + 12M2r3v2 + v + 4M4rε
(
−3α4r4 + 2α2r2 + 1

)
+ M3r2ε

(
3α4r4 + 2α2r2 − 1

))]]}(
/r9v2

(
r(r − 2M) + q2

))}
/a2 (A.3)

where τ , ε = E/m, £ = L/m, represent the proper time, energy and angular momen-
tum of the particle, respectively. The expression of the ECM from Eq. (5.2) is given
as

E2
CM =

2m2
0

(
4ay1ε

(
r6 y1

(
− L1

2y2
− L2

3y2

)

M3rε+r4
+ xL1

)
+
(

y3
(
M3ε+r3

)

r x − r5ε2

x
(
M3ε+r3

) + 1

))

r2y2

+ 1

2r9
(
r(r − 2M) + q2

)3
{

−
2r7ε2

(
r(r − 2M) + q2

)

(
α2r2 − 1

)2 (M3ε + r3
)
[
4q4

(
α2r2 − 1

)2

+8q2r
(
α2r2 − 1

) (
M
(
2 − 2α2r2

)
+ α2r3

) (
M3ε + r3

)
+ r2

(
−
(
α2r2 − 1

)

16M5ε
(
α2r2 − 1

)2 − 16α2M4r3ε
(
α2r2 − 1

)
+ 4α4M3r6ε + 16M2r3

)]

+α2r7
(
4α2r2 − 1

)
− 1

α2r2 − 1
2
(
r(r − 2M) + q2

)2 {
3q4

(
α2r2 − 1

)2
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(
−6M4ε

(
α2r2 − 1

)
+ M

(
6r3 − 6α2r5
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r2
[
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−12α2Mr6
(
α2r2 − 1

)
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(
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(
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)2 + 4M4rε

(
−3α4r4 + 2α2r2 + 1

) ]}
+
{

− 1

y2

{
(−2 + 2α2r2 − 2M3ε

r3

[
1 − α2r2

[
−

+y2y4

(
(2y4)

(
M3ε

r3
− α2r2 + 1

){
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(
1

M3ε + r3
r7ε2

[
4q4

(
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(
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)
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(
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(
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)
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(
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(
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+α2r7
(
4α2r2 − 1

))]
+ x[3q4

(
α2r2 − 1

)2]L2
1

)}
/r9x2

]]}
+ x2(2y3)

2
}

− 8 4r4y4L1L2ε
2

(2y4)(3y4)
−
{
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2
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{
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(
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)

−
[
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{
1
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(
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(
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)(
M
(
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)
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)(

M3ε + r3
)
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(
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(
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)
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(
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(
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)
+ 4α4M3r6ε
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+ x

(
3q4

(
α2r2 − 1

)2

(
M3ε + r3

)
+ 2q2rα2r2 − 1

(
M
(
6r3 − 6α2r5

)
+ M3rε

(
3α2r2 + 1

)
− 6M4ε

(
α2r2 − 1

))
+ r2

(
12M5ε

(
α2r2 − 1

)2

+
(
α2r2 − 1

)2 − 12α2Mr6
(
α2r2 − 1

)

+3α4r9 + r5 + 4M4rε
(
−3α4r4 + 2α2r2 + 1

)
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(
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L2
2

}]
/r9x2

}}
/(3y3)

2
(
1 − α2r2

) (
α2r2 − 1

)2 }
a2, (A.4)

where

x =
(
α2r2 − 1

) (
r(r − 2M) + q2

)
,

y = q2 + r(r − 2M)(1 − r2α2),

z = q2 − 2Mr + r2(r2α2 − 1),

y1 =

√√√√√√
y

(
− r5ε2

z(M3ε+r3)
− L2

1
r2

− 1

)

r2
(
M3ε
r3

+ 1
)

√√√√√√
y

(
− r5ε2

z(M3ε+r3)
− L2

2
r2

− 1

)

r2
(
M3ε
r3

+ 1
) ,

y2 = r5ε2

z
(
M3ε + r3

) + L2
1

r2
+ 1,

y3 = r5ε2

z
(
M3ε + r3

) + L2
2

r2
+ 1,

y4 = −2α2Mr3 + 2Mr + q2
(
α2r2 − 1

)
+ α2r4,

and L1 and L2 represent angular momenta of the particles.

123



94 Page 24 of 25 U. A. Gillani, K. Saifullah

References

1. Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975)
2. Kraus, P., Wilczek, F.: Nucl. Phys. B 433, 403 (1995)
3. Parikh, M.K., Wilczek, F.: Phys. Rev. Lett. 85, 5042 (2000)
4. Srinivasan, K., Padmanabhan, T.: Phys. Rev. D 60, 24007 (1999)
5. Foo, J., Good, M.R.R.: JCAP 01, 019 (2021)
6. Feng, Z.W., Ding, Q.C., Yang, S.Z.: Eur. Phys. J. C 79, 445 (2019)
7. Good, M.R.R.: Phys. Rev. D 101, 104050 (2020)
8. Almheiri, A., Mahajan, R., Maldacena, J., Zhao, Y.: J. High Energ. Phys. 03, 149 (2020)
9. Konoplya, R.A., Zinhailo, A.F.: Phys. Lett. B 810, 135793 (2020)

10. Parikh, M.K.: Energy conservation and Hawking radiation, gr-qc (2004) [hep-th/0402166]
11. Johannsen, T., Psaltis, D.: Phys. Rev. D 83, 124015 (2011)
12. Shankaranarayanan, S., Padmanabhan, T., Srinivasan, K.: Class. Quantum Grav. 19, 2671 (2002)
13. Ding, C., Jing, J.: Gen. Relativ. Gravit. 41, 2529 (2009)
14. Matsuno, K., Umetsu, K.: Phys. Rev. D 83, 064016 (2011)
15. Ding, C., Liu, C., Jing, J., Chen, S.: J. High Energ. Phys. 11, 146 (2010)
16. Martínez, C., Teitelboim, C., Zanelli, J.: Phys. Rev. D 61, 104013 (2000)
17. Li, R., Ren, J.R.: Phys. Lett. B 661, 370 (2008)
18. Kerner, R., Mann, R.B.: Phys. Rev. D 73, 104010 (2006)
19. Kerner, R., Mann, R.B.: Class. Quantum Grav. 25, 095014 (2008)
20. Kerner, R., Mann, R.B.: Phys. Lett. B 665, 277 (2008)
21. Zhou, S., Liu, W.: Phys. Rev. D 77, 104021 (2008)
22. Li, R., Ren, J.R., Wei, S.W.: Class. Quantum Grav. 25, 125016 (2008)
23. Jiang, Q.Q.: Phys. Lett. B 666, 517 (2008)
24. Ding, C., Jing, J.: Class. Quantum Grav. 27, 035004 (2010)
25. Yang, J., Yang, S.Z.: J. Geom. Phys. 60, 986 (2010)
26. Gohar, H., Saifullah, K.: Astropart. Phys. 48, 82 (2013)
27. Ahmed, J., Saifullah, K.: JCAP 11, 023 (2011)
28. Gillani, U.A., Saifullah, K.: Phys. Lett. B 699, 15 (2011)
29. Rehman, M., Saifullah, K.: JCAP 03, 1 (2011)
30. Gillani, U.A., Rehman, M., Saifullah, K.: JCAP 06, 016 (2011)
31. Gillani, U.A., Saifullah, K.: Astropart. Phys. 125, 102496 (2021)
32. Caravelli, F., Modesto, L.: Class. Quantum Grav. 27, 24502 (2010)
33. Johannsen, T., Psaltis, D.: ApJ 716, 187 (2010)
34. Johannsen, T., Psaltis, D.: ApJ 718, 446 (2010)
35. Johannsen, T., Psaltis, D.: Phys. Rev. D 83, 124015 (2011)
36. Johannsen, T., Psaltis, D.: ApJ 726, 11 (2011)
37. Johannsen, T.: Adv. Astron 1, 1 (2012)
38. Bambi, C., Modesto, L.: Phys. Lett. B 706, 13 (2011)
39. Pani, P., Macedo, C.F.B., Crispino, L.C.B., Cardoso, V.: Phys. Rev. D 84, 087501 (2011)
40. Rahim, R., Saifullah, K.: Ann. Phys. N. Y. 405, 220 (2019)
41. Podolský, J., Kadlecová, H.: Class. Quantum Grav. 26, 105007 (2009)
42. Griffiths, J.B., Podolský, J.: Class. Quantum Grav. 22, 3467 (2005)
43. Podolský, J., Griffiths, J.B.: Phys. Rev. D 73, 044018 (2006)
44. Gregory, R.: J. Phys. 942, 012002 (2017)
45. Gillani, U.A., Rahim,R., Saifullah,K.:The non-Kerr black holewith acceleration, [arXiv: 2106.02058]

(submitted for publication)
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