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Abstract
We generalize Birkhoff’s Theorem in the following fashion. We find necessary and
sufficient conditions for any spherically symmetric space-time to be static in terms of
the eigenvalues of the stress-energy tensor. In particular, we generalize the Tolman–
Oppenheimer–Volkoff equation and prove that Birkhoff’s theorem holds under the
weaker hypothesis of no pressure (with respect to an appropriate frame.) We provide
equations that show how the coefficients of the metric relate to the eigenvalues of
the stress-energy tensor. These involve integrals that are simple functions of those
eigenvalues. We also determine among all static spherically symmetric space–times
those that are asymptotically flat. A few examples are presented taking advantage of
the results. The calculations are done by viewing the space–times as warped products
and the computations are done using Cartan’s moving frames approach.
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1 Introduction

Birkhoff’s Theorem deals with spherically symmetric space–times. It asserts that if the
stress-energy tensor T = 0, then such a space–time is static. This further implies the
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existence of additional symmetries and, if it makes sense to talk about space at infinity,
that the space–time is asymptotically flat. The most famous example of a spherically
symmetric metric is the Schwarzschild metric, which has a trivial stress-energy tensor
and, of course, is static. There are other examples of spherically symmetric space–time
metrics that are static such as the de Sitter space–timewithin an appropriately restricted
domain and the Reissner–Nordström space–time. The former is not asymptotically flat
but the latter is.

There have been many generalizations of Birkhoff’s Theorem, most from the fol-
lowing viewpoint: “Given a space–time acted upon by a group of symmetries, under
what conditions do additional symmetries exist?” A number of papers, for example
Bokhari et al. [1] and Shanarii et al. [5], look for necessary conditions on static spher-
ically symmetric space–times in order that there exist additional symmetries. Others,
such as Szenthe [6] look for sufficient conditions for the existence of a Killing vector
field orthogonal to the orbits of the action of a given symmetry group. In fact, the
paper by Szenthe gives a thorough review of the literature on that approach to the
generalization of Birkhoff’s Theorem.

Approaches such these just mentioned focus on the metric. Other approaches to
generalizing Birkhoff look for conditions on the stress-energy tensorT of a spherically
symmetric space–time in order for it to be static. Wald [7], pp. 125–128, examines
that situation when the stress-energy tensor is that of a perfect fluid and derives the
Tolman–Oppenheimer–Volkoff (TOV) equation. Moreover, in a paper by Cattoen et al.
[2] an anisotropic version of the TOV equation is derived. These TOV equations arise
as necessary conditions because, in both cases, it is assumed from the outset that the
metric is static.

Our goal is to find necessary and sufficient conditions on T for a spherically sym-
metric space–time to be static and show exactly how such metrics relate to T. Then,
among those space–times that are static, we further determine which are asymptot-
ically flat. The paper is organized as follows: In Sect. 2 we introduce the moving
frame notation we use throughout the paper and present some preliminary calcula-
tions; in particular, we get formulas for the Ricci forms associated to a moving frame.
In Sect. 3, we use the formulas for the Ricci forms to prove the standard Birkhoff
Theorem in order to familiarize the reader to the techniques about to be employed in
the generalizations. Section 4 is devoted to our first generalization where we consider
stress-energy transformations which have at most 2 distinct eigenvalues. Section 5
considers the most general situation where the stress-energy transformation may have
up to 3 distinct eigenvalues. It is in this section that we obtain a generalization of the
TOV equation and also prove, as a corollary of the main theorem, the following result:
If a spherically symmetric space–time has no pressures with respect to what we call
the Birkhoff framing, then it has no energy density with respect to that framing, and
thus is a vacuum. Because of this result, the original Birkhoff Theorem holds under a
weaker assumption; this is a second corollary. A third corollary to the main theorem
asserts that spherically symmetric dust cannot be static. Finally, Sect. 6 is devoted to
determining which static spherically symmetric space–times are asymptotically flat.

Lastly, we recommend the paper by Szenthe [6] for a through presentation of dif-
ferential topological aspects of the problem under consideration and hence as a good
jumping off point for what is to follow.
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2 Preliminary calculations

Let us denote by X a space–time which is spherically symmetric. As a consequence
of the spherical symmetry, there exists a fiber bundle β : X → B whose fibers are
the 2-spheres that are the orbits of the isometry group that accounts for the spherically
symmetric structure. We may assume, without loss of generality that B is diffeomor-
phic to an open ball and thus X = B × S2. This is certainly true locally. Moreover,
due to the fact that the symmetries are isometries and the orbits are spacial, the metric
ḡ on X projects to a nonsingular metric g on B which has index 1.

Through each event x ∈ X there is a round 2-sphere of curvature 1
r2
. This determines

a function r : X → R which we assume is regular; this function projects to a regular
function on B which we also denote by r . We choose r to be a coordinate function on
B. Necessarily there exists a regular function t on B such that dr and dt are orthogonal
with respect to g. We then have a coordinate system t, r on B and we finally assume
that the image of B under (t, r) : B → R

2 is a rectangle (t0, t1) × (r0, r1), where
0 < t0 < t1 ≤ ∞ and 0 < r0 < r1 ≤ ∞. Again this is always true locally, so we have
not imposed any severe restrictions by these assumptions. We finally observe that X
is a warped product; in fact

X = B ×r S2,

in the notation of O’Neill [4] . Thus, if we let h denote themetric on the round 2-sphere
of radius 1,

ḡ = g + r2h.

We intend to stay faithful to O’Neill’s terminology throughout this paper.
Wewill let R̄ denote the Ricci curvature tensor on X viewed as a symmetric bilinear

form. This notation is convenient and will not lead to any confusion since we can deal
with the Riemann curvature tensor without introducing a symbol to represent it. Will
we use R to denote the Ricci tensor for B, and, of course, the Ricci tensor for S2 is
h. Our first goal is to obtain formulas for R̄ since that is intimately connected to T by
means of Einstein’s equation.

We will be working with moving frames. Thus we introduce all of the following,
all of which are defined locally. Let aα, α = 0, 1, be an orthonormal frame field on
B with a0 time-like. We denote its dual frame field by θα . Let bμ,μ = 2, 3, be an
orthonormal frame field on S2 with dual frame field ψμ. Then, there exist connection
forms θα

β on B such that

dθα = −θα
β ∧ θβ.

If �α
β are the curvature forms associated with θα , then

�α
β = dθα

β .
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In addition, there exist connection forms ψμ
ν on S2 such that

dψμ = −ψμ
ν ∧ ψν

and curvature forms �
μ
ν , where

�μ
ν = dψμ

ν = ψμ ∧ ψν.

On X , we also let aα and bμ stand for the horizontal and vertical vector fields that
project to aα on B and bμ on S

2, respectively. In addition, the pullbacks of all the
forms introduced above to X by means of projection mappings onto B and S2 will be
denoted by the same symbols. Define vector fields āα and b̄μ on X by

āα = aα and b̄μ = 1

r
bμ.

Then āα, b̄μ is an orthonormal frame on X with dual frame θ̄ α, ψ̄μ where

θ̄ α = θα and ψ̄μ = rψμ.

We introduce connection forms θ̄ α
β, ψ̄μ

ν, ω̄
α

μ and ω̄μ
α where

d θ̄ α = −θ̄ α
β ∧ θ̄ β − ω̄α

μ ∧ ψ̄μ,

dψ̄μ = −ω̄μ
α ∧ θ̄ α − ψ̄μ

ν ∧ ψ̄ν

and note that ω̄α
μ = ±ω̄μ

α , the sign depending on the metrics g = θαθα on B and
h = ψμψμ on S

2. We now compute θ̄ α
β, ψ̄μ

ν, ω̄
μ

α and ω̄α
μ. We note that

d θ̄ α = dθα = −θα
β ∧ θβ = −θα

β ∧ θ̄ β .

This implies that

ω̄α
μ ∧ ψ̄μ = 0.

If we define rα by dr = rαθα , then

dψ̄μ = d(rψμ) = rαθα ∧ ψμ − rψμ
ν ∧ ψν

= −rαψμ ∧ θ̄ α − ψμ
ν ∧ ψ̄ν .

From these last two equations we see that

θ̄ α
β = θα

β , ψ̄μ
ν = ψμ

ν and ω̄μ
α = rαψμ = rα

r
ψ̄μ.
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It then follows that

ω̄α
μ = −rα

r
ψ̄μ

since

ω̄α
μ = ḡαβω̄βμ = −ḡαβω̄μβ = −ḡαβ ḡμνω̄

ν
β

= −ḡαβ ḡμν

rβ

r
ψ̄ν = −rα

r
ψ̄ν,

keeping in mind that ḡαμ = 0.
Before we proceed we discuss some notation. Let S be a symmetric bilinear form

on a vector space V with frame ei and dual frame ωi . We may write

S = Si jω
iω j , with Si j = S ji ,

where we regard this as a the tensor product as opposed to a symmetric product. We
may introduce 1-forms Si by setting

Si = Si jω
j

and write

S = Siω
i .

The 1-forms Si are characterized by the fact that

S = Siω
i and Si (e j ) = S j (ei )

and will be referred to as S 1-forms (without explicit mention of the frame ei .)
We illustrate the use of this notation in two cases for tensor fields on a Semi-

Riemannian manifold M with frame field ei and dual frame field ωi .
First, we consider a smooth function f : M → R. The Hessian of f , denoted H f ,

is defined by H f = fi jω
iω j , where fi j satisfies the following:

fi jω
j = d fi − f jω

j
i and fi j = f j i .

Necessarily,

(H f )i = fi jω
j .

Second, we consider the Ricci tensor R on M . If 
i
j are the curvature forms

associated with the given frame field, then it is straightforward to show that

R j = ei�
i
j .
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We now compute curvatures.

�̄α
β = d θ̄ α

β + θ̄ α
γ ∧ θ̄

γ
β + ω̄α

μ ∧ ω̄
μ
β

= �α
β − rα

r
ψ̄μ ∧ rβ

r
ψ̄μ

= �α
β.

�̄μ
ν = dψ̄μ

ν + ω̄μ
α ∧ ω̄α

ν + ψ̄
μ
λ ∧ ψ̄λ

ν

= �μ
ν − rαrα

r2
ψ̄μ ∧ ψ̄ν

= �μ
ν − ||∇r ||2

r2
ψ̄μ ∧ ψ̄ν .


̄μ
α = dω̄μ

α + ω̄
μ
β ∧ θ̄ β

α + ψ̄μ
ν ∧ ω̄ν

α

= d(rαψμ) + rβ

r
ψ̄μ ∧ θβ

α + ψμ
ν ∧ rαψν

= drα ∧ ψμ + rαdψμ + rαψμ
ν ∧ ψν − rβθβ

α ∧ ψμ

= 1

r
rαβ θ̄β ∧ ψ̄μ

= −ψ̄μ ∧ 1

r
(Hr)α.

Of course,


̄α
μ = −1

r
(Hr)α ∧ ψ̄μ.

Next we compute the Ricci forms ρ̄α and ρ̄μ on X . Let ρα and ρμ = ψμ denote
the Ricci forms on B and S

2, respectively.

ρ̄α = āβ��̄β
α + b̄μ�
̄μ

α

= aβ��β
α + b̄μ�

(
1

r
rαβ θ̄β ∧ ψ̄μ

)

= ρα − 2

r
rαβ θ̄β

= ρα − 2

r
(Hr)α.

ρ̄μ = āα�
̄α
μ + b̄ν��̄ν

μ

= āα�
(
1

r
ψ̄μ ∧ (Hr)α

)
+ b̄ν�

(
�ν

μ − ||∇r ||2
r2

ψ̄ν ∧ ψ̄μ

)
.

= −1

r
aα�(Hr)αψ̄μ + 1

r
bν��ν

μ − ||∇r ||2
r2

(2ψ̄μ − h̄μνψ̄
ν)

= 1

r
ρμ −

(
�r

r
+ ||∇r ||2

r2

)
ψ̄μ
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=
(
1

r2
− �r

r
− ||∇r ||2

r2

)
ψ̄μ.

To finish our computations of the Ricci forms we need to consider the metric on B
in more detail. Thus we set

g = −e2dt2 + g2dr2,

where we assume are that e and g are smooth and take on only positive values. Clearly,

θ0 = edt, θ0 = −edt and θ1 = θ1 = gdr .

From the assumptions just made we see that dr = 1
g θ1 which immediately implies

that r0 = 0 and r1 = 1
g . Thus

||∇r ||2 = 1

g2 .

In addition,

(Hr)0 = −1

g
θ10 and (Hr)1 = d

(
1

g

)
= − 1

g2 dg.

We compute θ01. Since θ01 = θ10, and

dθ0 = d(edt) = er dr ∧ dt = − er

eg
θ0 ∧ θ1,

dθ1 = d(gdr) = gt dt ∧ dr = − gt

eg
θ1 ∧ θ0

we see that

θ01 = er

eg
θ0 + gt

eg
θ1.

Noting that

dg = gt dt + gr dr = gt

e
θ0 + gr

g
θ1

de = et dt + er dr = et

e
θ0 + er

g
θ1

we obtain

g0 = gt

e
, g1 = gr

g
, e0 = et

e
and e1 = er

g
.

123
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Hence

θ01 = e1
e

θ0 + g0
g

θ1 = (ln e)1θ
0 + (ln g)0θ

1.

As a consequence of what we just observed we have the following:

(Hr)0 = −1

g

(
(ln e)1θ

0 + (ln g)0θ
1
)
and (Hr)1 = −1

g

(
(ln g)0θ

0 + (ln g)1θ
1
)

and, moreover,

�r = −(Hr)00 + (Hr)11 = 1

g
[(ln e)1 − (ln g)1] = 1

g

(
ln

e

g

)
1
.

In terms of coordinates

�r = 1

g2

(
ln

e

g

)
r
.

Since ρα = K Bθα , where K B is the sectional curvature of B, we now compute K B .
We do this by computing �0

1.

�̄0
1 = d θ̄0 1 = d

(
(ln e)1θ

0 + (ln g)0θ
1
)

= (ln e)11θ
1 ∧ θ0 − (ln e)1θ

0
1 ∧ θ1 + (ln g)00θ

0 ∧ θ1 − (ln g)0θ
1
0 ∧ θ0

=
(
−(ln e)11 − (ln e)1

2 + (ln g)00 + (ln g)0
2
)

θ0 ∧ θ1

=
(

−e11
e

+ g00
g

)
θ0 ∧ θ1.

Thus

K B = −e11
e

+ g00
g

= − 1

eg

[(
er

g

)
r
−

(gt

e

)
t

]
.

Substituting formulas for ρα = K Bθα, (Hr)α,�r and ||∇r ||2 into the formulas
for the Ricci forms we get the following:

ρ̄0 =
(

−K B + 2

rg
(ln e)1

)
θ̄0 + 2

rg
(ln g)0θ̄

1

ρ̄1 = 2

rg
(ln g)0θ̄

0 +
(

K B + 2

rg
(ln g)1

)
θ̄1

ρ̄μ =
(
1

r2

(
1 − 1

g2

)
− 1

rg

(
ln

e

g

)
1

)
ψ̄μ
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3 Birkhoff’s Theorem

Since we have the machinery to prove Birkhoff’s Theorem, we will. As is well known,
if T = 0, then the Ricci tensor R̄ on X is trivial. This implies that the Ricci forms
must be trivial as well. This gives us the following four equations:

K B = 2

rg
(ln e)1 (1)

K B = − 2

rg
(ln g)1 (2)

2

rg
(ln g)0 = 0 (3)

1

r2

(
1 − 1

g2

)
− 1

rg

(
ln

e

g

)
1

= 0 (4)

From Eq. (3) we immediately see that g = g(r), that is, g is a function of r only.
Equations (1) and (2) imply that (ln eg)1 = 0. Thus, eg(r) = f (t) and we conclude
that e = f (t)

g(r)
, where f (t) > 0, for all t . Thus we introduce a new time variable τ

where dτ = f (t)dt and the metric on B takes the form

− 1

g2 dτ 2 + g2dr2.

Noting that e = 1
g in the new τ, r coordinates and introducing the function h = e2,

Eq. (4) becomes

1

r2
(1 − h) − h

r
(ln h)r = 0,

that is,

rhr + h = 1. (5)

This is equivalent to (rh)r = 1 and leads immediately to

h = 1 + c

r
,

where c is the constant of integration.
Note however that we have not yet established that Eqs. (1) and (2) are satisfied by

our solution

ḡ = −hdτ 2 + h−1dr2 + r2dσ 2,

where we have introduced dσ 2 for the metric on S
2.
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Since we know that the difference of these two equations is satisfied, it will suffice
to show that Eq. (1) is. First, we express K B in terms of h.

K B = −
(

er

g

)
r

= −1

2
hrr .

Since

2

rg
(ln e)1 = 1

rg2 (ln e2)r = 1

r
hr .

Equation (1) may be written

rhrr + 2hr = 0.

This follows immediately from Eq. (5).
Thus under the assumptions made we find the metric has the following representa-

tion:

ḡ = −r + c

r
dτ 2 + r

r + c
dr2 + r2dσ 2.

This is clearly a static metric since ∂
∂τ

is an irrotational Killing vector field. If r1 = ∞
then the metric is also asymptotically flat. (We will precisely define what we mean
by “asymptotically flat” in Sect. 6.) We also note that such a spherically symmetric
space–time must have trivial Ricci curvature and hence trivial stress-energy tensor.

If c > 0 then the metric ḡ is defined for all real r and becomes singular as r
approaches 0. If c = 0, X is flat; in fact, it is open submanifold of Minkowski space–
time. If c < 0, then one customarily sets c = −2M (where M > 0) and notes that the
metric is defined only for r > 2M . In this last case we have obtained the Schwarzchild
metric.

We close with a statement of what we have proved.

Birkhoff’s Theorem If a space–time has spherical spatial symmetry and vanishing
Ricci curvature, then is must be static and (assuming r1 = ∞ ) it must also be
asymptotically flat. If the metic is singular as r → r0 > 0 (and r1 = ∞) then the
space–time metric is the Schwarzchild metric.

4 Generalizing Birkhoff

Let TS X be the vector bundle of 2-dimensional vector spaces tangent to the spatial
symmetry spheres and TR X be the vector bundle that is the orthogonal complement of
TS X . We let ḡS and TS denote the restrictions of ḡ and T to TS X ; similarly, let ḡR and
TR denote the restriction of ḡ and T to TR X . Because of the symmetry assumption,
there exists a function λ : X → R (that is the pullback of a function on B) such that
TS = λḡS . As an operator this means thatT# (the linear transformation associated toT
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by means of the metric) has any fiber of TS X as an invariant subspace. Thus, the fibers
of TR X , being the orthogonal complements of the fibers of TS M , must be invariant
subspaces of T# as well. We will assume that TR = −μḡR , where μ : X → R

(which also must be the pullback of a function defined on B.) As a consequence of
that assumption,

T = −μḡR + λḡS .

This section is devoted to studying space–timeswhich have spherical spatial symmetry
and stress-energy tensors of this sort. The discussion given below mimics the proof of
Birkhoff’s Theorem.

A straightforward calculation, using Einstein’s equation, implies

R̄ = −8πλḡR + 8πμḡS .

This last equation is equivalent to ρ̄α = −8πλ θ̄α and ρ̄μ = 8πμ ψ̄μ. Hence

K B − 2

rg
(ln e)1 = −8πλ (6)

K B + 2

rg
(ln g)1 = −8πλ (7)

2

rg
(ln g)0 = 0 (8)

1

r2

(
1 − 1

g2

)
− 1

rg

(
ln

e

g

)
1

= 8πμ (9)

Half the sum and difference of Eqs. (6) and (7) will be more useful. They follow.

1

rg
(ln eg)1 = 0 (10)

K B + 1

rg

(
ln

g

e

)
1

= −8πλ (11)

We begin by introducing the function h : X → R, where h = 1
g2
. We first observe

that Eq. (8) is equivalent to asserting h = h(r). In light of that fact, Eq. (10) is
equivalent to the following: there exists a time coordinate τ so that relative to the τ, r
coordinate system e2 = h and g2 = h−1, that is, there exists coordinates τ, r such
that

ḡ = −h(r)dτ 2 + h(r)−1dr2 + r2dσ 2. (12)

Clearly the metric in Eq. (12) is that of a static space–time. In fact, it is the form of all
the metrics mentioned in the introduction.
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Equation (9) written in terms of h becomes

1

r2
(1 − h) − 1

r
hr = 8πμ,

which can be rewritten as

(rh)r = 1 − 8πr2μ. (13)

Given that h = h(r) > 0, the preceding equation is equivalent to stating thatμ = μ(r),
there exist c and r∗ ∈ (r0, r1) such that

h(r) = r + c

r
− 2

r

∫ r

r∗
4πx2μ(x)dx (14)

and
∫ r

r∗
4πx2μ(x)dx <

r + c

2
, for r ∈ (r0, r1). (15)

We only need to consider equation (11). It clearly corresponds to a condition on μ

and λ. In terms of h, Eq. (11) becomes

−1

2
hrr − 1

r
hr = −8πλ,

which can be rewritten

(rh)rr = 16πrλ.

Because of Eq. (13), this last equation is equivalent to

λ = −μ − r

2
μr . (16)

As a consequence of the preceding discussion we have our first generalization of
Birkhoff’s Theorem.

Theorem 1 If X is a spherically symmetric space–time with metric ḡ and stress-energy
tensor T = −μḡR + λḡS, then μ = μ(r), there exist c and r∗ ∈ (r0, r1) such that μ

satisfies inequality (15), Eq. (16) holds and there exists a time coordinate τ so that
the metric ḡ is given by Eq. (12) with h defined by (14). Conversely, if X is a space–
time with metric ḡ given by Eq. (12) where h is defined by Eq. (14), with μ = μ(r)

necessarily satisfying inequality (15) and λ is given by Eq. (16), then X with metric ḡ
is spherically symmetric and has stress-energy tensor T = −μḡR + λḡS.

Obviously, a metric ḡ given by Eq. (12) where h satisfies Eq. (14) is static and any
λ given by Eq. (16) satisfies λ = λ(r) when μ = μ(r). We see we have such metrics
for every μ = μ(r) which satisfies (15). We therefore consider some examples.
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Example 1 Suppose T is a multiple of the metric, that is, λ = −μ throughout X . It
follows from Theorem 1 that μ and λ are constants. If we suppose that r0 = 0, c = 0
and r∗ = 0 (which does not present any problems given the form of the integrand)
in order that the metric extends to the world line of the center of symmetry, then

inequality (15) implies r1 <
√

3
8πμ

. We get a de-Sitter metric if μ > 0, a Minkowski

space if μ = 0 and an anti-de Sitter space if μ < 0.

Example 2 Suppose r0 = 0, r1 = ∞ and assume ρ and b are positive constants. Set

μ = ρ for 0 < r < b <

√
3

8πρ
and μ = 0 for r ≥ b.

We choose c = r∗ = 0, and then note r1 = ∞ is allowed in this situation since
inequality (15) is satisfied for all r > 0. In addition, by Eq. (16)

λ = −μ for r 
= b and λ(b) = bρ

2
δr−b.

Introducing m(r) = 4
3πr3ρ, which can be regarded as some sort of mass of the body

bounded by the 2-sphere of curvature 1
r2

with density ρ, then

h(r) = 1 − 2m(r)

r
for r < b and h(r) = 1 − 2m(b)

r
for r ≥ b.

This metric is the static approximation [3] of the simplest GEneric Object of Dark
Energy (GEODE).

Example 3 Suppose μ is constant and r0 = r∗ > 0. Let c − 8πμ
3 r30 = RS , which we

regard as the Schwarzchild radius, and� = 8πμ, whichwe regard as the cosmological
constant. We get the Kottler–Weyl–Trefftz metric for which

h(r) = 1 − RS

r
− �r2

3
.

5 Further generalization

We have been using special frames throughout this paper and at this point we want to
give those frames a name. Recall that r and the direction of ∂

∂t have geometric meaning
and thus physical meaning.

Definition 1 We call an orthonormal frame a Birkhoff frame if the time-like vector of
the frame is a multiple of ∂

∂t and the first spacial vector of the frame is a multiple of
∂
∂r . The coframe dual to this frame is referred to as a Birkhoff coframe.

For a spherically symmetric space–time, we have shown that

T = −μ0θ̄0θ̄
0 + κ(θ̄1θ̄

0 − θ̄0θ̄
1) + μ1θ̄1θ̄

1 + λψ̄νψ̄
ν
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with respect to a Birkhoff coframe. The components μα, λ and κ are pullbacks of
functions on B, i.e., they depend only on t and r . We will understand that unless
specifically restricted to be functions of r these components are to be regarded as
functions of t and r .

It follows from Einstein’s equation that R̄ has the same eigenvectors with respect
to ḡ as T does. By examining the Ricci forms of a spacially symmetric space–time
we see that R̄(ā0.ā1) = 2

rg (ln g)0, where ā0, ā1 are the first two vectors of a Birkhoff

frame. If the metric on X is spherically symmetric and static, then R̄(ā0.ā1) = 0 and
consequently ā0 and ā1 are eigenvectors of R̄ with respect to ḡ. Hence, ā0 and ā1 are
eigenvectors of T with respect to ḡ as well. Obviously, the functions μα and λ depend
only on r and κ = 0. The following has been shown.

Observation If X is a static spherically symmetric space–time, then T is diagonalized
by a Birkhoff frame with components μα = μα(r) and λ = λ(r), i.e., the stress-energy
tensor

T = −μ0(r)θ̄0θ̄
0 + μ1(r)θ̄1θ̄

1 + λ(r)ψ̄νψ̄
ν . (17)

Based on theObservation, a reasonable starting point for any further generalizations
would require that T satisfy Eq. (17). However, are we going to demand anything of
the μα and λ? We will only impose a condition on μ1. In fact, our starting point for
the derivation of our main theorem is the imposition of the following conditions:

(i) X is a spherically symmetric space−time.

(i i) T has the form given in Eq.(17).

(i i i) μ1 = μ1(r).

Because of (i) and (i i), Einstein’s equation yields the following:

1

rg
(ln eg)1 = 4π(μ0 + μ1) (18)

K B + 1

rg

(
ln

g

e

)
1

= −8πλ (19)

2

rg
(ln g)0 = 0 (20)

1

r2

(
1 − 1

g2

)
− 1

rg

(
ln

e

g

)
1

= 4π(μ0 − μ1) (21)

As before, we let h = 1
g2

but also introduce p = eg. (The function p stands for
product not pressure.) Just as we noticed in earlier sections, Eq. (20) is equivalent to
asserting h = h(r). Rewriting Eq. (18) in terms of h and p gives

h (ln p)r = 4πr(μ0 + μ1). (22)
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Moreover, rewriting (21) using h and p, we get the following:

1

r2
(1 − h) − h

r
(ln hp)r = 4π(μ0 − μ1)

1

r2
(1 − h) − 1

r
hr − h

r
(ln p)r = 4π(μ0 − μ1)

Using Eq. (22) to substitute into the third term, this last equation becomes after some
simplification

(rh)r = 1 − 8πr2μ0. (23)

The preceding statement is equivalent to asserting that μ0 = μ0(r), there exists c and
r∗ ∈ (r0, r1) such that

h(r) = r + c

r
− 2

r

∫ r

r∗
4πx2μ0(x)dx . (24)

and

∫ r

r∗
4πx2μ0(x)dx <

r + c

2
, for r ∈ (r0, r1). (25)

Taking into account (i i i), we can now solve Eq. (22) for p. We find that there exists
a function of t , f (t) > 0, so that

p = f (t) exp

[∫ r

r∗

4πx2(μ0(x) + μ1(x))

x + c − 2
∫ x

r∗ 4π y2μ0(y)dy
dx

]
. (26)

We introduce a new time variable τ so that f (t)dt = dτ and note that in τ, r coor-
dinates p = p(r). The function p is then given by Eq. (26) with f (t) removed. The
metric has the following form:

ḡ = −p2hdτ 2 + h−1dr2 + r2dσ 2. (27)

What we have observed so far is that, because of (i i i), Eqs. (18), (20) and (21)
are equivalent to asserting the following: μ0 = μ0(r), which is subject to Eq. (25),
and there exists coordinates τ, r so that ḡ is given by Eq. (27) with h and p given by
Eqs. (24) and (26), with f (t) removed, respectively.

We still have to deal with Eq. (19); this should correspond to a condition on μ0, μ1
and λ. Written in terms of h and p, Eq. (19) becomes

1

2p

(
(p2h)r

p

)
r
+ 1

r p
(ph)r = 8πλ.
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We note this implies that λ = λ(r) and proceed with a calculation. After carrying out
the indicated differentiations, we get

(ln p)2r h + (ln p)rr h + (ln p)r hr + 1

2
(ln p)r hr + 1

2
hrr + 1

r
hr + 1

r
(ln p)r h = 8πλ.

Regrouping, we can write

(rh)rr + 2r [(ln p)r h]r + (ln p)r h + (ln p)r [2r(ln p)r h + (rhr )r ] = 16πrλ.

Using Eqs. (22) and (23), we get

λ = 1

4
(3μ1 − μ0) + r

2
(μ1)r + (μ0 + μ1)(1 + 8πr2μ1)

4h
. (28)

(It easily follows that if μ1 = −μ0 then this equation reduces to Eq. (16).)
The forgoing has proved the following generalization of Birkhoff’s theorem.

Theorem 2 If X is a spherically symmetric space–time with

T = −μ0θ̄0θ̄
0 + μ1θ̄1θ̄

1 + λψ̄νψ̄
ν

and μ1 = μ1(r), then μ0 = μ0(r) and there exist c and r∗ ∈ (r0, r1) such that μ0
satisfies inequality (25), Eq. (28) holds and there exists a time coordinate τ such that
the metric ḡ is given by Eq. (27), where h is given by Eq. (24) and

p = exp

[∫ r

r∗

4πx2(μ0(x) + μ1(x))

x + c − 2
∫ x

r∗ 4π y2μ0(y)dy
dx

]
. (29)

Conversely, if X is a space–time with metric ḡ given by Eq. (27) where h is given by
(24) and p is given by Eq. (29), with μα = μα(r), and μ0 necessarily satisfying Eq.
(25), and λ given by Eq. (28), then X is a spherically symmetric space–time and has
stress-energy tensor

T = −μ0θ̄0θ̄
0 + μ1θ̄1θ̄

1 + λψ̄νψ̄
ν.

It is clear from Observation that the metrics described in Theorem 2 account for all
static spherically symmetric space–times. We now consider some examples.

Example 4 The purpose of this example is to present a non-trivial closed form solution
satisfying the conditions given in Theorem 2. Suppose there exists constants m0 and
m1 such that μα = mα

r2
, for r0 < r < r1. Because of the form of the integrands with

which we are dealing, we may take r∗ = r0. The calculations are straightforward; we
get the following, where C = c + 8πm0r0.

h(r) = 1 − 8πm0 + C

r
and p =

(
h(r)

h(r0)

) 4π(m0+m1)

1−8πm0
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so that

ḡ = −h(r0)
8π(m0+m1)

8πm0−1 h(r)
1−8πm1
1−8πm0 dτ 2 + 1

h(r)
dr2 + r2dσ 2

and

λ = (m0 + m1)[8π(m0 + m1)r − C]
4[(1 − 8πm0)r + C]

1

r2
.

For physical reasons we want m0 ≥ 0. To get a Lorentzian metric, with ∂
∂τ

time-like,
one of the following will do:

If m0 < 1
8π and C ≥ 0, then r0 r1 are unrestricted.

If m0 < 1
8π and C < 0, then r0 ≥ C

8πm0−1 .

If m0 > 1
8π , then C > 0 and r1 ≤ C

8πm0−1 .

An interesting case occurs if m0 + m1 = 0. Then

ḡ = −h(r)dτ 2 + h(r)−1dr2 + r2dσ 2 and λ = 0.

This is a collection of metrics which includes the Schwartzchild metric, which occurs
when m0 = 0, that have no transversal pressure with respect to the Birkhoff frame.

Example 5 We suppose all of the following: r0 = c = r∗ = 0, r1 = ∞ and ρ is
a non-negative valued function on (0,∞). We define m(r) and place an additional
restriction on ρ by asserting

m(r) =
∫ r

0
4πx2ρ(x)dx <

r

2
, for all r > 0.

Moreover, suppose that T is the stress-energy tensor of a perfect fluid and set ρ =
μ0 ≥ 0 and P = μ1 = λ. Substituting into Eq. (28) yields the TOV equation

Pr = −(P + ρ)
m(r) + 4πr3P

r [r − 2m(r)] .

In order for the metric to exist at r = 0 it is necessary and sufficient that

∣∣∣∣
∫ r

0
x(ρ(x) + P(x))dx

∣∣∣∣ < ∞, for any r > 0.

Remark If we write h(r) = 1− 2m(r)
r so that m(r) = c + ∫ r

r∗ 4πx2μ0(x)dx , then Eq.
(28) can be written as follows:

λ − μ1 = r

2

[
(μ1)r + (μ0 + μ1)(m(r) + 4πr3μ1)

r [r − 2m(r)]
]

.
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We notice its close relation to TOV; hence we call it or Eq. (28) the generalized TOV
equation.

We end this section by applying Theorem 2 to the study of stress-energy tensors T
which are “close to 0.” What we mean by that will be made clear in what is to follow.

Definition 2 Let B : V × V → R be a symmetric bilinear form on the vector space
V . The null space of B, N (B), is defined as follows:

N (B) = {w ∈ V : B(w, v) = 0, for all v ∈ V }.
The next lemma is a straightforward result from linear algebra.

Lemma 1 Suppose V is an n-dimensional vector space with inner product. If
dim(N (B)) = n − 1, then the 1-dimensional subspace of V orthogonal to N (B)

is the eigenspace of B with respect to that metric associated to the nonzero eigenvalue
of B with respect to that metric.

Corollary 1 Let X be a spherically symmetric space–time such that N (Tx ) contains
the spacial vectors of the Birkhoff frame, for every x ∈ X, then T = 0

Proof Suppose the hypothesis are true. From the definition of the Birkhoff frame and
Lemma 1, we see that

T = −μ0θ̄0θ̄
0.

All of the conditions (i), (i i) and (i i i) are satisfied since μ1 is a constant function.
Hence, μ0 = μ0(r) and (28) holds. Substituting 0 for μ1 and λ in Eq. (28), we get

−μ0

4
+ μ0

4h
= 0.

Thus, on any open interval where μ0 
= 0, we must have h = 1; that is

c = 2
∫ r

r∗
4πx2μ0(x)dx .

This is only possible if μ0 = 0. ��
As a consequence of this corollary we have the following.

Corollary 2 Birkhoff’s Theorem is still true for a spherically symmetric space–time
X if we replace the condition that the space–time is a vacuum by the condition that
N (Tx ) contains the spacial vectors of the Birkhoff frame, for every x ∈ X.

We have yet one more corollary, but first a definition.

Definition 3 Let X be a space–time. We say that X is dust, if N (Tx ) is the orthogonal
complement of a time-like vector, for all x ∈ X .

An immediate consequence of the Observation and Corollary 1 is the well-known
result.

Corollary 3 Suppose X is a spherically symmetric space time. If X is dust, then X
cannot be static.
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6 Asymptotics

For the space–timeswe are consideringwhere the coordinate r has geometricmeaning,
we have the following definition.
Definition of Asymptotically Flat. A space–time X which is spherically symmetric
is said to be asymptotically flat if the metric ḡ approaches a limiting value and the
Riemann curvature tensor of ḡ approaches 0 as r approaches r1.

These conditions are certainly met by the metrics that arise in Birkhoff’s Theorem.
Let’s elaborate on the conditions specified in the definition. That ḡ has a limit

as r → r1 means that limr→r1 e2 and limr→r1 g2 are positive reals. To say that the
Riemann curvature tensor approaches 0 means that all of its components with respect
to some orthonormal moving frame approach 0; thus the Riemann curvature tensor
approaches 0 as r → r1 if and only if

�̄0
1 → 0, �̄2

3 → 0, 
̄α
ν → 0 as r → r1.

From the formulas for these curvature forms we see that these last limits take the
following form:

K B → 0,
1

r2

(
1 − 1

g2

)
→ 0,

1

rg2 (ln e)r → 0,
1

rg2 (ln g)r → 0 as r → r1.

We will now characterize those static spherically symmetric space–times that are
asymptoticallyflat.However,wewill do sounder the physically reasonable assumption
that μ0 ≥ 0.

Theorem 3 Assume X is a static space–time with spherical spatial symmetry and

T = −μ0θ̄0θ̄
0 + μ1θ̄1θ̄

1 + λψ̄νψ̄
ν,

where μ0 ≥ 0. Then X is asymptotically flat if and only if one of the following occurs:

(i) r1 < ∞, h(r) = 1 + 2

r

∫ r1

r
4πx2μ0(x)dx, and

lim
r→r1

μ0 = lim
r→r1

μ1 = lim
r→r1

(μ1)r = 0.

(ii) r1 = ∞, lim
r→∞ r2μ0(r) = l, where 0 ≤ l <

1

8π
, and∫ ∞

r∗
x(μ0(x) + μ1(x))dx exists.

Proof First, let’s write the four limits given above in terms of h, μ andf λ. We can
do this by taking advantage of Einstein’s equation, more explicitly, Eqs. (18), (19)
and (21). We get that the above limits hold, and thus the Riemann curvature tensor
approaches 0 as r → r1, if and only if the following do:

lim
r→r1

1 − h

r2
= 0, lim

r→r1
μ0 = 0, lim

r→r1
μ1 = 0, lim

r→r1
λ = 0 (30)
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Second, as a consequence of Eq. (28),

lim
r→r1

T = 0 ⇔ lim
r→r1

μα = lim
r→r1

λ = 0 ⇔ lim
r→r1

μα = lim
r→r1

(μ1)r = 0. (31)

Assume X is asymptotically flat. Suppose r1 < ∞. Since the limit of the metric
exists, limr→r1 h is positive real. As a consequence of the first limit appearing in (30),
r1 < ∞ implies limr→r1 h(r) = 1. Using Eq. (24), this implies

c = 2
∫ r1

r∗
4πx2μ0(x)dx .

Consequently

h(r) = 1 + 2

r

∫ r1

r
4πx2μ0(x)dx .

Since the Riemann curvature tensor approaches 0 as r → r1, it follows, from (30) and
(31), that the remainder to the conditions in (i) hold.

Now suppose that r1 = ∞. Thus, it must be true that limr→∞ h = n, where n > 0.
According to Eq. (24) this implies

1 − 8π lim
r→∞

1

r

∫ r

r∗
x2μ0(x)dx = n.

If we let

l = lim
r→∞

1

r

∫ r

t∗
x2μ0(x)dx,

then 0 ≤ l < 1
8π , since we have assumed that μ0 ≥ 0. The integral appearing in the

above limit is an nondecreasing function of r . Thus the integral is bounded for all r or
approaches ∞ as r → ∞. If it is bounded for all r then limr→∞ r2μ0(r) = 0. If the
integral approaches ∞ as r → ∞, then we apply l’Hospital’s Rule to the limit and
obtain limr→∞ r2μ0(r) = l. Either way, limr→∞ r2μ0(r) = l, where 0 ≤ l < 1

8π .
It must also be true that limr→∞ p2h is a positive real. Since the limr→∞ h exists

and p is an exponential

lim
r→∞ ln p = lim

r→∞

∫ r

r∗

4πx(μ0(x) + μ1(x))

h
dx exists.

Again, since limr→∞ h = n,
∫ ∞

r∗ x(μ0(x) + μ1(x))dx must exist.
Now assume that (i) holds. Clearly limr→r1 h = 1. Thus the first limit in (30) holds.

By (31) the remainder of the limits in (30) holds. Since the limits of h, μ0 and μ1 all
exist as r → r1, the integral in the definition of p is a proper integral even when the
upper limit is r1. Hence, limr→r1 p2h exists. Indeed, X is asymptotically flat.
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Finally, assume what is asserted in (ii) is true. It is not hard to show that
limr→∞ h(r) is a positive real from the assertion that limr→∞ r2μ0(r) = l, where
0 ≤ l < 1

8π . It also follows from this limit that the second limit in (30) holds. Since∫ ∞
r∗ x(μ0(x) + μ1(x))dx exists and limx→∞ h exists, limr→∞ ln p exists and thus

limr→∞ p2h is a positive real. Moveover, that improper integral given in (ii) exists
implies that limr→∞ r(μ0(r) + μ1(r)) = 0. But the existence of the first limit in (ii)
implies limr→∞ rμ0(r) = 0. Thus limr→∞ rμ1(r) = 0. Hence, the third limit in (30)
holds. However, we can apply l’Hospital’s Rule to limr→∞ μ1(r)

r−1 = 0 to show that
limr→∞(μ1)r = 0. By (31), the fourth limit in (30) holds. Thus X is asymptotically
flat. ��

We consider the examples presented above. In Example 1, only the Minkowski
space–time is asymptotically flat. All the metrics in Example 2 are asymptoticaly flat.
The only space–times in Example 4 that is asymptotically flat are those for which
m0 + m1 = 0.

For the space–times in Example 5 to be asymptotically flat we must require that
limr→∞ r2ρ(r) < 1

8π . (The assumption that m(r) < r
2 , for all r > 0, would only

imply limr→∞ r2ρ(r) ≤ 1
8π .) We must also require that

∫ ∞
r∗ x(ρ(x)+ P(x))dx exist.
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