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Abstract
Weestablish a complete classification theorem for the topology and for the orbital type
of the null generators of compact non-degenerate Cauchy horizons of time orientable
smooth vacuum 3 + 1-spacetimes. We show that one and only one of the following
must hold: (i) all generators are closed, (ii) only two generators are closed and any
other densely fills a two-torus, (iii) every generator densely fills a two-torus, or (iv)
every generator densely fills the horizon. We then show that, respectively to (i)–(iv),
the horizon’s manifold is either: (i’) a Seifert manifold, (ii’) a lens space, (iii’) a two-
torus bundle over a circle, or, (iv’) a three-torus. All the four possibilities are known
to arise in examples. In the last case, (iv), (iv’), we show in addition that the spacetime
is indeed flat Kasner, thus settling a problem posed by Isenberg and Moncrief for
ergodic horizons. The results of this article open the door for a full parameterization
of the metrics of all vacuum spacetimes with a compact Cauchy horizon. The method
of proof permits direct generalizations to higher dimensions.

Keywords Cauchy horizons · Cosmological spacetimes · Null generators ·
Symmetries
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1 Introduction

The occurrence of Cauchy horizons in cosmological spacetimes beyond which pre-
dictability (from the initial data) fails, is one of the most intriguing features of the
General Theory of Relativity closely related to the Strong Cosmic Censorship conjec-
ture. In this regard, along the past decades there have been significant efforts to find
necessary conditions under which they form and to provide a clear picture of their
nature when they do. Motivated by these questions, in this paper we take advantage
of recent results by the authors in [15], by Petersen in [13] and by Petersen-Rácz in
[14], to establish a stringent list of the topologies and of the orbital type of the gen-
erators that non-degenerate Cauchy horizons can have. As a byproduct we prove that
non-degenerate ergodic Cauchy horizons, that is, those having a dense generator, are
just a quotient of the flat Kasner spacetime. This answers a question posed by Isenberg
and Moncrief in [11]. We move now to describe in detail the setup and state the main
results. We comment also on previous results in the literature.

We let (M, g) be a smooth, connected time-oriented 3 + 1-dimensional vacuum
spacetime having a compact Cauchy horizon C. We assume that the horizon C divides
M into two connected disjoint regions I and H , i.e. M \ C = I ∪ H , where H is
a maximal globally hyperbolic spacetime with a compact and boundaryless Cauchy
surface�. In this context C is a smooth [6,8,9], and totally geodesic null hypersurface,
hence ruled by inextensible null geodesics called the null generators. We say that C
is non-degenerate if there is at least one future or past incomplete generator (i.e. its
affine length is finite).

Under this setup, the following is the main result.

Theorem 1.1 Let C be a non-degenerate compact Cauchy horizon inside a smooth,
time-orientable 3 + 1-dimensional vacuum spacetime. Then, one of the following
holds,

(i) all generators are closed,
(ii) only two generators are closed and every other generator densely fills a two-

torus,
(iii) every generator densely fills a two-torus,
(iv) every generator densely fills the horizon.

A direct consequence will be the following topological classification of Cauchy hori-
zons.

Corollary 1.2 Let C be a non-degenerate compact Cauchy horizon inside a smooth,
time-orientable 3+ 1-dimensional vacuum spacetime. Then, respectively to the cases
(i)–(iv) in Theorem 1.1, we have,

(i’) if (i) holds, then C is a Seifert manifold,
(ii’) if (ii) holds, then C is a lens space,
(iii’) if (iii) holds, then C is a T2-bundle over S1,
(iv’) if (iv) holds, then C is a three-torus T3.

All four possibilities in the theorem and the corollary are well known to arise in
examples. For example, the Taub-NUT spacetime (see [10]) is an instance of (i) and
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Gowdy Cauchy horizons are instances of (ii) and (iii) (see [3] and references therein).
An elaborated discussion of possibilities can be found in the comprehensive article of
Chrusciel and Rendall [2]. Finally, suitable quotients of the flat Kasner spacetime,

g = −dt2 + t2dx2 + dy2 + dz2, (t, x, y, z) ∈ (0,∞)t × R
3
x,y,z, (1)

by a three-dimensional lattice in the x, y and z directions are instances of (iv). Of
course in this case the quotient must be in such a way that for every given t0, y0, z0
the projection of the line x → (t0, x, y0, z0) is dense inside the Cauchy surface
{t = t0}. We do not know at the moment if every Seifert manifold, every lens space,
and every T

2-bundle over S1 is indeed the Cauchy horizon of a vacuum spacetime,
[the complicated case seems (i)].

Topological constraints compatiblewith those ofCorollary 1.2were first obtained in
the interestingwork ofAlanRendall [16]where it was shown the rather strong property
that Cauchy horizons can be collapsed in volume with finite curvature and diameter
(for a detailed account on such constraints see [4]). More recently, and regarding
the orbital structure of the generators, Isenberg and Moncrief [11] have shown that,
for analytic spacetimes at least, there is a trichotomy as follows: either, (i) all the
generators are closed, or (ii) a dense set of generators are dense in two-tori, or, (iii)
there is at least one dense generator in C. Theorem 1.1 and Corollary 1.2, enclose and
refine all the conclusions in these works.

The proofs of Theorem 1.1 and Corollary 1.2 combine four pieces of information.
First, they use that the temperature of every compact non-degenerate Cauchy horizon
can be normalized to a non-zero constant. This is a new result proved by the authors
in [15], and means that there is a nowhere zero vector field V on C tangent to the null
generators such that ∇V V = −V . Note that, as V is nowhere zero, the orbits of V
are the orbits of the null generators. We remark that besides this piece of information
no other fact from [15] is used in this article. In other words, the main results in
Theorem 1.1 and Corollary 1.2 would hold true were they stated instead for constant
temperature horizons (as opposed to just non-degenerate as defined earlier), and in
such case the proofwould not need to invoke [15].As a second piece of information, the
proofs use an important observation due toOliver Petersen, stating that theRiemannian
metric on C given by σ = h + ω ⊗ ω has V as a Killing field, where here h is the
degenerate metric on C inherited from g, and ω is the one-form on C defined by
∇XV =: ω(X)V , (see [11]). This follows from the well known fact that LV h = 0
(holding for anyvector fieldV ) plus the invariance ofω under theflowofV , namely that
LVω = 0. We provide a simple computation of this last invariance in Proposition 3.1.
The Riemannian metric σ is fundamental to describe the orbital types of V , hence of
the null generators, by means of standard results on isometric actions of Lie groups.
So the last pieces of information have to do with that and are the following. The first
is a nice observation in Riemannian geometry, recalled by Isenberg and Moncrief in
[5] (Proposition 1), and stating that the closure of the Abelian group of isometries
generated by V is a compact connected Abelian Lie group G, hence isomorphic to
a torus Tn , with n ≥ 1. We review such argument for the sake of completion. The
second and fourth piece of information is a result about isometric actions by Lie
groups, describing the orbital structure in terms of the so called principal orbits. We
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take this result from [1] and apply it in Theorem 2.4 in the next section. The main
Theorem 1.1 and the main Corollary 1.2 then follow directly applying Theorem 2.4 to
the isometric action of G ∼ T

n on (C, σ ). Theorem 1.1 and Corollary 1.2 are proved
in the third, and last, section.

The results in this paper have also consequences on the number of Tn-symmetries
that the spacetime (M, g) has. Indeed, a recent important result by Petersen and Rácz
has shown that the field V on C (shown to exist in [15]) can be extended to a space-
time Killing field inside the globally hyperbolic region (altogether these two results
answered a conjecture by Isenberg and Moncrief, see [15]). If the spacetime falls into
the class (i), then it is easy to see that there is a T

1 = S
1 spacetime symmetry. On

the other hand, for spacetimes falling into the cases (ii) and (iii), there is instead a
T
2-symmetry as was shown in Corollary 1.1 in [14]. We will show here that in the

last case (iv) there is a T3 symmetry and, furthermore, that the spacetime is a quotient
of the Kasner spacetime as described earlier. As already mentioned, this answers a
question of Isenberg andMoncrief for the so called ergodic Cauchy horizons (see Sect.
D in [11]). The result can be generalised to higher dimensions without difficulty, so
we state and prove it in n + 1.

Corollary 1.3 Let C be an ergodic, compact and non-degenerate Cauchy horizon inside
a time-oriented, n + 1-dimensional vacuum spacetime (M, g). Then, (M, g) is a
quotient of the flat Kasner spacetime (1).

The proof of this corollary is given in the last section.

2 Classification of the orbits of a killing field

Let (M, g) be a d-dimensional smooth compact Riemannian manifold and suppose
V is a Killing vector field. Let ϕ : M × R → M be the smooth flow defined by
V , that is, the solution to the ODE, dϕ(p, z)/dz = V (ϕ(p, z)), ϕ(p, 0) = p, where
z is the parameter of the integral curves of V . For any z ∈ R, let ϕz : M → M
be the diffeomorphism given by ϕz(p) := ϕ(p, z). Since V is a Killing field and
ϕs+z = ϕz ◦ ϕs = ϕs ◦ ϕz , then {ϕz : z ∈ R} is an Abelian subgroup of the group of
isometries I(M) of (M, g).

In the arguments belowwewill use a few times the followingwell known facts. First,
by theMyers-Steenrod theorem, the isometry group of a smooth compact Riemannian
manifold is a compact Lie group [12]. Second, by Cartan’s theorem, a closed subgroup
of a compact Lie group is a Lie group, (see Theorem 20.12 in [7]). Third, by the
classification theorem for Abelian Lie groups, an Abelian connected and compact Lie
group is isomorphic to a torus, (see, Theorem 1.41 in [1]). Finally, and fourth, the orbit
of a point by the action of a compact Lie group on a complete manifold, is always an
embedded submanifold [1].

We denote by cl(A) the closure of a subset A of a manifold.

Proposition 2.1 (From [5]) Let H be an Abelian connected subgroup of a compact
Lie group G. Then cl(H) is an Abelian, connected, compact Lie subgroup of G, hence
isomorphic to T

n, for some n ≥ 1.
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Proof Since the closure of a connected set is connected, then cl(H) is connected.
As G is compact and cl(H) is closed then cl(H) is compact. Let g = limi→∞ gi
and h = limi→∞ hi with gi ∈ H , and hi ∈ H . Then, since the group is Abelian and
multiplication is continuous we have hg = gh = limi→∞ gihi ∈ cl(H). Hence cl(H)

is an Abelian subgroup of G. Thus cl(H) is a compact, connected Abelian subgroup
of G, hence a Lie group and thus isomorphic to Tn . ��

If H is a group acting over a Riemannian manifold (M, g), then the H -orbit of a
point p ∈ M , {h.p : h ∈ H}, will be denoted by OH (p). Its isotropy group at p,
{h ∈ H : h.p = p}, will be denoted by Hp.

The following proposition is well known but we include the proof for the sake of
completeness.

Proposition 2.2 Suppose that H is a compact connected abelian subgroup of I(M)

acting on (M, g) transitively. Then, (M, g) is a flat torus1.

Proof First note that Hp = Hq for any p and q in M . Indeed, if h.p = p and q = g.p
then h.q = h.(g.p) = (h.g).p = (g.h).p = g.(h.p) = g.p = q so h ∈ Hq . Thus
Hp ⊂ Hq , and reversing the role of p and q, we get Hp = Hq . Hence H/Hp acts
freely and transitively by isometries on (M, g). Now, H/Hp is a compact, connected
and Abelian Lie group, hence isomorphic to Tn for some n ≥ 1. We can then say that
T
n = S

1
θ1

× . . . × S
1
θn

acts freely and transitively on (M, g) by isometries. Denote
� := (θ1, . . . , θn). Fixed �, the map p → �.p is an isometry, therefore the vector
fields Xi , i = 1, . . . , n, on M , given by,

Xi (p) = d

dθi
�.p

∣
∣
∣
∣
�=0

, (2)

are Killing fields. Slightly abusing notation, we compute,

d

dθi
�.p = Xi (�.p) = dp�(Xi (p)). (3)

In particular, if Xi (p) = 0 at some p, then Xi is identically zero on M by the last
equality. In such case, the map θi → θi .p is constant by the first equality, i.e. θi .p = p
for all θi , contradicting that the action is free. Now, the result of moving p by Xi an
amount θi , and then by X j an amount θ j , is θ jθi .p, whereas the result of moving
p first by X j and then by Xi is θiθ j .p. Since T

n is abelian we conclude that the
Killing fields Xi and X j commute, for all i, j . Using (3) again, it is deduced that the
X1(p), . . . , Xn(p) are linearly independent at all p. They define thus local Euclidean
coordinates systems, proving that (M, g) is flat. Finally, the map T

n → M , given by
� → �.p is bijective and non-singular, showing that M is diffeomorphic to Tn . ��
Proposition 2.3 Let (M, g) be a smooth compact Riemannian manifold. Let H be a
subgroup of I(M), and let p be a point in M. Then,

Ocl(H)(p) = cl(OH (p)). (4)

1 That is, the quotient of Rn by a lattice.
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Furthermore, if H is connected and Abelian, then for any p ∈ M,Ocl(H)(p) is either
a point or an embedded flat torus. Finally, for any q ∈ Ocl(H)(p), the orbit OH (q) is
dense in Ocl(H)(p).

Proof Ocl(H)(p) is closed because cl(H) is compact and group multiplication is con-
tinuous. Then, as OH (p) ⊂ Ocl(H)(p) it follows that cl(OH (p)) ⊂ cl(Ocl(H)(p)) =
Ocl(H)(p). To prove the other inclusion, fix q ∈ Ocl(H)(p). Let σ ∈ cl(H) such that
σ.p = q and let σi ∈ H such that limi→∞ σi = σ . Since the action of I(M) on M is
continuous then σi .p → σ.p = q. Therefore q ∈ cl(OH (p)).

If H is connected and Abelian then cl(H) is compact, connected and Abelian
and therefore isomorphic to a torus Tn . Now, for any p, cl(H) acts on Ocl(H)(p) by
isometries and transitively and by Proposition 2.2,Ocl(H)(p) is either a point or a flat
embedded torus.

Finally, if q ∈ Ocl(H)(p) then there is σi ∈ H such that σi .p → q, so we
have σ−1

i .q → p. Therefore p ∈ cl(OH (q)) = Ocl(H)(q) and thus Ocl(H)(p) ⊂
Ocl(H)(q) ⊂ Ocl(H)(p). ��

We recall now from [1] the relevant notion of principal orbits and their properties.
Let H be a Lie subgroup of I(M) and p a point in M . Let TpOH (p) be the tangent
space to OH (p) at p and let Np be the perpendicular complement, so that TpM =
TpOH (p) ⊕ Np. Now, given h ∈ H , the map p → h.p is an isometry of (M, g). If
h ∈ Hp then h.p = p and so dh. : TpM → TpM is a linear isometry. As TpOH (p)
is invariant, then so is Np. This induces an action Hp × Np → Np called the slice
representation. If this action is trivial then the orbit OH (p) is said to be principal
(see Definition 3.73 and exercise 3.77 in [1]). Principal orbits exist, have maximal
dimension among the orbits of H and the set M0 defined as the union of such orbits
is open and dense in M . Moreover, M0/H ⊂ M/H is a connected manifold. This is
the Principal Orbit Theorem and a proof of it can be found in Theorem 3.82 of [1].
An orbit that is not principal but has the same dimension as principal orbits is said
exceptional. A non-exceptional and non-principal orbit is said to be singular.

We are now ready to prove the main theorem of this section.

Theorem 2.4 Let (M, g) be a smooth, 3-dimensional, compact and connected Rie-
mannian manifold. Suppose that V is a nowhere vanishing Killing vector field. Then,
either,

(I) every orbit is closed, or,
(II) there are only two closed orbits, and every other orbit densely fills an embedded

two-torus, or,
(III) every orbit densely fills an embedded two-torus, or,
(IV) every orbit is dense in M.

Proof Let H be connected Abelian group generated by V . Let cl(H) =: G that we
know is isomorphic to Tn , for some n ≥ 1. Observe that as V has no zeros then every
G-orbit has dimension at least one.

If the dimension of the principal G-orbits is one, then all the G-orbits have dimen-
sion one and are diffeomorphic to S

1. Hence the H -orbits are closed and we are in
case (I).
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If the dimension of the principal G-orbits is two, then M0/G is a connected one-
manifold, therefore diffeomorphic to either (0, 1) or S1, and dense in M/G. Also, by
Proposition 2.3 the principal fibers are two-tori. If M0/G is diffeomoprhic to S1 then
every G-orbit is principal, therefore every H -orbit is dense in a two-tori, and we are
in case (III).

Let us assume that M0/G is diffeomorphic to (0, 1). We claim that in this case
every non-principal orbit must be diffeomorphic to S1 (hence singular) and there must
be only two of them. Suppose thatOG(p) is a non-principal G-orbit of dimension two
(i.e. a regular orbit). By Proposition 2.3,OG(p) is an embedded two-torus. Let ε > 0
be small enough that the set of points at a distance ε from OG(p) are two embedded
tori, Tε and T−ε , at both sides ofOG(p). Assume that, in addition, ε is chosen such that
one of the tori contains a point q whoseG-orbit is principal (recall M0 is dense). Then,
such orbit must be either Tε or T−ε because Tε ∪ T−ε is preserved under the action of
the isometries of G. Assume then that Tε is principal. Let γ be a length minimizing
geodesic between OG(p) and Tε , starting at a point r ∈ OG(p) and ending at a point
sε ∈ Tε . If OG(p) is non-principal then there must exist g ∈ G sending γ ′(0) to
−γ ′(0), hence sending sε to a point s−ε in T−ε . Therefore Tε itself is not a G-orbit,
reaching a contradiction. Thus, every non-principal orbit is diffeomorphic to S

1. Let
us see that there must be only two of them. LetOG(p) be an orbit diffeomorphic to S1.
Let ε0 > 0 be small enough that for any ε ∈ (0, ε0] the set of points at a distance ε from
OG(p) is an embedded two-torus Tε . Say ε0 is chosen such that Tε0 is principal. Then,
for any 0 < δ < ε0 let γ be a length minimizing geodesic between Tε0 and Tε=ε0−δ ,
starting at r ∈ Tε0 and ending at s ∈ Tε . As the point r orbits all over Tε0 under the
action of G, the point s orbits all over Tε . Thus, the orbit of s is two-dimensional,
hence principal. It follows that near OG(p) every orbit is principal. In particular, the
G-quotient of the ε0-tubular neighbourhood of OG(p) is naturally diffeomorphic to
[0, ε0). We conclude that M/G must be diffeomorphic to [0, 1] and that there are only
two singular orbits, one over {0} and the other over {1}. We are thus in case (II).

If the dimension of the principal orbits is three then there is only one principal
orbit equal to M itself and must be a flat three-torus by Proposition 2.3. Also by this
proposition, every H -orbit is dense in M . ��

As a consequence of the arguments shown in the proof, the topology of such spaces
can be classified. For the definition of Seifert manifold, lens space, and torus bundle
see [17].

Corollary 2.5 Under the hypothesis and notation of Theorem 2.4, we obtain the fol-
lowing topological classification.

(I’) If (I) holds, then M is a Seifert manifold.
(II’) If (II) holds, then M is a lens space,
(III’) If (III) holds, then M is a T2-bundle over S1,
(IV’) If (IV) holds, M is a three-torus T3.

Proof Cases (I), (III), and (IV) are immediate. Also, if (II) holds, then M results after
gluing the two solid tori π−1([0, 1/2]) and π−1([1/2, 1]) along their boundaries and
is therefore a lens space. ��
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3 Proofs of themain results

As earlier let C be a Cauchy horizon inside a smooth, vacuum, time-oriented n + 1-
dimensional spacetime (M, g). Assume that C is compact and non-degenerate. Let h
denote the degenerate metric on C inherited from g.

Let us mention a few well known facts about null vector fields Z , tangent to C.
First, since C is totally geodesic, then given any such nowhere zero Z we have,

g(∇X Z ,Y ) = 0, (5)

for any X ,Y ∈ TC. This permits the definition of a smooth one-form ωZ by,

∇X Z =: ωZ (X)Z , (6)

for every X in TC. A crucial property of the forms ωZ is that they are null closed,
meaning that,

dωZ (Z , ·) = 0. (7)

(see for instance [11] and references therein). Second, for any such nowhere zero Z it
is,

LZh = 0, (8)

which follows after,

LZh(X ,Y ) = g(ωZ (X)Z ,Y ) + g(ωZ (Y ), X) = 0, (9)

for any X and Y tangent to C.
Now, it was recently shown in [15] that one can always find a smooth, nowhere

vanishing null vector field V in C such that,

∇V V = −V . (10)

This implies that ωV (V ) = −1, and therefore that ωV is nowhere vanishing. Denote
ω = ωV . The Petersen’s metric σ (see (5) in [13]) is the Riemannian metric over C
defined by,

σ(X ,Y ) = h(X ,Y ) + ω(X)ω(Y ). (11)

The crucial fact proved by Petersen is that V is a Killing field for σ . A shorter proof of
this fact than the one presented in Theorem 1.14 of [13] can be given using Cartan’s
formula as shown in the next Proposition.

Proposition 3.1 (Petersen [13]) The vector field V is a Killing vector field of (C, σ ).
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Proof Applying Cartan’s formula, for any pair of vector fields X ,Y ∈ TC we find,

(LV σ)(X ,Y ) = (LV h)(X ,Y ) + (LV (ωω))(X ,Y )

= (LVω)ω(X ,Y ) + ω(LVω)(X ,Y )

= [(

(ιV ◦ d)ω + (d ◦ ιV )ω
)

ω + ω
(

(ιV ◦ d)ω + (d ◦ ιV )ω
)]

(X ,Y )

= [

dω(V , X) + d(ω(V ))(X)
]

ω(Y ) + ω(X)
[

dω(V ,Y ) + d(ω(V ))(Y )
]

= 0, (12)

where the second equality follows from (9) and the last equality follows from the
properties of the one-form ω previously discussed. ��

The proof of the Theorem 1.1 and of Corollary 1.2 is now straightforward from
Proposition 3.1 and from the Riemannian results previously obtained.

Proof of Theorem 1.1 and Corollary 1.2 Theorem 1.1 follows by applying Theorem 2.4
to (C, σ ) and to the Killing vector field V . Corollary 1.2 now also follows immediately
from 2.5, without any further changes.

Finally, we prove Corollary 1.3.

Proof of Corollary 1.3 We use Theorem 1.2 in [14] to extend the vector field V to a
Killing vector field for g in the globally hyperbolic region H of M \C, (we denote the
extension still with the letter V ). Let Z be the only past directed null vector field on C
perpendicular to the kernel of ω at every point p ∈ C, and such that g(Z , V ) = 1. The
field Z points into H . AsLV V = 0,LVω = 0 andLV g = 0 it follows thatLV Z = 0.

Given p ∈ C let γp(s) be the null geodesic starting at p with velocity Z(p). For
τ small, let ψτ : C → M be defined by ψτ (p) = γp(τ ). If τ0 is small enough then
� := ψτ0(C) is an embeddedhypersurface in H andψτ0 : C → � is a diffeomorphism.
As V is a spacetime Killing field and Z is invariant under the flow of V , it follows that
dψτ0(V (p)) = V (ψτ0(p)), (recall that, as V is a Killing field, it takes geodesics into
geodesics). In particular V is tangent to�. Hence, if the orbits of V on C are dense, so
are the orbits of V on �. As V is spacelike near C in H (see, [14]), it follows directly
that� (for τ0 small enough) is a spacelike hypersurface. Since V is a spacetimeKilling
field and leaves � invariant, then it is also a Killing field of the (Riemannian) metric
h that g induces on �. Thus, by Proposition 2.2, we conclude that Tn acts freely and
isometrically on (�; h), and that (�, h) is a flat n-torus. Since theTn- isometries come
from the spacetimes symmetries induced by V , it follows that the second fundamental
form K of � is also invariant under the action of Tn .

Now, any T
n-invariant vacuum initial data (� ∼ T

n; h, K ) gives rise to a Kasner
spacetime but the only Kasner spacetime with a Cauchy horizon is the flat Kasner.
The Corollary follows.

Acknowledgements The second author is greatly indebted to Oliver Petersen for letting him know about
the important Riemannian metric σ on C invariant under the flow of the vector field V normalizing the
surface gravity to a constant.
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