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Abstract

Conditions are found which ensure that local boost invariance (LBI), invariance under
a linear boost isotropy, implies local boost symmetry (LBS), i.e. the existence of a
local group of motions such that for every point P in a neighbourhood there is a boost
leaving P fixed. It is shown that for Petrov type D spacetimes this requires LBI of
the Riemann tensor and its first derivative. That is also true for most conformally flat
spacetimes, but those with Ricci tensors of Segre type [1(11,1)] may require LBI of
the first three derivatives of curvature to ensure LBS.
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1 Introduction

In the first paper of this series [9] spacetimes with a local spatial rotational invariance
were (re)-investigated. Here the corresponding issues for local boost invariance are
studied. The issues arising and the methods to be used are set out in Sections 1 and 2

I M. A. H. MacCallum
M.A.H.MacCallum@qgmul.ac.uk

School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1
4NS, UK

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10714-021-02827-x&domain=pdf
http://orcid.org/0000-0001-8661-0667

61 Page2of12 M. A. H. MacCallum

of the previous paper. Only those key points required to make this paper reasonably
self-contained will be repeated here.

In studying local rotational symmetry of spacetime (LRS), Ellis [2] introduced three
definitions which he showed to be equivalent for dust spacetimes. The results were
later extended to spacetimes with a perfect fluid and electromagnetic field [15]. Here
Ellis’s definition (A,,) will be studied. It reads:

(A;,) At each point P in an open neighbourhood U of a point P,, there exists
a nondiscrete subgroup g of the Lorentz group in the tangent space Tp which
leaves invariant the curvature tensor and all its covariant derivatives to the m-th
order.

Implicit in this definition are conditions on the smoothness of the manifold and the
correspondence between the g at separated points. This paper considers the case where
the group g of linear isotropies contains boosts. This is called local boost invariance
(LBI), ‘local’ meaning that the same g applies throughout U. ‘Spacetime’ here just
means a four-dimensional Lorentzian manifold. The field equations of general relativ-
ity will not be used, but in cases where the Ricci tensor takes the form that would be
implied by specific matter content in general relativity that interpretation is referred
to.

The starting conjecture (based on a claim by Siklos [13] now known to be false in
general) is that (A1) is sufficent to imply Ellis’s definition (C), i.e.

There exists a local group of motions G, in an open neighbourhood W of a point
P, which is multiply transitive on some ¢g[-dimensional] surface through each
point P of W.

With LBI this would imply that the spacetime had local boost symmetry (LBS), i.e.
that the group G, contained, for every P € W, a subgroup of boosts leaving P fixed. A
theorem of Hall [5] implies, under appropriate topological and smoothness conditions,
that W is a region of a manifold in which the same G, acts globally.

Only Petrov type D and conformally flat spacetimes have a Weyl tensor that can
satisfy (Ag) (or (A,,) for larger m) with a group g containing boosts. There are rather
more Ricci tensor types that can satisfy (Ag) for boosts. For (Ag) to apply to the whole
Riemann tensor, the Weyl and Ricci tensors must of course be appropriately aligned,
and there may be a nonzero Ricci scalar. The tracefree part of the Ricci tensor can be
characterized by its Segre type. The possible invariance groups of the Ricci tensor were
listed by Segre type in Table 5.2 of Stephani et al. [14]. Table 1 here lists those with
nontrivial invariance groups I which include a boost. Cahen and Defrise [1] showed
that for Petrov type D spacetimes with boost (or spatial rotation) invariance and any
compatible Ricci tensor, (A,) was a sufficient criterion for the spacetime to be LRS or
LBS. Subsequently Goode and Wainwright [4] gave criteria for the LRS Petrov type
D case in terms of the spin coefficients and curvature expressed in a Newman—Penrose
(NP) null tetrad. These criteria were shown in MacCallum [9] to be equivalent to (Ay).
The discrepancy with Cahen and Defrise’s use of (A3) is shown in the Appendix of
MacCallum [9] to be due to a less suitable choice of frame in the calculations.

Here it is shown in Sect. 2, by arguments parallel to those of Goode and Wainwright
[4], that (A}) is also sufficient for LBS in Petrov type D spacetimes. In Sect. 3,
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Table 1 Nontrivial invariance groups containing boosts, by Ricci tensor type

Invariance group Segre type of the Ricci tensor
Boosts (only) [T1(1, 1)]

Boosts and rotations [(AD(, 1)]

SO(2, 1): three-dimensional Lorentz group [1(11, D]

Full Lorentz group [(111, D)]

the corresponding question for conformally flat spacetimes is studied. In both these
sections the detailed arguments are closely related to those of MacCallum [9] by the
asterisk operation of the GHP formalism [3]. A recent preprint addresses local boost
invariance of higher dimensional manifolds [11].

As in the previous paper, the Cartan-Karlhede procedure for characterizing space-
times and testing their equivalence, as outlined in Section 2 of MacCallum [9], is used.
It relies on the computation of “Cartan invariants”, the components of the Riemann
tensor and its covariant derivatives in canonically chosen frames. The implementation
used here employs the Newman—Penrose formalism as set out in Chapter 7 of Stephani
et al. [14]. The “Newman—Penrose equations” (the Ricci equations) and Bianchi iden-
tities [(7.21a)-(7.21r) and (7.32a)-(7.32k) in Stephani et al. [14]] will be referred to
below as (NPa)—(NPr) and (Ba)—(Bk).

A minimal set of Cartan invariants sufficient for the above procedure, was defined
by MacCallum and Aman [10]. It consists of totally symmetrized spinor derivatives
of the Newman—Penrose curvature quantities. Here the shorthand notation for such
spinors, as defined in MacCallum [9], will be used. If QABC b is a relevant
curvature quantity then the notation Q 4 g denotes the component of Q(ABC..) (E'F’..)
in which A of the m unprimed indices and B of the n primed indices are contracted
with the basis spinors ¢ and ¢ respectively (and the others with the basis spinors o and
0). x is said to have valence (m, n). The set defined in MacCallum and Aman [10]
consists of the totally symmetrized derivatives of ¥, @ and A, together with, at order
1, Eperw = VSwWeper and at order g + 2, the d’ Alembertians of quantities at
order ¢g. For a totally-symmetrized spinor of valence (m, n), only components with
2(A 4+ B) = m + n are LBIL.

2 Petrov type D spacetimes with local boost invariance

In the calculations, the boost invariance is assumed to act in the (k, I) plane of a
Newman—Penrose tetrad adapted to the Petrov type D Weyl tensor and to leave the
Riemann tensor and its first derivative unchanged'. A and ¥ (# 0) are boost invariant,
so from (A1) DA = AA = D¥; = A¥; = 0. In @ 4p only the components @/
and @y’ can be nonzero. Boost invariance of the Cartan invariants V¥, g/ requires
that

1 The results however are independent of the choice of frame: they would simply be more difficult to check
in a randomly chosen frame.
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V¥ = V¥ = Vg = Vi3 = Vg = V¥ =0
and thus
k=c=p=u=r=v=0. 2.1
These spacetimes are members of Kundt’s class.
Therefore, in Petrov type D, invariance of the Riemann tensor and its first derivatives

under a boost implies that there is a Newman—Penrose tetrad (a canonical one for Petrov
type D, fixed up to a spatial rotation and boost) in which the following criteria hold.

(ClT):K=G=p=,u=k:v=O. 2.2)
(C2%) : @g = @12 = 0. (2.3)
3" :AaA=DA=0. (2.4)

[The (Cn") notation is adopted to emphasize the parallel with the conditions (C1)—(C3)
of Goode and Wainwright [4].] The theorem analogous to Theorem 2.1 of Goode and
Wainwright is:

Theorem 1 A space-time (assumed conformally curved) is LBS if and only if there
exists a null tetrad (k, 1, m, m) in which (C17) — (C3") hold.

To show that conversely (CIT)—(C3T) imply that the Riemann tensor and its first
derivatives are boost invariant, one first inserts (ClT) into (NPa, b, j, k, m and n), and,
using (C27), obtains that

¢00’:¢22/:Ov W0:W1:W3:lp4:0,

so that the Riemann tensor is Petrov type D or conformally flat and is boost invariant.
(Be) and (Bf) give D¥,; = A¥; = 0. From above, (CIT) and (C3T) then guarantee
that VA and VW, g are boost invariant.

Using (C17)—~(C37) in (Bi) and (Bk) gives D@1y = Ad 1 = 0, so the gradient of
@1y is boost invariant. The components of V@ that must vanish for LBI are given in
full as (3.1)—(3.6) in Sect. 3, and the relations between these components of V@ and
the Bianchi identities are discussed there. Given (C1), they all vanish, due to (Bb) and
(Bc), so V@ is boost invariant.

To complete the check of the equivalence of the conditions (C17)-(C3") with the
assumption that the Riemann tensor and its first derivatives are boost invariant, one
has to show that once the remaining frame freedom, a spatial rotation, has been fixed,
so that @y is an invariant, D®yy = A®Pgy = 0, which follows if ¢ and y are real.
(The boost invariance of &4 p is readily checked.)

These and other restrictions on the spin coefficients analogous to those in Section 3
of MacCallum [9] are now sought, following analogous steps in Goode and Wainwright
[4]. They will enable the LBI of higher derivatives of the curvature to be checked. From
(Bh) and (Bj) one finds

(=¥ — D11+ A) = 3t + 27 P + TP
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Applying the [§, D] commutator to (—¥, — @11/ + A) and using (NPc) [which tells
us that Dt = (¢ — &)t], (Bb) and ¥, # 0 one obtains D = —(¢ — &)m.
Similarly, from (Bg) and the conjugate of (Bj) one obtains

g(—lllz — D+ A) =3 — 21D — 1Dy

Applying the commutator [§, A]to (=¥, — @1 + A), using (NPi) [which tells us
Ar = —(y — y)m], (Bc) and ¥, # 0 one obtains At = (y — y)r.
Thus from (NPc), (NPi), and the arguments above:

Dr = —(e — &), At =(y —y)T 2.5)
Dt =(—8)t, Am =—(y —y)m. (2.6)

Note that to arrive at (2.5) in conformally flat cases one would need to derive it by a
different argument.

It will now be shown that a position-dependent rotation (the remaining frame free-
dom) can always be used to achieve

e=¢ and y =7y, 2.7
and hence that
D®yy = ADyy = Dn = Anr = Dt = At = 0. (2.8)

For non-zero t and m, if either w or 7 is real (2.8) follows immediately from
(2.5)—(2.6). If = and 7 are both non-zero D(In(t/m)) = 2(¢ — &) and A(In(t /7)) =
2(y — y). If then 7/ is real, these imply (2.7). Under a rotation through an angle 6,
(e—&)*=(—¢&)+iDfand (y —y)* = (y —y) +iAb. Hence if t/7 is not real,
6 = %Im(ln(n /7)) achieves (2.7). If just one of 7 or 7 is nonzero, its argument gives
a suitable 6. If 7 = 0 = t one needs to show that the equations

iDO=—(e—%) and iAO =—(y —7), 2.9)

are compatible. This is done by applying the [A, D] commutator to 6. Note that (NPh)
implies that ¥, is real in this case; the imaginary part of (NPf) then shows that the two
equations for 6 are indeed compatible.

Finally, (NPe) and the complex conjugate of (NPd), and (NPr) and the complex
conjugate of (NPo), are used to obtain

D(ax —B) =0= A(x — p). (2.10)
Inserting these results into the higher derivatives, using CLASSI, shows that the sec-
ond, third and fourth derivatives of the Riemann tensor are also boost invariant. This

will also be true in conformally flat spacetimes if (2.1), (2.10) and (2.8) hold, but in
the case studied in Sect. 3.4 (A3) is required to establish (2.8).
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One can show, as in the LRS case, that in Petrov type D one cannot have s = 1
and p = 1, ;1 = o = 0 which would require (A4) to be checked. To eliminate
the possibility, the calculations follow a similar logic to those in MacCallum [9].
Necessarily ¥, # 0, and @11/ and @y would be constant. That V¥, g/ is constant
implies T and 77 are constant. If at least one of them is nonzero, then (NPg) and/or (NPp)
imply that @ — B is constant (possibly zero). Direct calculation (using CLASSI) then
shows #, = 0 i.e. all terms in the second derivatives are also constant, so the Cartan-
Karlhede procedure terminates. If both 7 and t are zero, (NPg) implies @¢y = O,
and then inspection (using CLASSI) shows that all first derivatives of the Riemann
tensor, and hence all higher derivatives, are zero, and the Cartan-Karlhede procedure
terminates at step 1.

Thus for LBS Petrov type D spacetimes it is sufficient to check (A3) and the
Cartan-Karlhede procedure must terminate at the third step or earlier. This proves
the following.

Theorem 2 [fa spacetime of Petrov type D is such that the Riemann tensor and its first
derivative are invariant under a local boost invariance, then the spacetime is locally
boost symmetric and admits a local isometry group G, (r > 3).

The converse of Theorem 2 is obvious, and by the equivalence shown above this
proves Theorem 1. Note that as in Section 3 of MacCallum [9] the invariance of the
derivatives of the Ricci tensor has not been used to derive the results, only checked,
and ¥, # 0 was used only in deriving (C17) and (2.5). The LBS conclusion depends
only on (2.1), (2.10) and (2.8).

In the following section it is shown that Theorem 2 is still true with ‘Petrov type D’
replaced by ’conformally flat’, unless the Ricci tensor is of Segre type [1(11,1)] when
some cases require LBI of the curvature and its first three derivatives to ensure LBS.

3 Conformally flat spacetimes with local boost invariance

The conformally flat cases to be considered are those Ricci tensor types appearing in
Table 1. (A,,) is assumed to hold with a group g which contains a boost. By the same
argument as in MacCallum [9], Ricci tensors of Segre type [(111,1)] are easily disposed
of: the spacetimes are of constant curvature, the subgroup g in (A,,) is the trivial one
comprising the whole Lorentz group, s = 6, t, = 0 = 1, and there is a group Gqg
transitive on the whole spacetime. The Cartan-Karlhede procedure terminates at the
first step and (Ay) suffices because it will imply (Ay).

In the rest of this section the actual (A,,) required for local LBS in conformally flat
spacetimes with the various Ricci tensors which admit a boost invariance, but are of
less symmetry than Segre type [(111,1)], are studied.

3.1 The first derivatives and Bianchi identities
The first step is to impose LBI on the first derivatives of @ and A. Then one can try

to derive (C17), which were obtained in Petrov type D cases from invariance of V¥,
and look for an appropriate variant of the rest of the arguments in Sect. 2.
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With LBI of the curvature only A, @ and ®gyr = P>y can be nonzero components
in a suitable canonically chosen frame, and since @1/ and A are invariant under the
remaining allowed changes of frame, (A1) requires that A@|;y = DP 1y = AA =
DA = 0. (Note that the invariance of curvature is being assumed here, rather than
@y = ¥y = 0 being deduced from other assumptions as in Sect. 2.) The terms in
V@& that must vanish if (A1) holds are

3VOy =2k Py + kDo), 3.1
3V®gy = DPyy +2(p — & + &)Poy + 40Py, (3.2)
VD 1//2 =2(p + p)P11 + 0 Dyy + 0 Pgy, (3.3)
VP13 = ADyy +2(y — y — W) Por — 40Dy, (3.4)
VD /2 = =2(u + 1) P11 — ADya — A Doy . (3.5)
3VDyry = —2(vPgy + 20D17/). (3.6)

In addition V@(y = V@33 = 0 here. Of the above equations, (3.1) is equivalent to
(Ba), (3.3) to (Bi) or the real part of (Be), (3.5) to (Bk) or the real part of (Bf), and
(3.6) to the conjugate of (Bd). The Bianchi identities (Be) and (Bf) give

G®@oy +2pP1 =0, and Aoy +2udi = 0. (3.7)

In the general case the only information from boost invariance of V@ additional to
that in the Bianchi identities comes from (3.2) and (Bb), and (3.4) and the conjugate
of (Bc), which give respectively.

PPy +20@1 =0, and pPyy 4+ 20Dy = 0. 3.8)
If (3.8) is satisfied the first derivatives of the curvature are boost invariant. (In the
special case of Segre type [1(11,1)], where D®gy = Adgy = 0, (3.8) is equivalent
to (Bb) and (Bc), and contains no additional information. This case is considered in
Sect. 3.4 below.)
The Bianchi identities (Bg) and (Bh) give
2@+ 1)@+ (T + T)Pgy = 0. (3.9

The remaining information in the Bianchi identities is

Bg : 8@y —28A = 2@ — 2B — ) Pay — 2Py, (3.10)
Bj : —8® 1 — 8Py + 38A = (—2a + 2B + 7 — T)Ppy (3.11)
+2(7 — 1)Pyy.

3.2 Ricci tensors of Segre type [11(1,1)]

If such spacetimes obey (Ao ) the Cartan-Karlhede procedure must terminate after at
most 3 steps since s = 1 at every step and at most two steps are needed to increase
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tp to the maximum of 2. So (A3) would suffice. As shown next, only (A1) is actually
required. All the resulting spacetimes admit a G, r > 3 acting on submanifolds of
dimension at least 2.

The ratio @gy /@117 = 2c is fixed under the remaining frame freedom but may
be position-dependent. (Using the remaining rotational freedom one could make @
real and positive, and c real, but this freedom may be needed as in Sect. 2 to obtain
a frame in which (2.7) holds, using (2.5)—(2.6).) One must have |c| # 1 or the Segre
type will be [1(11,1)]. Relations of the form 2®,;/Q + ®¢» Q = 0 imply Q = 0,
since otherwise |Q/Q| = 1 # |c| = |Poy /P11| (If || = 1 at some isolated points,
continuity implies O = 0 there too.) Hence from (Ba) and (Bd), «k = v = 0, and
from (3.8) and (3.7) p = . = 0 = A = 0. So (C17) holds. In addition, (3.9) implies
7+1t=0.

Equation (2.6) holds (being just (NPc) and (NPi)) and (2.5) then follows simply
from it, using 7 4+ 7 = 0. One can then obtain (2.7) and (2.8), and complete the proof
that (A1) is sufficient to imply LBS in this case as in Sect. 2. One may note that since
D®gyy = Adyy = 0, ¢ is constant in the timelike two-planes determined by the boost.

3.3 Ricci tensors of Segre type [(11)(1,1)]

This Segre type is that of the Ricci tensor of a non-null electromagnetic field. Here
so = 2 and in a canonical frame @y = 0. Assuming @/ # 0, (Ba)—(Bd) give

k=0=A=v=0.

If s = 2 one must have #{ = 0 and so the Cartan-Karlhede procedure terminates at step
1 since neither s nor ¢ has changed and as in Section 3 of MacCallum [9] this gives
the Bertotti-Robinson type solutions with a G transitive on the whole spacetime, and
(A1) suffices.

For s = 1 with I consisting of the boosts, DA = D@y = AA = APy =0
and from (Be) and (Bf) p = = 0 so the conditions of Theorem 1 hold. As in the
previous subsection, one has 7 + 7 = 0, so the proof that (A1) with a one-dimensional
group of boosts implies LBS proceeds as in Sect. 2.

3.4 Ricci tensors of Segre type [1(11,1)]

Here the invariance group is SO(2,1), generated by null rotations about k and about
I and a boost in the (k, I) plane. The SO(2,1) group acts in a hyperplane and leaves
invariant one direction in the (m, m) plane. The Ricci tensor represents a tachyonic
fluid, and a canonical form for it which is manifestly null rotation invariant (as in
MacCallum [8]) about each of the null directions has only @1 and @y non-zero
with 2|®@1y/| = |Pgy|. (This is a specialization of the form for Segre type [11(1,1)],
treated above.) Using the remaining freedom of spatial rotation in the (m, m) plane
one can set @y = 2@y : the parameters of both null rotations are then pure imaginary
and the vector orthogonal to the hyperplane in which the SO(2,1) acts is in the direction
m+m.
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The boost rescales the parameters of the null rotations. One might therefore have
invariance under a two-dimensional subgroup of SO(2,1) generated by the boost and
one of the null rotations (see entry R6 in Table 6.1 of Hall [6]). Among the quantities
defined by MacCallum and Aman [10], only Vi Ap and vkA AB’'», both of which
are Hermitian, and d’ Alembertians thereof, have to be considered. Boost invariance
implies that of the components of V¥® 4 g/, only those with A + B = 2 + k can be
nonzero. If then V¥® g is invariant under one of the null rotations, then from the
Hermitian symmetry it will also be invariant under the other. Thus V¥® 4 g will be
SO(2,1) invariant. The same applies to vkA ap’ and the d’ Alembertians of spinors of
lower derivative order.

So s = 2 is impossible and either s = 3 or s = 1. If s = 3 there can be at most one
independent function of position (as there is just one spacelike direction fixed under g).
The spacetime admits a G¢ (or in special cases a G7, cf. Reboucas and Teixeira [12])
acting on timelike hypersurfaces of constant curvature. The metrics include analogues
of the FLRW metrics for perfect fluids.

The remaining case is where s = 1 and g in (A,,) is just the boost invariance?.
From (Ba) and (Bd)—(Bf) one has

K+tk=v+i=jp+r=p+0=0, (3.12)

and then (Bb) and (Bc) give (2.7). In this case the Bianchi identities and D@y =
A®;y = DA = AA = 0 ensure (A}), (3.8) being equivalent to (3.7) in this case.
From (3.9) one has

(r+7)+ (T +7)=0. (3.13)

The real parts of the left sides of (3.10) and (3.11) are proportional to the real part
of §(®1 — A). For the right sides to be compatible one must have

O=(@+a) —B+pH+ @ +7). (3.14)
Eliminating between the imaginary parts of (3.10) and (3.11) yields

G —=HA=[@-p) — (@—Plor, (3.15)
B =8P =[@—B) —(@—P)lP1y. (3.16)

The perhaps surprising equality of the right sides does not imply that § (®;r — A) = 0.
The real parts of (NPc) and (NPi) give D(t +7) =0 = A(wr + 1), so

D(t+7%)=A(m+7)=A(t+7)=D(m +7) = 0. (3.17)

21t might be convenient to carry out the necessary calculations using the 3+1 orthonormal tetrad formalism
based on a spacelike congruence introduced by Harness [7].
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From the imaginary part of (NPg) minus the conjugate of (NPh), using (3.12) and
(3.14),

S(m +7) =8(m + 7). (3.18)

From the conjugate of (NPd) together with (NPe), and from the conjugate of (NPr)
with (NPo), one finds using (3.14) that

D(x—p) =A@ —pB) =0, (3.19)

which is consistent with (3.14) and (3.17).
From (NPb) and the complex conjugate of (NPa), and from the conjugate of (NPj)
and (NPn), one obtains

k(2@ — 2B + (T + 7)) =0 =vQ2& — 2B + (7 + 7). (3.20)

Since « and v are pure imaginary, the imaginary parts of these equations follow from
(3.14) while the real parts give kg = Vqp = 0, where Jop = (@ — B) — (@ —
B). (From the relations between null and orthonormal tetrads obtainable using and
Wainwright [4] and Harness [7] one finds that I, plays the same role here as 1| did
in the conformally flat perfect fluids studied in MacCallum [9].) So far only (A1) has
been used.

Calculating V2@ shows that the 00, 01’, 34’ and 44’ components are identically
zero. Most of the other components with A + B # 4 vanish on simplification with the
help of (3.16), (3.13), (3.14), and (3.20), which all follow from (A1). The remaining
components which must vanish for LBI (V23 and V2®14/)yield Sapo = IJapu = 0.
For the spacetime to obey (A3) thus requires Jug multiplying each of k, o, u and v
to be zero.

To satisfy (Az) there are now two possibilities: either (a) Seg = (§ — Py =
(8 — 8)A = 0, showing that @1, and A are constant in the hyperplanes defined by
the SO(2,1) action, or (b) J4g # 0 and (ClT) holds.

In case (a), we find that V¥® and V¥ A are invariant under a null rotation about k
for k = 1...3 and therefore s = 3 by the earlier argument that s; cannot be 2. We
thus again have at least a G if Sy = 0. Note that (Ay) was checked but does not give
extra conditions in this case.

In case (b), one now has the conditions (CIT) and (2.7). (NPc) and (NPi) give
Dt = An = 0. To complete (2.8), one has to show that Dr = At = 0. Then
the curvature derivatives up to the fourth will have boost invariance, as in Sect. 2.
(Note that since (§ — 8)@» # 0, fo = 0 need not be considered here.) One finds
V3dyy = —6D11'SepD(r + 1)/25 and V333 gives the same with A replacing D.
Thus to obtain (2.8) one needs (A3z) in this case.
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4 Conclusion

The work in Sects. 2 and 3 gives the following analogue of Theorem 3 of MacCallum
[9].

Theorem 3 In spacetimes with a Ricci tensor of Segre type [1(11, 1)] whose distin-
guished spacelike eigenvector is not geodesic, local boost invariance of the curvature
and its derivatives up to the third holds if and only if the spacetime is locally boost
symmetric. In all other cases, local boost invariance of the curvature and its first
derivatives holds if and only if the spacetime is locally boost symmetric.
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