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Abstract
We study the stability of static, spherically symmetric solutions of Rastall’s theory
in the presence of a scalar field with respect to spherically symmetric perturbations.
The analysis of perturbations shows that there arises an inconsistency in the sense
that time-dependent perturbations do not exist in any order of perturbation theory, and
we can conclude that these solutions are pertubatively stable (though nonperturbative
time-dependent solutions are not excluded). Possible reasons for this inconsistency
are discussed.
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1 Introduction

One of the fundamental pillars of the general relativity (GR) theory of gravity is the
divergence-free property of the Einstein tensor, leading to the usual conservation laws
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for the matter sources of gravity, expressed in the zero divergence of the energy-
momentum tensor.

Rastall’s theory [1] is a non-Lagrangian theory of gravity which allows for an
energy–momentum tensor of matter with a nonzero divergence. The main original
argument for such a radical departure from GR is that, strictly speaking, the conser-
vation laws have only been tested in weak fields, and their generalization to strongly
curved space–times may be more problematic than is usually supposed. The depar-
ture from the usual GR conservation law is parametrized in the Rastall theory by the
dimensionless parameter λ, such that when λ = 1, GR is recovered.

The Rastall theory has been applied inmany different contexts. In cosmology, some
studies have been performed for the early [2] and also late-time universe [3]. In some of
these applications, a self-interacting scalar field has been considered. A curiosity about
the self-interacting scalar field in the Rastall theory is that the corresponding speed of
sound cs can be zero for some value ofλ [4], unlike theGR situationwhere always cs =
1 (in units of the velocity of light). Moreover, it is possible to construct a cosmological
model entirely similar to the standard�CDMmodel forwhat concerns the background
and the evolution of linear perturbations, but different for what concerns nonlinear
perturbations.

InRef. [5] black-hole solutions usingRastall’s theory in the presence of a scalar field
have been obtained. Two classes of exotic black holes have been identified: one where
the singularities are located at two spatial infinities separated by horizons; the other
where there are two horizons of infinite area connected by a wormhole, and the spatial
infinity is essentially replaced by a cosmological singularity. It is very interesting that
these structures are geometrically identical to those found using k-essence theories,
but with a different behavior of the scalar fields [6]. In Ref. [7] the equivalence (or
duality) between these structures was discussed in detail: we have formulated the
assumptions under which the two fundamentally different theories lead to space-times
with the same metric.

A question that emerges immediately concerns the stability of these exotic black
hole-type structures. In Ref. [8], the stability of the corresponding k-essence solutions
under spherically symmetric perturbations was analyzed, and their instabilities have
been proved. In the present paper, we undertake a similar analysis for the Rastall
black hole-type solutions. A surprising aspect of this study is that the linear perturba-
tion analysis turns out to be inconsistent, and the stability or instability of the solutions
cannot be determined. More precisely, the linear perturbation equations cannot have
time-dependent solutions, and this conclusion can be extended to higher-order pertur-
bations. Such a result looks similar to that of the cosmological perturbation analysis
for a self-interacting scalar field, which has also revealed an inconsistency, unless new
degrees of freedom of matter are added to the previously existing matter content of
the Universe [9]. This may point out at an intrinsic restriction for the Rastall theory
and perhaps even for a large class of non-Lagrangian theories of gravity.
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2 Basic equations

The field equations of Rastall’s theory where the only source of gravity is a scalar field
φ with an arbitrary self-interaction potential V (φ) can be written in the form1

Rμν − 1

2
gμνR = ε

{
φ;μφ;ν − 2 − a

2
gμνφ

;ρφ;ρ
}
+(3 − 2a)gμνV (φ), (1)

�φ + (a − 1)
φ;ρφ;σ φ;ρ;σ

φ;αφ;α = −ε(3 − 2a)Vφ, (2)

where a is the free parameter of Rastall’s theory, and the equations of GR are restored
in the case a = 1; ε = ±1, so that ε = +1 corresponds to a canonical scalar field,
and ε = −1 to a phantom one.

Equation (1) can be rewritten as

Rμν = ε

{
φ;μφ;ν + 1 − a

2
gμνφ

;ρφ;ρ
}
−(3 − 2a)gμνV (φ), (3)

We are going to discuss the linear stability of static, spherically symmetric solutions
of the theory under spherically symmetric perturbations. Accordingly, we consider the
general spherically symmetric metric

ds2 = e2γ dt2 − e2αdu2 − e2βd�2, (4)

where α, β, γ are functions of u and t , the radial and time coordinates, respectively,
and d�2 is the line element on a unit sphere. We also assume φ = φ(u, t).

Before starting the perturbation analysis, let us write out the complete form of
Eqs. (2) and (3) for the system under study, without fixing the coordinates u and t :

−e2(α−γ )
[
α̈ + 2β̈ + α̇2 + 2β̇2 − γ̇ (α̇ + 2β̇)

] + γ ′′ + γ ′(γ ′ − α′ + 2β ′)

= ε

2

[
(3 − a)e2(α−γ )φ̇2 − (1 − a)φ′2] − (3 − 2a)e2αV , (5)

−e2(α−γ )
[
α̈ + α̇(α̇ − γ̇ + 2β̇)

] + γ ′′ + 2β ′′ − α′(γ ′ + 2β ′) + γ ′2 + 2β ′2

= ε

2

[
(1 − a)e2(α−γ )φ̇2 − (3 − a)φ′2] − (3 − 2a)e2αV , (6)

−e2(α−γ )
[
β̈ + β̇(α̇ − γ̇ + 2β̇)

] + β ′′ + β ′(γ ′ − α′ + 2β ′) − e2(α−β)

= ε

2
(1 − a)

[
e2(α−γ )φ̇2 − φ′2] − (3 − 2a)e2αV , (7)

β̇ ′ + (β ′ − γ ′)β̇ − β ′α̇ = −ε

2
φ′φ̇, (8)

aφ′′ + [γ ′ − aα′ + 2β ′]φ′ − e2(α−γ )φ̈ = ε(3 − 2a)e2αVφ (9)

(the overdot stands for ∂/∂t , the prime for ∂/∂u, the subscript φ for d/dφ).

1 The Rastall parameter a is related to the other frequently used parameter λ by a = 3λ − 2

2λ − 1
.
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For the static background we have the equations

γ ′′ + γ ′(γ ′ − α′ + 2β ′) = −ε

2
(1 − a)φ′2 − e2αW , (10)

γ ′′ + 2β ′′ − α′(γ ′ + 2β ′) + γ ′2 + 2β ′2 = −ε

2
(3 − a)φ′2 − e2αW , (11)

β ′′ + β ′(γ ′ − α′ + 2β ′) − e2(α−β) = −ε

2
(1 − a)φ′2 − e2αW , (12)

aφ′′ + [γ ′ − aα′ + 2β ′]φ′ = εe2αWφ, (13)

where W (φ) = (3 − 2a)V (φ).
To implement a perturbation analysis, we introduce a fluctuation around the static

background functions. This includes the matter function, given by the scalar field,
and the metric functions α, β and γ , leading to a set of coupled equations for the
perturbations around a static background. Assuming, with some small parameter ε,
which allows us to track the perturbative series order by order,

φ(u, t) = φ(u) + δφ(u, t), δφ ∼ ε � 1,

and similarly for all other variables, we can write the perturbation equations in the
linear order O(ε) as follows:

−e2(α−γ )(δα̈ + 2δ̈β) + δγ ′′ + δγ ′(γ ′ − α′ + 2β ′) + γ ′(δγ ′ − δα′ + 2δβ ′)
= −ε(1 − a)φ′δφ′ − e2α(2δαW + Wφδφ), (14)

−e2(α−γ )δα̈ + δγ ′′ + 2δβ ′′ − δα′(γ ′ + 2β ′)
−α′(δγ ′ + 2δβ ′) + 2δγ γ ′ + 4β ′δβ ′

= −ε(3 − a)φ′δφ′ − e2α(2δαW + Wφδφ), (15)

−e2(α−γ )δβ̈ + δβ ′′ + δβ ′(γ ′ − α′ + 2β ′)
+β ′(δγ ′ − δα′ + 2δβ ′) − 2e2(α−β)(δα − δβ)

= −ε(1 − a)φ′δφ′ − e2α(2δαW + Wφδφ), (16)

δβ̇ ′ + (β ′ − γ ′)δβ̇ − β ′δα̇ = −ε

2
φ′δφ̇, (17)

−e2(α−γ )δφ̈ + aδφ′′ + [γ ′ − aα′ + 2β ′]δφ′ + [δγ ′ − aδα′ + 2δβ ′]φ′

= εe2α(2δαWφ + Wφφδφ). (18)

These equations are written in the most general form and contain two kinds of arbi-
trariness: the choice of the radial coordinate u in the background static metric and the
perturbation gauge that fixes the reference frame in perturbed space-time.

3 Master equation and a discrepancy

As in GR, this system possesses only one dynamic degree of freedom connected
with the scalar perturbation δφ. Accordingly, the perturbation equations can be used
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to combine the metric and matter perturbations in order to obtain a single “master
equation” for δφ. This can be achieved most conveniently using the gauge δβ ≡ 0. In
full similarity with perturbation studies in [10–12], the assumption δβ ≡ 0 does not
restrict the generality of our consideration since the resulting master equation is in fact
gauge-invariant: it only contains the background quantities and the perturbation δφ,
and the latter represents a certain gauge-invariant quantity (namely, δφ − φ′δβ/β ′) in
the gauge δβ = 0.

Under the condition δβ = 0, the perturbation equations become

−e2(α−γ )δα̈ + δγ ′′ + δγ ′(2γ ′ − α′ + 2β ′) − γ ′δα′

= −ε(1 − a)φ′δφ′ − e2α(2Wδα + Wφδφ), (19)

−e2(α−γ )δα̈ + δγ ′′ − δα′(γ ′ + 2β ′) − (α′ − 2γ ′)δγ ′

= −ε(3 − a)φ′δφ′ − e2α(2Wδα + Wφδφ), (20)

β ′(δγ ′ − δα′) − 2e2(α−β)δα

= −ε(1 − a)φ′δφ′ − e2α(2Wδα + Wφδφ), (21)

−β ′δα̇ = −ε

2
φ′δφ̇, (22)

aδφ′′ + [γ ′ − aα′ + 2β ′]δφ′ + [δγ ′ − aδα′]φ′ − e2(α−γ )δφ̈

= εe2α(2Wφδα + Wφφδφ). (23)

Equation (22) is easily integrated in t leading to

δα = η(u)δφ + ξ(u), (24)

where ξ(u) is an arbitrary function of the radial coordinate. The function ξ(u) corre-
sponds to a possible static perturbation and can be added to the static solution, thus
slightly changing the background without leaving the set of background solutions.
The function η(u) in (24) is defined as

η = εφ′/(2β ′). (25)

On the other hand, the difference of (19) and (20) gives

δγ ′ = ηδφ′ − η′δφ. (26)

Ignoring static perturbations (that is, putting ξ(u) ≡ 0), a substitution of (24) and (26)
into (23) leads to the final master equation

−e2(α−γ )δφ̈ + aδφ′′ +
[
2β ′ + γ ′ − aα′ + η(1 − a)φ′]δφ′

+
[

− (1 + a)η′φ′ − εe2α
(
2ηWφ + Wφφ

)]
δφ = 0, . (27)

whose analysis for particular solutions of the background equations should lead to
definite conclusions on their stability or instability.
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However, δγ ′ may be alternatively calculated from (21), which gives

2β ′δγ ′ = εaφ′δφ′ + e2α
[
2(e−2β − W )δα − Wφδφ

]
. (28)

Comparing (26) and (28) and using the background equations, we obtain the relation

(1 − a)φ′δφ′ = (1 − a)
[
φ′′ − α′φ′ + ηφ′2]δφ (29)

(the calculation is most conveniently carried out using the harmonic radial coordinate,
such that α = 2β +γ ). We immediately see that at a = 1, that is, in GR, this equation
becomes an identity, thus confirming that the stability study in GR remains consistent.
However, with a �= 1, in Rastall’s theory, Eq. (29) is nontrivial, and its integration in
u gives

δφ = F(t)φ′eα+Q(u), Q(u) =
∫

η(u)φ′(u)du, (30)

where F(t) is an arbitrary function of time, which only should be small, i.e., O(ε).
Now, we can substitute (30) to the master equation (27) and observe the usual

separation of variables: the quantity F̈/F will be equal to a certain combination of
functions taking part in the background solution, hence this combination is equal
to some separation constant. Such a condition, is, in general, not satisfied by the
background solution, which makes the whole stability study inconsistent. The only
possibility to avoid this inconsistency is to put F(t) = const, i.e., there is no time-
dependent linear perturbation. Moreover, if we have a static δφ �= 0, we can assume
that we are dealing with a slightly shifted background relative to which δφ = 0.

How will the situation change if we try to consider high-order perturbations? From
the field Eqs. (5)–(9) it is clear that in the order O(ε2) the perturbation equations
will contain the same expressions with second-order perturbations as those which
previously emerged for first-order ones in the order O(ε), plus certain quadratic com-
binations of these first order quantities. Since, however, the latterwere found to be zero,
we conclude that in the order O(ε2) the equations are identical to those in O(ε) and
again have only a trivial solution. This picture will be repeated in all higher orders,
and we have to conclude that no small time-dependent perturbations of the system
under study are possible. In this sense, the background solutions are stable.

We will confirm the above observation using two known background solutions of
Rastall theory as examples. Using one of them, we will demonstrate that invoking a
nonzero ξ(u) in (24) does not solve the consistency problem.
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4 Special solutions

4.1 a = −1, V = 0

In this case, the solution has been obtained using the quasiglobal radial coordinate
such that α = −γ , and the background equation are

γ ′′ + 2γ ′(γ ′ + β ′) = −εφ′2, (31)

γ ′′ + 2β ′′ + 2γ ′(γ ′ + β ′) + 2β ′2 = −2εφ′2, (32)

β ′′ + 2β ′(γ ′ + β ′) − e−2(γ+β) = −εφ′2, (33)

−φ′′ + 2β ′φ′ = 0. (34)

The background solutions are possible only for ε = −1 and are given by (denoting
now the radial coordinates by x)

ds2 = A(x)dt2 − dx2

A(x)
−

√
3

2C2

d�2

x
, (35)

A(x) = K/x − (C/
√
6) x3, (36)

φ = √
3/2 ln x + φ0, (37)

where φ0, C and K are integration constants. The metric has the same properties as

in the k-essence case studied in Ref. [6], with a horizon at x =
(√

6K

C

)1/4

and a

singular spatial infinity x → ∞. Unlike [6], however, the scalar field is here defined
as to span from minus to plus infinity.

The master Eq. (27) now reduces to

e−4γ δφ̈ + δφ′′ + 2

x
δφ′ = 0. (38)

Two different expressions for δγ ′, obtained as described above, are

δγ ′ = √
3/2δφ′ = −√

3/2δφ′ − √
6e2α−2βδφ. (39)

Substituting the background solution, we are able to integrate the last equality in x ,
obtaining

δφ = F(t)ψ(x), ψ(x) = (K − (C/
√
6)x4)−1/2. (40)

Substituting (40) into (38) and separating the variables, we obtain

− F̈

F
= ψ ′′

ψ
+ 2

x

ψ ′

ψ
= const. (41)

It is easy to verify that the last equation does not hold for ψ(x) given by (40).
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4.2 a = 0, V = 3 = const

We are using here the the harmonic radial coordinate, such that α = 2β + γ . The
background equations are

γ ′′ = −ε

2
φ′2 − 3e2α�, (42)

γ ′′ + 2β ′′ − α′2 + γ ′2 + 2β ′2 = −3

2
εφ′2 − 3e2α�, (43)

β ′′ − e2(γ+β) = −ε

2
φ′2 − 3e2α�, (44)

α′φ′ = 0. (45)

The last equation implies α = const, which can be rescaled to α = 0 by a trivial
redefinition of the radial coordinate. The solution has the form

ds2 = 9b4

cosh4 bu
dt2 − du2 − cosh2 bu

3b2
d�2, (46)

φ′ = ±b

√
6 − 4

cosh2 bu
, ε = −1, b = √

�. (47)

Equation (23) for scalar field perturbations now reads

e−2γ δφ̈ − φ′δγ ′ = 0. (48)

Two alternative expressions for δγ ′ are (26) and, as given by (28) after using the
background solution,

δγ ′ = 3

2
φ′δφ. (49)

Comparing (26) and (49), we obtain

ηδφ′ − η′δφ = 3

2
φ′δφ. (50)

We can integrate this equation, finding the spatial behavior of δφ:

δφ = F(t)
φ′

β ′ e
−3β, F(t) = arbitrary function. (51)

Substituting it to the master equation (48) with δγ ′ given by (49), we arrive at

2

3

F̈

F
= φ′2e−4β = const. (52)

The latter equality does not hold for our background solution.
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We can ask if we can cure this problem by considering the “integration constant”
ξ(u) that appears in (24). Then the two expressions for δγ ′ become

δγ ′ = ηδφ′ − η′δφ − ξ ′ = 3

2
φ′δφ − 3β ′ξ. (53)

This relation is integrated giving

δφ = ηe−3β [F(t) + H(u)], H(u) =
∫

e3β

η2
(ξ ′ − 3β ′ξ)du, (54)

where H(u) is actually an arbitrary function of u due to arbitrariness of ξ . Inserting
this δφ to the master equation, we obtain

F̈ − 3

2
φ′2e−4β [F(t) + H(u)] − 6β ′2e−βξ = 0. (55)

Differentiating (55) with respect to u, we obtain the equation

(−3φ′φ′′ +6φ′2β ′)[F(t)+ H(u)]− 3

2
φ′2H ′(u)−6β ′e3β [2β ′′ξ −β ′(β ′ξ − ξ ′)] = 0.

(56)
It is clear from this equation that F must be a constant. Hence, it is a differential
equation for functions of u making it possible to calculate ξ(u) in terms of the back-
ground functions. As could be expected, the assumption ξ(u) �= 0 leads to a purely
static perturbation of the background, and time-dependent perturbations turn out to
be impossible. Thus invoking ξ(u) does not solve the consistency problem for time-
dependent perturbations.

5 Conclusion

We have performed a stability analysis of the exact black hole-type solutions found in
the context of the Rastall theory of gravity in the presence of a self-interacting scalar
field, which were originally reported in Ref. [5]. The corresponding metrics are the
same as those found in the context of k-essence theories [6]. This coincidence of the
metrics found in so different contexts (but with quite different behaviors of the corre-
sponding scalar fields) was discussed in detail in Ref. [7]. The perturbation analysis of
the k-essence solutions was carried out in [8], and it was concluded that they are unsta-
ble. Hence, it was natural to perform a similar analysis for the corresponding Rastall
solutions since the equivalence with the k-essence solutions may not be preserved at
the perturbative level.

A surprising result is that such a stability analysis in the Rastall case is inconsistent:
linear time-dependent spherically symmetric perturbations simply cannot exist. In this
sense, the solutions may be said to be stable under such perturbations. The reason for
our conclusion is that in the Rastall theory different combinations of the perturbed
equations lead to different “master” equations for the scalar field perturbation δφ.
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This problem does not exist for k-essence solutions. We cannot attribute this feature to
a wrong choice of the coordinates or the perturbation gauge since, as discussed, e.g.,
in [10–12], the perturbation method employed here leads to a gauge-invariant master
equation.

We must stress that we have followed the standard procedure of studying the first-
order (linear) perturbation equations. No other hypothesis has been made. The only
possibility to avoid the inconsistency is to set the linear perturbations equal to zero and
to study non-linear perturbations. However, the same inconsistency will then appear
again and again: for example, the second order perturbations equations contain the
same previous expressions with second-order perturbations and products of first-order
perturbations which should be zero according to the first-order analysis, and so we get
the same equations as in the first order. The whole perturbative scheme turns out to be
inconsistent with time-dependent perturbations.

Very probably the roots of the inconsistency detected for Rastall black hole-type
solutions come from the absence of a Lagrangian formulation of this theory. It must be
remarked that a similar inconsistency was found in the cosmological context, also with
a scalar field as a matter source. But, for the cosmological solutions the inconsistency
has been cured by introducing ordinary baryonic matter. In the static, spherically
symmetric case studied in [5] such an extension is less obvious.

There have been some attempts to find a Lagrangian formulation for the Rastall
theory, see, e.g., [13,14], but the resulting theories were not completely equivalent
to the Rastall one, or require a completely new geometric framework: using these
formulations, we, strictly speaking, go away from the original context of the Rastall
theory.

The results reported here may point at some restrictions inherent to the applicability
of theRastall theory, and evenmaybe of any non-Lagrangian theory.We hope to extend
the present analysis in order to try to answer this question in our future works.
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