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Abstract
In [Commun Anal Geom 13(5):845–885, 2005], Bartnik described the phase space
for the Einstein equations, modelled on weighted Sobolev spaces with local regularity
(g, π) ∈ H2 × H1. In particular, it was established that the space of solutions to the
constraints form a Hilbert submanifold of this phase space. The motivation for this
work was to study the quasi-local mass functional now bearing his name. However,
the phase space considered there was over a manifold without boundary. Here we
demonstrate that analogous results hold in the case where the manifold has an interior
compact boundary, and the metric is prescribed on the boundary. Then, still following
Bartnik’s work, we demonstrate the critical points of the mass functional over this
space of extensions correspond to stationary solutions with vanishing Killing vector
on the boundary. Furthermore, if this solution is smooth then it is in fact a static black
hole solution. In particular, in the vacuum case, critical points only occur at exterior
Schwarzschild solutions; that is, critical points of the mass over this space do not exist
generically. Finally, we briefly discuss a version of the result when the boundary data
is related to Bartnik’s geometric boundary data. In particular, by imposing different
boundary conditions on the Killing vector, we show that stationary solutions in this
case correspond to critical points of an energy resembling the difference between the
ADM mass and the Brown–York mass of the boundary.
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1 Introduction

It is well-known that the total mass of an isolated body in general relativity is given by
the ADM mass, and that the very nature of general relativity precludes the possibility
of a local energy density; however, the notion of the mass contained in a given region
of finite extent is still an open problem. This question is particularly peculiar, as it
is not that we lack an answer to it, but rather we have many candidates for what this
mass should be (see [30] for a detailed review), many of which are incompatible.
Bartnik’s quasi-local mass [6] is considered by many to give the best answer to this
question, if only it were possible to compute in general. The Bartnik mass is described
as follows: Given a subset Ω of some (M̃, g̃, π̃), an initial data set satisfying the
Einstein constraints, letPM be the set of asymptotically flat initial data sets satisfying
the hypotheses of the positive mass theorem, in which Ω isometrically embeds, with
no horizons strictly enclosingΩ . The Bartnik mass is then taken as the infimum of the
ADMmass over PM. It is conjectured that this infimum is indeed realised; however,
while some progress has been made (see [4,8,14,18,24] and references therein), this
is still an open problem in general. There are some counter-examples in special cases.
Mantoulidis and Schoen [18] constructed a sequence of extensions to a stable minimal
surface whose mass converges to the Bartnik mass. In light of black hole uniqueness
theorems, the only possible limit for this sequence is a Schwarzschild solution, so ifΩ
is not contained in a slice of Schwarzschild then the infimum is not realised. Anderson
and Jauregui [3] have also constructed a counterexample in the case where the Bartnik
mass is zero, essentially exploiting the rigidity of the positive mass theorem.

There are also interesting results by Corvino [14,15] and Miao [24], which
demonstrate that if a mass-minimising extension exists, then it must be static and sat-
isfy Bartnik’s geometric boundary conditions. These boundary conditions precisely
amount to the condition that the dominant energy condition across ∂Ω is satisfied in
the distributional sense (see Section 5 of [7] for details). Bartnik’s work on the phase
space for the Einstein equations [9] was, in part, motivated by the idea of placing
Corvino and Miao’s work into a more variational setting. Here we also work to this
end. For more details pertaining to the space PM and the Bartnik mass, the reader
is referred to [6,7]. In this paper, we consider a larger set of extensions to such a
bounded domain Ω , described by asymptotically flat manifolds with boundary con-
ditions imposed on a compact interior boundary, �. Specifically, we cannot rule out
horizons in the extensions and the boundary conditions we consider are far more gen-
eral than Bartnik’s geometric boundary conditions. The initial data we consider has
local regularity (g, π) ∈ H2× H1, with g prescribed on� in the trace sense. It should
be remarked here that the boundary conditions we impose are not Bartnik’s geomet-
ric boundary conditions so we cannot directly obtain results on Bartnik’s quasi-local
mass. However, we are able to use this framework to establish some results in this
direction, as described below.
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In Sect. 2, we review the mapping properties of the Laplace–Beltrami operator on
M and show that this is an isomorphism between certain weighted spaces over M with
boundary conditions imposed. In Sect. 3, we apply Bartnik’s phase space analysis to
the case considered here, where M has an interior boundary and g satisfies certain
boundary conditions. In particular, Theorem 2 therein establishes that the space of
asymptotically flat solutions to the constraints, satisfying our boundary conditions, is
a Hilbert manifold. Finally, in Sect. 4, we prove a result motivated by the static metric
extension conjecture and Bartnik’s quasi-local mass. Specifically, Theorem 4 in Sect.
4 shows that critical points of the mass over the space of extensions to Ω with g fixed
on the boundary, correspond to stationary solutions with vanishing stationary Killing
vector on �. Furthermore, if the data is smooth, this implies � is the bifurcation
surface of a bifurcate Killing horizon that is non-rotating, and by a staticity result
of Sudarsky and Wald [29], one concludes that the extension is therefore static. We
conclude with a version of this result closely related to Bartnik’s geometric boundary
data (Corollary 2).

2 The Laplace–Beltrami operator on an asymptotically flat manifold
with interior boundary

In this section we discuss some preliminary results regarding the Laplace–Beltrami
operator on an asymptotically flat manifold with interior boundary. The results in this
section are relatively standard (cf. [5,11,19,23]), however for the sake of completeness
we include them here.

It is well-known that while the Laplace operator is not Fredholm on Rn when con-
sidered as a map H2 → L2, it is in fact an isomorphism between certain weighted
Sobolev/Lebesgue spaces (cf. [27]). We discuss some properties of the Laplace–
Beltrami operator on an asymptotically flat manifold when boundary conditions are
imposed.

Throughout, we let M be a smooth, connected manifold with compact boundary
�. Further assume that there exists a compact set K ⊂ M such that the complement
M \ K consists of N connected components, each diffeomorphic to R

n minus the
closed unit ball, B. For concreteness, we denote these connected components by Ni ,
and the associated diffeomorphisms by φi : Ni → R

n \ B. Equip M with a smooth
background Riemannian metric g̊, equal to the pullback of the Euclidean metric to
each of these ends. Let r be a smooth function on M such that r(x) = |φi (x)| on each
Ni , and 1

2 < r < 2 on K .
In terms of this background asymptotically flat structure, we define the usual

weighted Lebesgue and Sobolev norms, respectively as follows:

‖u‖p,δ =
{(∫ |u|p r−δ p−ndμ0

)1/p
, 1 ≤ p < ∞,

ess sup(r−δ|u|), p = ∞,
(1)

‖u‖k,p,δ =
k∑

j=0

‖∇̊ j u‖p,δ− j , (2)
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where δ ∈ R. Norms of sections of bundles are defined in the usual way. Note that
our convention follows [5], where δ directly indicates the asymptotic behaviour; that
is, u ∈ L p

δ behaves as o(r δ) near infinity. We denote the completion with respect to
these norms, of the set of smooth functions with compact support on the interior of the

manifold, by L p and W
k,p
δ . Note that W

k,p
δ is a space of functions that vanish on the

boundary in the trace sense, along with their first k − 1 derivatives. We use W k,p
δ to

denote the completion of the smooth functions with compact support on the manifold

with boundary, and also use the convention H
k
δ = W

k,2
δ and Hk

δ = W k,2
δ .

It is well-known that weighted versions of the usual Sobolev-type inequalities hold
for these norms. For the reader’s convenience, we quote these directly from [5].

Theorem 1 The following inequalities hold:

(i.) If 1 ≤ p ≤ q ≤ ∞, δ2 < δ1 and u ∈ Lq
δ2

, then

‖u‖p,δ1 ≤ c ‖u‖q,δ2 (3)

and thus Lq
δ2

⊂ L p
δ1

.

(ii.) (Hölder) If u ∈ Lq
δ1

, v ∈ Lr
δ2

and δ = δ1 + δ2, 1 ≤ p, q, r ≤ ∞, then

‖uv‖p,δ ≤ ‖u‖q,δ1
‖v‖r .δ2 , (4)

where 1/p = 1/q + 1/r .
(iii.) (Interpolation) For any ε > 0, there is a C(ε) such that, for all u ∈ W 2,p

δ

‖u‖1,p,δ ≤ ε ‖u‖2,p,δ + C(ε) ‖u‖p,δ , (5)

for 1 ≤ p ≤ ∞.
(iv.) (Sobolev) If u ∈ W k,p

δ , then

‖u‖np/(n−kp),δ ≤ c ‖u‖k,q,δ (6)

for q satisfying p ≤ q ≤ np/(n − kp).

If kp > n then
‖u‖∞,δ ≤ c‖u‖k,p,δ (7)

(v.) (Morrey’s) If u ∈ W k,p
δ and 0 < α ≤ k − n/p ≤ 1, then

‖u‖C0,α
δ

≤ c‖u‖k,p,δ, (8)

where the weighted Hölder norm is given by

‖u‖C0,α
δ

:= sup
x∈M

(
r−δ+α(x) sup

4|x−y|≤r(x)

|u(x) − u(y)|
|x − y|α

)
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+ sup
x∈M

(
r δ(x)|u(x)|)

(vi.) (Poincaré) If δ < 0 and 1 ≤ p < ∞, for any u ∈ W 1,p
δ we have

‖u‖p,δ ≤ c‖∇̊u‖p,δ−1, (9)

where n is the dimension of M.

While these inequalities were considered in [5] on manifolds without boundary, it
is clear that the proofs presented remain valid when a boundary is present. One can
easily check this, as the proof in [5] relies only on splitting the norms into integrals
over annular regions, rescaling the integrals to integrals over an annulus of fixed radius,
then applying the usual local inequalities. The reader is referred to [11,23] for more
results pertaining to these weighted spaces.

In terms of these weighted Sobolev spaces, we make precise the notion of asymp-
totically flat manifolds considered here.

Definition 1 An asymptotically flat manifold with N ends and interior boundary, is a
manifold M , satisfying the properties described above, equipped with a Riemannian
metric g satisfying (g − g̊) ∈ W 2,k

5/2−n , for some k > n/2.

Note that the condition k > n/2 ensures that the metric is Hölder continuous, by the
Sobolev–Morrey embedding. We also remark that while the above definition appears
to implicitly depend on the choice of diffeomorphisms φi , at least in the case of interest
here (k = 2, n = 3) Bartnik has shown that these Sobolev spaces of metrics are in
fact independent of φi (see Theorem 4.7 of [9]).

By comparison to the Laplacian on a bounded domain, it is expected that bound-
ary conditions must be enforced if we hope for Δg , the Laplace–Beltrami operator
associated with g, to be an isomorphism.

First note the following elementary estimate, which follows immediately from
Proposition 1.6 of [5].

Lemma 1 Let δ ∈ R, then

‖u‖2,2,δ ≤ C
(‖Δgu‖2,δ−2 + ‖u‖2,δ

)
, (10)

for any u ∈ H2
δ ∩ H

1
δ .

Note that δ < ε is required for the embedding W k,p
δ ↪→ W j,p

ε to be compact (cf.
Lemma 2.1 of [11]), in addition to the usual condition k > j ; that is, the estimate
above does not suffice to prove Fredholmness. For this, we require Lemma 2, below.

Lemma 2 Let (M, g) be an asymptotically flat manifold as described above, and fix

δ ∈ (2 − n, 0). Then for u ∈ H2
δ ∩ H

1
δ we have

‖u‖2,2,δ ≤ C‖Δgu‖2,δ−2. (11)
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Proof First note that Δg is asymptotic to the background Laplacian in the sense of [5]
(Definition 1.5). Further note that the proof of Theorem 1.10 of [5] remains valid on
an asymptotically flat manifold with boundary, so we have the scale-broken estimate,

‖u‖2,2,δ ≤ C(‖Δgu‖2,δ−2 + ‖u‖2,0), (12)

which does indeed suffice to prove Fredholmness (see Proposition 1 below).
From this, we prove (11) using a standard argument. Assume, to the contrary,

that there exists a sequence ui such that ‖ui‖2,2,δ = 1 and Δgui → 0 in H2
δ−2.

Passing to a subsequence, ui converges weakly in H2
δ and by the weighted Rellich

compactness theorem it converges strongly in L2
0. Now (12) implies ui is Cauchy and

therefore converges in H2
δ . By continuity, we have Δgu = 0, and therefore we have a

non-trivial element of ker(Δg). However, it can be seen directly from the maximum

principle that Δg has trivial kernel in H2
δ ∩ H

1
δ . 
�

From Lemma 2, we establish the following.

Proposition 1 For any δ ∈ (2− n, 0), the map Δg : H2
δ ∩ H

1
δ(M) → L2

δ−2(M) is an
isomorphism.

Proof We simply must prove that Δg is surjective, which is achieved by proving the
range is closed andΔ∗

g has trivial kernel. It is a fairly standard argument to demonstrate

that Δg has closed range, which is as follows. Take a sequence ui ∈ H2
δ ∩ H

1
δ(M)

such that φi = Δgui is Cauchy; that is, any Cauchy sequence in the range. By (11), ui

is convergent to some u, and by continuity, φi → Δgu. It follows that Δg has closed
range.

It remains to prove that Δ∗
g has trivial kernel. We first remark that by standard

elliptic regularity [16] and the rescaled interior estimates [5] we have any element of
the kernel of Δ∗

g is smooth and in H2
2−n−δ (as in the proof of Proposition 6 in [19]).

Now an element v in the kernel of Δ∗
g satisfies

∫
M

Δg( f )v dV = 0

for all f ∈ H2
δ ∩ H

1
δ(M), so for any Ω ⊂⊂ M , we have

∫
Ω

Δg( f )v dV =
∫

Ω

f Δg(v) dV = 0

for all f ∈ C∞
c (Ω), and therefore Δv = 0 on M . It then follows that

∫
M

Δg( f )v dV = 0 =
∫

∂ M
∇( f )v · d S (13)

for all f ∈ H2
δ ∩ H

1
δ(M), and therefore v ≡ 0 on ∂ M . Since v is smooth and decays to

zero at infinity, by the maximum principle v is identically zero. Note that in obtaining
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(13), we have dropped a boundary integral at infinity, which can be seen to vanish due
to the asymptotics for f and v. 
�

3 The phase space

In this section we adapt Bartnik’s phase space construction to an asymptotically flat
manifoldwith an interior boundary. In particular,we show that the set of asymptotically
flat initial data, with g fixed on the boundary, is a Hilbert submanifold of the phase
space. For simplicity, we restrict ourselves to the physically relevant case, n = 3.
Several of the results in the case considered here follow by entirely identical arguments
as used by Bartnik, so we simply refer to the appropriate places in Ref. [9] for proofs
in these instances. In addition to this, many proofs given here involve only small
modifications to those given by Bartnik.

The constraint map is given by

Φ0(g, π) = R(g)
√

g −
(

π i jπi j − 1

2
(πk

k )2
)

/
√

g, (14)

Φi (g, π) = 2∇kπ
k
i , (15)

where
√

g =
√
det g√
det g̊

is a volume form, and π is the canonical momentum given in

terms of the second fundamental form K , by π i j = (K i j − gi j trg K )
√

g. For a given
energy-momentum source (s, Si ), the constraint equations are Φ(g, π) = (s, Si )—in
particular, the vacuum constraints are simply Φ(g, π) = 0.

Now let (M, g̊) be an asymptotically flat manifold as described in Sect. 2, where g̊
will serve as a background metric. As we are motivated by considering extensions to
a given compact manifold with boundary, Ω , one should consider g̊ near � as coming
from the metric on Ω , which is to be extended. More concretely, one may choose M
such that it can be glued to Ω along �, and g̊ would then be a smooth extension of
the metric on Ω . However, we avoid further discussion on Ω by simply considering
g̊ to be some given background metric. We define the domain and codomain of Φ in
terms of weighted Sobolev spaces:

G := {g ∈ S2 : g > 0, (g − g̊) ∈ H2−1/2 ∩ H
1
−1/2(M)},

K := H1−3/2(S2 ⊗ Λ3), N := L2−5/2(Λ
3 × T ∗M ⊗ Λ3),

where Λk is the space of k-forms on M , and S2 and S2 are symmetric covariant and
contravariant 2-tensors on M respectively. The phase space is the set of prospective
initial data, F = G × K. The proofs of Proposition 3.1 and Corollary 3.2 of [9]
apply directly in the case considered here, and it therefore follows immediately that
Φ : F → N is a smooth map of Hilbert manifolds.

It is interesting to note that at the time of publication, Bartnik’s phase space
concerned initial data that was slightly too rough to apply known results on the
well-posedness of the Cauchy problem; however, through the positive resolution of
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the bounded L2 curvature conjecture, Klainerman, Rodnianski and Szeftel [17] have
improved the local existence and uniqueness results to the case considered by Bartnik,
and indeed the case considered here.

The key to proving that the level sets of Φ are Hilbert submanifolds, is a standard
implicit function theorem style argument. As such, we study the linearisation of Φ,
which at a point (g, π) ∈ F , is given by

DΦ0 (g,π)[h, p] = (πk
k π i j − 2π ikπ

j
k )hi j + tr(h)

(
1

2
π · π − 1

4
(tr π)2

)
/
√

g

+
(
1

2
tr(h)R − Δ tr(h) + ∇ i∇ j hi j − Ri j hi j

) √
g

+ (tr(p) tr(π) − 2π · p)/
√

g (16)

DΦi (g,π)[h, p] = 2∇ j (π
jkhik) − π jk∇i h jk + 2∇ j p j

i , (17)

for (h, p) ∈ T(g,π)F . The formal L2 adjoint is then computed as

DΦF
1 (g,π)[N , X ] = N

(
πk

k π i j − 2π ikπk
k +

(
1

2
πklπkl − 1

4
(πk

k )2
)

gi j
)

/
√

g

+
(

N

(
1

2
Rgi j − Ri j

)
+ ∇ i∇k N − gi j∇k∇k N

) √
g

+ LXπ i j (18)

DΦF
2 (g,π)[N , X ] = N (gi jπ

k
k − 2πi j )/

√
g − LX gi j , (19)

where (N , X) ∈ N ∗ = L2−5/2(Λ
0 × T M) and L is the Lie derivative on M . Note that

we use the superscript ‘F’ for the formal adjoint, obtained by integrating by parts and
disregarding boundary terms, rather than ‘∗’, which we reserve for the true adjoint.

We first give a coercivity estimate for DΦF
(g,π). It should be noted that this is

simply Bartnik’s Proposition 3.3 of [9]; however, particularly since there is a minor
modification to the proof at the end, there is no harm in presenting the computation
here. Furthermore, there is a minor omission in the argument of Bartnik that relies on
a local version of this estimate, which we address in the proof of Proposition 3. Note
that for simplicity of presentation, we write ξ = (N , X), which may be interpreted as
a 4-vector in the spacetime. We also briefly remark that the constant C used in all of
our estimates below and throughout may change from line to line.

Proposition 2 For all ξ ∈ W 2,2
−1/2, DΦF

(g,π) satisfies,

‖ξ‖2,2,−1/2 ≤ C
(
‖DΦF

1 (g,π)[ξ ]‖2,−5/2 + ‖DΦF
2 (g,π)[ξ ]‖1,2,−3/2 + ‖ξ‖2,0

)
. (20)

Proof We will need to make use of the difference of connections tensor,

Γ̃ = Γ − Γ̊ = 1

2
gil(∇̊ j glk + ∇̊k g jl − ∇̊l g jk),
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which is clearly controlled in W 1,2
−3/2, for g ∈ G.

Rearranging (18) gives

∇ i∇ j N − gi j∇k∇k N = Si j ,

where S is given by

√
gSi j = DΦF

g [ξ ]i j − N

(
πk

k π i j − 2π ikπ
j

k −
(

N

(
1

2
Rgi j − Ri j

) )√
g

+
(1
2
πklπkl − 1

4
(πk

k )2
)

gi j
)

/
√

g + LXπ i j .

From this, we can then write

∇ i∇ j N = Si j − 1

2
gi j Sk

k , (21)

which gives an estimate for ∇2N :

‖∇2N‖2,−5/2 ≤ C‖S‖2,−5/2. (22)

Noting that (g, π) is fixed and ξ = (N , X), the standard weighted Sobolev-type
inequalities give

‖∇̊2N‖2,−5/2 ≤ C
(
‖DΦF

1 (g,π)[ξ ]‖2,−5.2 + ‖Γ̃ ∇̊N‖2,−5/2 + ‖π∇̊ X‖2,−5/2

+ ‖X∇̊π‖2,−5/2 + ‖N‖∞,0(‖π2‖2,−5/2 + ‖Ric(g)‖2,−5/2)
)

≤ C
(
‖DΦF

1 (g,π)[ξ ]‖2,−5/2 + ‖ξ‖∞,0

+‖∇̊ξ‖3,−1(‖Γ̃ ‖6,−3/2 + ‖π‖6,−3/2)
)

≤ C
(
‖DΦF

1 (g,π)[ξ ]‖2,−5/2 + ‖ξ‖∞,0

+‖∇̊ξ‖3,−1(‖Γ̃ ‖1,2,−3/2 + ‖π‖1,2,−3/2)
)

≤ C
(
‖DΦF

1 (g,π)[ξ ]‖2,−5/2 + ‖ξ‖∞,0 + ‖∇̊ξ‖3,−1

)
.

The Bianchi identity, the identity Ri jkl Xl = ∇i∇ j Xk − ∇ j∇i Xk , and a bit of
algebraic manipulation result in

∇kLX gi j + ∇ jLX gik − ∇iLX g jk = 2(Rik jl Xl + ∇k∇ j Xi ),

and therefore can estimate ∇2X by

‖∇2X‖2,−5/2 ≤ C(‖Riem(g)‖2,−5/2‖X‖∞,0 + ‖∇LX g‖2,−5/2). (23)
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By writing the Riemann tensor explicitly in terms of g, ∇̊g and ∇̊2g, it is clear that
we can control ‖Riem(g)‖2,−5/2 for g ∈ G; the Riemann tensor is quadratic in ∇̊g
and linear in ∇̊2g. This somewhat lengthy albeit straightforward computation can be
found in, for example, in Appendix A of [21].

Making use of (19), the Lie derivative is expressed as

LX gi j = N (gi jπ
k
k − 2πi j )g

−1/2 − DΦF
2 (g,π)[ξ ]i j , (24)

and from this, the weighted Sobolev-type inequalities give

‖∇LX g‖2,−5/2 ≤ C (‖∇(Nπ)‖2,−5/2 + ‖∇DΦF
2 (g,π)[ξ ]‖2,−5/2)

≤ C
(
‖∇̊ DΦF

2 (g,π)[ξ ]‖2,−5/2 + ‖∇̊N‖3,−1‖π‖6,−3/2

+ ‖N‖∞,0(‖∇̊π‖2,−5/2 + ‖Γ̃ π‖2,−5/2)

+ ‖Γ̃ ‖4,−1‖DΦF
2 (g,π)[ξ ]‖4,−3/2

)

≤ C
(
‖∇̊ DΦF

2 (g,π)[ξ ]‖2,−5/2 + ‖∇̊N‖3,−1‖π‖1,2,−3/2

+ ‖N‖∞,0(‖∇̊π‖2,−5/2 + ‖Γ̃ ‖1,2.−3/2‖π‖1,2,−3/2)

+ ‖Γ̃ ‖1,2,−3/2‖DΦF
2 (g,π)[ξ ]‖1,2,−3/2

)

≤ C
(‖DΦF

2 (g,π)[ξ ]‖1,2,−3/2 + ‖N‖∞,0 + ‖∇̊N‖3,−1
)
.

We now obtain an estimate for ‖∇̊2X‖ in terms of ‖∇2X‖ as follows:

‖∇̊2X‖2,−5/2 ≤ C
(‖∇2X‖2,−5/2 + ‖∇̊(X)Γ̃ ‖2,−5/2 + ‖X∇̊(Γ̃ )‖2,−5/2

+ ‖Γ̃ 2X‖2,−5/2
)

≤ C
(‖∇2X‖2,−5/2 + ‖∇̊ X‖3,−1‖Γ̃ ‖6,−3/2

+ ‖X‖∞,0(‖∇̊Γ̃ ‖2,−5/2 + ‖Γ̃ 2‖2,−5/2)
)

≤ C
(‖∇2X‖2,−5/2 + ‖∇̊ X‖3,−1‖Γ̃ ‖1,2,−3/2

+ ‖X‖∞,0(‖∇̊Γ̃ ‖2,−5/2 + ‖Γ̃ ‖21,2,−3/2)
)

≤ C
(‖∇2X‖2,−5/2 + ‖∇̊ X‖3,−1 + ‖X‖∞,0

)
.

Combining these we have

‖∇̊2ξ‖2,−5/2 ≤ C
(
‖DΦF

1 (g,π)[ξ ]‖2,−5/2 + ‖DΦF
2 (g,π)[ξ ]‖1,2,−3/2

+‖ξ‖∞,0 + ‖∇̊ξ‖3,−1

)
. (25)
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The last two terms on the right-hand side are estimated using theweighted inequalities,
Young’s inequality, and the definition of the W k,p

δ norm directly:

‖ξ‖∞,0 ≤ c‖ξ‖1,4,0 = ‖ξ1/4ξ3/4‖1,4,0
≤ c‖ξ1/4‖1,8,0‖ξ3/4‖1,8,0
≤ c‖ξ‖1/41,2,0‖ξ‖3/41,6,0

≤ c‖ξ‖1/41,2,0‖ξ‖3/42,2,0

≤ c‖ξ‖1/41,2,0(‖ξ‖1,2,0 + ‖∇̊2ξ‖2,−2)
3/4

≤ cε−3‖ξ‖1,2,0 + ε(‖ξ‖1,2,0 + ‖∇̊2ξ‖2,−2)

≤ cε−3‖ξ‖1,2,0 + ε‖∇̊2ξ‖2,−2, (26)

for any ε > 0.
An estimate for the final term in (25) is obtained almost identically:

‖∇̊ξ‖3,−1 ≤ ‖ξ‖1,3,0 = ‖ξ1/3ξ2/3‖1,3,0
≤ c‖ξ1/3‖1,6,0‖ξ2/3‖1,6,0
≤ c‖ξ‖1/31,2,0‖ξ‖2/31,4,0

≤ c‖ξ‖1/31,2,0‖ξ‖2/32,2,0

≤ c‖ξ‖1/31,2,0(‖ξ‖1,2,0 + ‖∇̊2ξ‖2,−2)
2/3

≤ cε−2‖ξ‖1,2,0 + ε(‖ξ‖1,2,0 + ‖∇̊2ξ‖2,−2)

≤ cε−2‖ξ‖1,2,0 + ε‖∇̊2ξ‖2,−2. (27)

By inserting these estimates back into (25), we obtain

‖∇̊2ξ‖2,−5/2 ≤ C
(‖DΦF

1 (g,π)[ξ ]‖2,−5/2 + ‖DΦF
2 (g,π)[ξ ]‖1,2,−3/2

)
+ c(ε)‖ξ‖1,2,0 + ε‖∇̊2ξ‖2,−2;

choosing ε small enough and applying the interpolation inequality gives

‖∇̊2ξ‖2,−5/2 ≤ C
(
‖DΦF

1 (g,π)[ξ ]‖2,−5/2 + ‖DΦF
2 (g,π)[ξ ]‖1,2,−3/2 + ‖ξ‖2,0

)
.

(28)
Up to this point, we have essentially reproduced Bartnik’s argument with a little
additional detail, and if we had a weighted Poincaré inequality we would be done;
however, we are unaware of an appropriate Poincaré inequality in the case of a general
asymptotically flat manifold with an interior boundary. Instead we consider separately
the inequality near infinity, where we do have an appropriate Poincaré inequality, and
on a compact domain. For some exterior region ER0 we have the Poincaré inequality
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and therefore it follows that we have

‖ξ‖2,2,−1/2 ≤ C
(
‖DΦF

1 (g,π)[ξ ]‖2,−5/2 + ‖DΦF
2 (g,π)[ξ ]‖1,2,−3/2

+‖ξ‖2,0 + ‖ξ‖1,2:M\ER0

)
.

Applying the interpolation inequality again and noting ‖ξ‖2:M\ER0
≤ C‖ξ‖2,0 com-

pletes the proof. 
�
Remark 1 While Proposition 2 gives an estimate on M , the weighted Hölder, Sobolev
and interpolation inequalities used above are also valid on an annular region AR :=
{x ∈ M : r(x) ∈ (R, 2R)} (cf. [5]). In particular, using the usual Lebesgue and
Sobolev norms on AR , we have

‖∇̊2ξ‖2,−5/2:AR ≤ C
(
‖DΦF

1 (g,π)[ξ ]‖2,−5/2:AR

+ ‖DΦF
2 (g,π)[ξ ]‖1,2,−3/2:AR + ‖ξ‖2,0:AR

)
(29)

for ξ ∈ W 2,2
δ (AR), where C is independent of R. However, we do not have the same

control on ‖ξ‖2,2,−1/2:AR , as the constant in the Poincaré inequality depends on AR .

Note that the true adjoint of the linearised constraintmap, DΦ∗
(g,π), is only defined in

the weak sense, which is why we make the distinction between DΦ∗
(g,π) and DΦF

(g,π).
In order to study the kernel of DΦ∗

(g,π) we must first demonstrate that weak solutions
to the equation DΦ∗

(g,π)[ξ ] = 0 are sufficiently regular to consider this as a bona fide
differential equation.

Proposition 3 Suppose ξ ∈ N is a weak solution of DΦ∗
(g,π)[ξ ] = ( f1, f2), where

( f1, f2) ∈ L2−5/2 × W 1,2
−3/2 and (g, π) ∈ F , then ξ ∈ H2−1/2∩H

1
−1/2 and furthermore,

DΦ∗
(g,π)[ξ ] = DΦF

(g,π)[ξ ].
Proof Wefirst note that local regularity follows directly fromBartnik’s proof of Propo-
sition 3.5 in Ref. [9]. The only possible place in Bartnik’s proof where the boundary
terms may come in to play are in choosing (h, p) supported in some coordinate
neighbourhood. Clearly our boundary conditions do not prevent this, so there is no
obstruction to applying Bartnik’s proof directly. That is, ξ ∈ H2

loc.
In the following, let BR be an open “ball” of radius R; for R > 2, BR := {x ∈ M :

r(x) < R}, and define MεR := {x ∈ BR : dist(�, x) > ε}, for some small ε. Then

∫
MεR

DΦ(g,π)[h, p] · ξ =
∫

MεR

(h, p) · ( f1, f2)

for all (h, p) ∈ C∞
c (MεR). In particular, since ξ ∈ H2−1/2(MεR), we have

∫
MεR

(h, p) · DΦF
(g,π)[ξ ] =

∫
MεR

(h, p) · ( f1, f2);
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that is, DΦF
(g,π)[ξ ] = ( f1, f2) on any MεR . Therefore DΦ∗

(g,π)[ξ ] = DΦF
(g,π)[ξ ] on

M , and the formal adjoint is indeed the true adjoint when ( f1, f2) ∈ L2−5/2 × H1−3/2,
as expected.

It remains to demonstrate that ξ satisfies the boundary conditions and exhibits the
correct asymptotics. To this end, we introduce a new smooth cutoff function χ ∈
C∞

c (M) such that χ ≡ 1 on BR0 , for some R0 > 2 and χ = 0 on M \ B2R0 . Define
χR(x) = χ(x R0/R), so that χR has support on B2R . Clearly χRξ ∈ W 2,2

−1/2, therefore
Proposition 2 gives

‖χRξ‖2,2,−1/2 ≤ C
(
‖DΦF

1 [χRξ ]‖2,−5/2 + ‖DΦF
2 [χRξ ]‖1,2,−3/2 + ‖ξ‖2,0

)
, (30)

noting that χRξ → ξ in L2
0. From this we now show that χRξ is uniformly bounded

in W 2,2
−1/2. Obtaining control of ‖χRξ‖2,2,−1/2 independent of R is the minor omission

in Ref. [9] mentioned above, however this is easily resolved as follows.
Note that ∇̊χR(x) = (R0/R)∇̊χ(x R0/R), ∇̊χ is bounded, and ∇̊χR has support

on the annular region AR . It follows that we have

‖u∇̊χR‖p,δ ≤ c‖u/R‖p,δ:AR ≤ c sup
x∈AR

|r(x)/R|‖u‖p,δ+1:AR ≤ c‖u‖p,δ+1:AR .

From this, the expression for DΦF , and the usual weighted Sobolev-type inequalities
(see Theorem 1), we have

‖DΦF
1 [χRξ ]‖2,−5/2 ≤ c

(
‖χR DΦF

1 [ξ ]‖2,−5/2 + ‖πξ ∇̊χR‖2,−5/2

+ ‖ξ ∇̊2χR‖2,−5/2 + ‖∇̊(ξ)∇̊(χR)‖2,−5/2

)

≤ c
(
‖ f1‖2,−5/2 + ‖π‖4,−3/2‖ξ‖4,0:AR + ‖ξ‖2,−1/2

+ ‖∇̊ξ‖2,−3/2:AR

)

≤ c
(
‖ f1‖2,−5/2 + ‖π‖1,2,−3/2‖ξ‖1,2,0:AR + ‖ξ‖2,−1/2

+ ‖∇̊ξ‖2,−3/2:AR

)

≤ C (‖ f1‖2,−5/2 + ‖ξ‖2,−1/2 + ‖∇̊ξ‖2,−3/2:AR )

≤ C (‖ f1‖2,−5/2 + ‖ξ‖2,−1/2) + ε‖∇̊2ξ‖2,−5/2:AR .

Almost identically, we have

‖∇̊ DΦF
2 [χRξ ]‖2,−5/2 ≤

(
‖χR∇̊ DΦF

2 [ξ ]‖2,−5/2 + ‖πξ ∇̊χR‖2,−5/2

+ ‖ξ ∇̊2χR‖2,−5/2 + ‖∇̊(ξ)∇̊(χR)‖2,−5/2

)

≤ C (‖∇̊ f2‖2,−5/2 + ‖ξ‖2,−1/2) + ε‖∇̊2ξ‖2,−5/2:AR
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and a similar estimate for ‖DΦF
2 [χRξ ]‖2,−3/2 holds, so we have in fact,

‖DΦF
2 [χRξ ]‖1,2,−3/2 ≤ C(‖∇̊ f2‖2,−5/2 + ‖ξ‖2,−1/2) + ε‖∇̊2ξ‖2,−5/2:AR .

Inserting the estimates above into (30) we arrive at

‖∇̊2(χRξ)‖2,−5/2 ≤ C
(‖ f1‖2,−5/2 + ‖ f2|1,2,−3/2

+ ‖ξ‖2,−1/2 + ε‖∇̊2ξ‖2,−5/2:AR

)
. (31)

Unfortunately we are unable to ensure ‖∇̊2ξ‖2,−5/2:AR � ‖∇̊2(χRξ)‖2,−5/2, so we
can not absorb the last term into the left-hand side of (31). Recalling Remark 1, we
apply the local version of Proposition 2 to obtain

‖∇̊2ξ‖2,−5/2:AR ≤ C
(‖ f1‖2,−5/2 + ‖ f2‖1,2,−3/2 + ‖ξ‖2,0

)
. (32)

Finally we obtain the desired uniform bound, applying the interpolation inequality
from Theorem 1,

‖χRξ‖2,2,−1/2 ≤ C(‖χRξ‖2,−1/2 + ‖∇̊2(χRξ)‖2,−5/2)

≤ C
(‖ f1‖2,−5/2 + ‖ f2‖1,2,−3/2 + ‖ξ‖2,−1/2

)
. (33)

It follows that χRξ converges weakly to ξ in H2−1/2. Now, since the formal adjoint
agrees with the true adjoint, the boundary terms arising from integration by parts
necessarily vanish; explicitly (cf. Eq. (42)),

∮
�

(
ξ0(∇i trgh − ∇ j hi j )

√
g − 2ξ j pi j

)
d Si = 0, (34)

for all (h, p) ∈ (H2−1/2 ∩ H
1
−1/2) × H1−3/2. It follows that ξ vanishes on � and

therefore, ξ ∈ H2−1/2 ∩ H
1
−1/2. 
�

Theorem 2 For all (s, S) ∈ N , the level set C(s, S) := Φ−1(s, S) is a Hilbert sub-
manifold of F . We refer to this as the constraint manifold.

Proof By the implicit function theorem, we simply must demonstrate that DΦ(g,π) is
surjective and the kernel splits. The kernel trivially splits with respect to the Hilbert
structure, so we simply must prove that DΦ∗

(g,π) has trivial kernel and DΦ(g,π) has
closed range. It is clear from the above, that elements in the kernel of DΦ∗

(g,π) indeed

satisfy DΦF
(g,π) = 0. Once we have this, note that Bartnik’s proof of the trivial-

ity of ker(DΦF
(g,π)) relies only on the structure of the equation and the asymptotics

assumed1—it is entirely unaffected by the inclusion of an interior boundary. Therefore

1 The proof essentially makes use of the asymptotics to show that any element of the kernel must be
supported away from infinity, then shows if an element of the kernel vanishes on a portion of a small ball
then it vanishes on the entire ball. By covering M with balls of this (fixed) size, and noting M is connected,
the conclusion follows. It is clear a boundary has no impact on this argument.
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this proof applies here and we simply must prove that DΦ(g,π) is surjective, which is
again adapted from Bartnik’s arguments to deal with the boundary. The key to making
this argument work is the estimate given earlier by Lemma 2.

The idea is to consider a restriction of DΦ(g,π) to variations of a particular form,
so that the operator becomes elliptic. Then we simply must show that this restricted
operator has closed range and finite dimensional cokernel. We consider

hi j (y) = −1

2
ygi j , pi j (Y ) = 1

2
(∇ i Y j + ∇ j Y i − gi j∇kY k)

√
g

for y, Y ∈ H2−1/2 ∩ H
1
−1/2(M).

For the operator F[y, Y ] := DΦ(g,π)[h(y), p(Y )], we have

F[y, Y ] =
[

Δy
√

g − 1
4Φ0(g, π)y + 1

2π
k
k ∇ j Y j − 2π i j∇i Y j

ΔYi
√

g + Ri j Y j√g − ∇ j (π
j

i )y − π
j

i ∇̊ j y + 1
2π

j
j ∇̊i y

]
.

and the formal adjoint is given by

F F [z, Z ] =
[
Δz

√
g − 1

4Φ0(g, π)z + π
j

i ∇̊ j Z i − 1
2 ∇̊i (π

j
j Z i )

ΔZ j
√

g + 2∇i (π
i
j z) − 1

2∇ j (π
i
i z) + Ri j Z i√g

]
.

It follows from the proof of Proposition 3, that any (z, Z) that weakly satisfies
F∗[z, Z ] = 0 is in fact H2−1/2 and the boundary terms arising from integration by parts

vanish; that is, (z, Z) ∈ H2−1/2 ∩ H
1
−1/2(M). From Lemma 2, it is straightforward to

show using the weighted Hölder, Sobolev and interpolation inequalities (cf. eq. (3.42)
of [9]), that we have the scale-broken estimate:

‖(y, Y )‖2,2,−1/2 ≤ C(‖F[y, Y ]‖2,−5/2 + ‖(y, Y )‖2,0). (35)

It is now a standard argument to demonstrate that F has closed range and finite
dimensional cokernel (cf. Ref. [11], Theorem 6.3, and Ref. [5], Theorem 1.10).

Let (y, Y )i be a sequence in ker(F) satisfying ‖(y, Y )‖2,2,−1/2 ≤ 1; that is, a
sequence in the closed unit ball in ker(F). By the weighted Rellich compactness
theorem, passing to a subsequence, (y, Y )in converges strongly in L2

0, which in turn
implies via (35) that (y, Y )in converges strongly in H2−1/2. That is, the closed unit ball
in ker(F) is compact, and therefore ker(F) is finite dimensional. It follows that the

domain of F can be split as H2
δ ∩ H

1
δ = ker(F) ⊕ Z , for some closed orthogonal

complementary subspace, Z . Now, for (y, Y ) ∈ Z , we prove

‖(y, Y )‖2,2,−1/2 ≤ C‖F[y, Y ]‖2,−5/2 (36)

by contradiction. Assume that there exists a sequence (y, Y )i ∈ W satisfying
‖(y, Y )i‖2,2,−1/2 = 1, while ‖F[y, Y ]i‖2,−5/2 → 0. By the above argument, passing
to a subsequence, we have that (y, Y )in converges strongly to (y, Y ) ∈ W . By conti-
nuity, F[y, Y ] = 0, while ‖(y, Y )‖2,2,−1/2 = 1, implying the intersection of ker(F)
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and W is nontrivial. That is, by contradiction, (36) holds. An identical argument to
that used in the proof of Proposition 1 now shows that F has closed range.

Furthermore, since F F has the same form as F , an estimate of the form of (35) also
holds for (z, Z) ∈ ker(F∗), which implies that ker(F∗) is finite dimensional. Since the
range of F is contained in the range of DΦ, we have surjectivity of DΦ and therefore
completes the proof. 
�

4 Critical points of the ADMmass

In [9] Bartnik discusses a result of Corvino, which states that if there exists an asymp-
totically flat extension to a compact manifold with boundary, minimising the ADM
energy, then it must be a static metric [14,15]. Specifically, Bartnik argues that it would
bemore natural to obtain Corvino’s result from theHamiltonian considerations he uses
to prove a similar result for complete manifolds with no boundary. Here we give such
an argument, considering themass rather than the energy, and obtain that critical points
of the mass functional only occur if the exterior is stationary. Furthermore, if these
stationary solutions are smooth, they must in fact be static black hole exteriors. This
is elaborated on below in Remark 2. It should be noted that our set of extensions is
larger than the usual set of admissible extensions in the context of the Bartnik mass. In
order to ensure the validity of the positive mass theorem, we would also require con-
ditions on the mean curvature of� (see [25]). Since the first version of this article was
posted to the arXiv, Anderson and Jauregui have successfully established this in the
time-symmetric case using Banach manifolds modelled on weighted Hölder spaces
[3]. The framework for this argument has more recently been developed by Z. An [1],
and very recently this framework has been used to establish a version of this result
outside of time-symmetry [2]. The content of this section has also been discussed in
[22] using stronger boundary conditions than considered here, and indeed stronger
than the preferred mean curvature boundary conditions mentioned above.

As in the preceding section, we quote Bartnik’s results where the proofs require no
modifications to this case. Furthermore, the results established here are again based
on adapting Bartnik’s arguments to deal with the boundary. The results of Sect. 3 are
precisely what is needed for these arguments to work in the case considered here.

The energy-momentum covector Pμ = (m0, pi ) is defined by

16πm0 :=
∮

S∞
g̊ jk(∇̊k gi j − ∇̊i g jk)d Si , (37)

16π pi := 2
∮

S∞
πi j d S j . (38)

It is useful to consider the pairing of the energy-momentum covector with some
asymptotic translation, ξ∞ = (ξ0∞, ξ i∞) ∈ R

1,3,

16πξ∞ · P =
∮

∞

(
ξ0∞g̊ik(∇̊k gi j − ∇̊ j gik) + 2ξ i∞πi j

)
d S j .
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By writing this as scalar-valued flux integral at infinity, we can make sense of this as
an integral over M through the divergence theorem. To extend ξ∞ to a scalar function
and vector field over M , we identify ξ0∞ with a constant function and ξ i∞ with a g̊-
parallel vector field in a neighbourhood of infinity; that is, we identify ξ∞ with some
ξ̃ , defined near infinity and satisfying ∇̊ ξ̃ ≡ 0. We then choose any smooth bounded
ξref = (ξ0ref , ξ

i
ref) supported away from � and with ξref ≡ ξ̃ near infinity to represent

ξ∞. This allows us to write the energy-momentum as

16πξ0∞P0(g) =
∫

M

(
ξ0ref(g̊

ki g̊ jl∇̊k∇̊l gi j − Δ̊trg̊g)

+ g̊ki g̊ jl∇̊kξ
0
ref(∇̊l gi j − ∇̊i g̊ jl)

)√
g̊, (39)

16πξ i∞Pi (π) = 2
∫

M

(
ξ i
ref ∇̊ jπ

j
i + π

j
i ∇̊ jξ

i
ref

)
. (40)

Now it should be noted that P is not well-defined everywhere on F ; however, it is
well-defined on any constraint manifold C(s, S)with (s, S) ∈ L1 = L1−3. In Section 4
of [9], it is shown that this definition is equivalent to the usual definition of the ADM
energy-momentum and is in fact a smooth map on each C(s, S) with (s, S) ∈ L1.

It is well known that the mass must be added to the ADM Hamiltonian in order to
generate the correct equations of motion [28]. The formal equations of motion arising
from the ADM Hamiltonian are indeed the correct evolution equations, however the
boundary terms, coming from the integration by parts, correspond to the linearisation
of the energy-momentum; that is, for (g, π) ∈ F , the correct Hamiltonian to generate
the equations of motion is given by

H(ξ)(g, π) = 16πξ
μ∞Pμ −

∫
M

ξμΦμ(g, π), (41)

where ξ ∈ Ξ := {ξ : ξ − ξref ∈ H2−1/2 ∩ H
1
−1/2(M)}. While the separate terms in

(41) are not well-defined on F , by combining the terms into a single integrand, the
dominant terms in each component cancel exactly (cf. [9]). Henceforth, we consider
the Hamiltonian to be this regularised one, with the dominant terms cancelled. Note
that ξ and its first derivatives are required to vanish on � in order to ensure that the
surface integrals arising there, due to integration by parts in obtaining the equations
of motion, do indeed vanish. This can be seen by considering the following:

(h, p) · DΦF
(g,π)[ξ ] − ξ · DΦ(g,π)[h, p]

= ∇ i
(
(ξ0(∇̊i trgh − ∇ j hi j ) + ∇̊ j (ξ0)hi j − trgh∇̊i (ξ

0))
√

g − 2ξ j pi j

)

− ∇ i
(
2πk

i h jkξ
j − π jkh jkξi

)
. (42)
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The surface integrals at infinity are exactly cancelled by the term 16πξ
μ∞Pμ (cf. [9]).

In particular, we have for all (g, π) ∈ F , (h, p) ∈ T(g,π)F and ξ ∈ Ξ ,

DH(ξ)

(g,π)[h, p] = −
∫

M
(h, p) · DΦF

(g,π)[ξ ]. (43)

The ability to express the variation of the Hamiltonian in this form is precisely what
we mean by the statement that the correct equations of motion are generated. In this
form, we can interpret the variation of the Hamiltonian density with respect to each

of g and π ; that is, δH (ξ)

δg = DΦF
1 (g,π)[ξ ]. We then can write Hamilton’s equations as

∂

∂t

[
g
π

]
= −

[
0 1

−1 0

]
◦ DΦF

(g,π)[ξ ], (44)

where t is interpreted as the flow parameter of (N , X) in the full spacetime; this is
exactly the Einstein evolution equations. This also motivates a result of Moncrief [26],
equating solutions to DΦF

(g,π)[ξ ] = 0 with Killing vectors in the spacetime. For this
reason, we say an initial data set (g, π) is stationary if there exists ξ , asymptotic to a
constant timelike translation, satisfying DΦF

(g,π)[ξ ] = 0.
It is evident that the Hamiltonian (41) has the form of a Lagrange function, where

we seek to find extrema of ξμ∞Pμ subject to the constraints being satisfied. As such, we
need to make use of the following Lagrange multipliers theorem for Banachmanifolds
(cf. Theorem 6.3 of [9]).

Theorem 3 Suppose K : B1 → B2 is a C1 map between Banach manifolds, such that
DKu : Tu B1 → TK (u) B2 is surjective, with closed kernel and closed complementary
subspace for all u ∈ K −1(0). Let f ∈ C1(B1) and fix u ∈ K −1(0), then the following
statements are equivalent:

(i) For all v ∈ ker DKu, we have
D fu(v) = 0. (45)

(ii) There is λ ∈ B∗
2 such that for all v ∈ B1,

D fu(v) = 〈λ, DKu(v)〉 , (46)

where <,> refers to the natural dual pairing.

From this, we prove the following.

Theorem 4 Let ξ∞ ∈ R
1,3 be some fixed future-pointing timelike vector, (s, S) ∈ L1,

and define E (ξ∞)(g, π) ∈ C∞(C(s, S)) by

E (ξ∞)(g, π) = ξ
μ∞Pμ(g, π).

For (g, π) ∈ C(s, S), the following statements are equivalent:
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(i) For all (h, p) ∈ T(g,π)C(s, S),

DE (ξ∞)

(g,π)[h, p] = 0.

(ii) There exists ξ ∈ Ξ satisfying

DΦF
(g,π)[ξ ] = 0.

Proof Assume (i) holds for some fixed (g, π) = (g̃, π̃) ∈ C(s, S). Let K (g, π) =
Φ(g, π) − (s, S) and let f (g, π) = H(ξ)(g, π) for some ξ ∈ Ξ , then condition (i)
of Theorem 3 is satisfied. It follows that there exists λ ∈ L2−5/2 such that

DH(ξ)

(g̃,π̃)
[h, p] =

∫
M

λ · DΦ(g̃,π̃)[h, p],

for all (h, p) ∈ T(g̃,π̃)F , which combined with (43), gives

−
∫

M
(h, p) · DΦF

(g̃,π̃)[ξ ] =
∫

M
λ · DΦ(g̃,π̃)[h, p].

Now DΦF
(g̃,π̃)

[ξ ] ∈ L2−5/2 × W 1,2
−3/2, so Proposition 3 then implies

DΦF
(g̃,π̃)[ξ + λ] = 0,

and λ ∈ H2−1/2 ∩ H
1
−1/2(M), which in turn implies (ξ + λ) ∈ Ξ .

Conversely, assuming (i i) holds at some (g̃, π̃), it follows from (43) that

DH(ξ)

(g̃,π̃)
[h, p] = 0,

for all (h, p) ∈ T(g̃,π̃)F . Then by the definition of H(ξ), we have

DH(ξ)

(g̃,π̃)
[h, p] = DE (ξ∞)

(g̃,π̃)
[h, p] = 0,

for all (h, p) ∈ C(s, S); that is, (i) holds. 
�
Physically, E (ξ∞) is interpreted as the total energy viewed by an observer at infinity,
whoseworldline is generated by ξ∞. So Theorem 4may be interpreted as the statement
that critical points of the energy measured by ξ∞, correspond to solutions with Killing
vectors asymptotic to ξ∞.

Let η be the Minkowski metric with signature (−,+,+,+), and define P
μ =

ημν
Pν . Further define the total mass, m = −P

μ
Pμ√|PμPμ| . Recall that we have not imposed

conditions on the boundary mean curvature; that is, we include initial data for which
the positivemass theorem fails. Away fromm = 0, this is a smooth function on C(s, S)

when (s, S) ∈ L1. With this in mind, we have the following corollary of Theorem 4.
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Corollary 1 Suppose (g, π) ∈ C(s, S) with (s, S) ∈ L1, and P
μ is a past-pointing

timelike vector, then the following statements are equivalent:

(i) For all (h, p) ∈ T(g,π)C(s, S), Dm(g,π)[h, p] = 0.
(ii) (g, π) is a stationary initial data set, whose stationary Killing vector is propor-

tional to P at infinity and vanishes on �.

It is worth noting that a Killing vector that is asymptotically constant, must in fact be
proportional to P at infinity [10].

Proof We first show the implication (i) �⇒ (i i). Let ξ
μ∞ = − 1

mP
μ be a future-

pointing unit timelike vector, parallel to Pμ. It then follows that E (ξ∞)(g, π) = m, so
(i) implies condition (i) of Theorem 4 and (i i) follows.

Conversely, if (i i) holds, then possibly after rescaling, we have some ξ ∈ Ξ , where
ξ

μ∞ = − 1
mP

μ, satisfying DΦF
(g,π)[ξ ] = 0. Again, E (ξ∞)(g, π) = m and Theorem 4

implies (i). 
�

Remark 2 If the data is smooth2 vacuum data, the stationarity conclusion can be
replaced with staticity by the following argument. It is known that if a Killing vec-
tor field vanishes identically on a closed spacelike 2-surface, then that 2-surface is
the bifurcation surface of a bifurcate Killing horizon (see, for example [31]). Further-
more, a result of Chruściel andWald [13] implies the existence of a maximal spacelike
hypersurface in the full spacetime containing the bifurcation surface. Then a staticity
theorem of Sudarsky and Wald can be applied [29] (cf. Section 7 of [12]), which
states, under the assumption of the existence of a maximal spacelike hypersurface, if
the stationary Killing vector generates the horizon, then the solution is static. That is,
for the vacuum case, critical points of the mass occur exactly when the solution is the
region exterior to a Schwarzschild black hole. It follows that for generic choices of g̊
on �, there are no smooth critical points of the mass functional.

Remark 3 The same analysis can be performed with π ≡ 0, considering only the
Hamiltonian constraint. In this case, the mass and energy are interchangeable, and we
only have the lapse as the Lagrangemultiplier. The conclusion from the above analysis
is then that critical points of the mass correspond to static solutions, as the Killing
vector is necessarily hypersurface orthogonal (cf. Theorem 8 of [14]).

4.1 Geometric boundary data

The asymptotic value of the stationary Killing vector field given by Theorem 4, comes
from our choice of ξref , which above we chose to be supported away from�. However,
if we allow ξref to be nonzero on � then the energy-momentum can no longer be
expressed as integrals over M , and expression (43) no longer holds. To deal with this,
we leave ξref unchanged in the definition of P and we introduce ξ� = (ξ0�, 0, 0, 0)
with support near � and ξ0� constant on �. We then modify the Hamiltonian to allow

2 It is likely that C2 will suffice here, but the results we apply considered smooth data.
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for ξ ∈ Ξ̂ := {ξ : ξ − ξref − ξ� ∈ H2−1/2 ∩ H
1
−1/2(M)}

Ĥ(ξ)(g, π) = 16πξ
μ∞Pμ + 2ξ0�

∮
�

Hg d Sg −
∫

M
ξμΦμ(g, π), (47)

where Hg is the mean curvature of � in M , computed with respect to the unit normal
pointing towards infinity. If we assume that� is a topological two-sphere with positive
Gaussian curvature then it is well-known that there exists a unique isometric embed-
ding of � intoR3, and then the Brown–York mass can be defined. Let H0 be the mean
curvature of � when isometrically embedded in R

3 as above, then the Brown–York
mass is given by

m BY (�) = 1

8π

∮
�

(H0 − Hg) d Sg.

Note that we could replace the term 2
∮
�

Hg d Sg in (47) with −16πm BY when the
latter is defined, as the addition of a constant does not change the equations of motion.
This modification to the Hamiltonian seems somehow more intuitive as it gives a
sensible measure of the energy of the system, however it should be emphasised that
we require the positive Gaussian curvature condition to ensure that it is well-defined.
In what follows, we will assume � has positive Gaussian curvature, however this is
purely for aesthetic purposes and one may drop this assumption if the reader simply
replaces m BY with − 1

8π

∮
�

Hg d Sg . With this in mind, we write the Hamiltonian as

Ĥ(ξ)(g, π) = 16(πξ
μ∞Pμ − ξ0�m BY (g;�)) −

∫
M

ξμΦμ(g, π). (48)

In coordinates adapted to �, the linearisation of m BY (g;�) is given by (cf. [24])

16π Dm BY
(g,π)(�)[h, p] = 2D

(∮
�

Hg d Sg

)
(g,π)

[h, p]

=
∮

�

(
∇nhnn − H�(g)hnn + 2h AB K AB − 2∇ i hin + ∇n trg h

)
d S,

where A, B = 1, 2 are coordinates on �, n is the normal direction, and K AB is the
second fundamental form of � with respect to g and n. Since h vanishes on �, this
reduces to

16π Dm BY
(g,π)(�)[h, p] =

∮
�

(∇n trg h − ∇nhnn
)

d S,

where we have also made use of the divergence theorem. Now it is straightforward to
check (cf. 42) we have

(h, p) · DΦF
(g,π)[ξ ] − ξ · DΦ(g,π)[h, p] = 16πξ0� Dm BY

(g,π)(�)[h, p].
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This then gives us (cf. 43)

DĤ(ξ)

(g,π)[h, p] = −
∫

M
(h, p) · DΦF

(g,π)[ξ ], (49)

for all (h, p) ∈ T(g,π)F . At this point, it only requires superficial modifications to the
proofs of Theorem 4 and Corollary 1, to obtain the following.

Theorem 5 Let ξ∞ ∈ R
1,3 be some fixed future-pointing timelike vector, ξ� ∈ R be

some fixed constant, (s, S) ∈ L1, and define Ê (ξref )(g, π) ∈ C∞(C(s, S)) by

Ê (ξref )(g, π) = ξ
μ∞Pμ(g, π) − ξ�m BY (g;�).

For (g, π) ∈ C(s, S), the following statements are equivalent:

(i) For all (h, p) ∈ T(g,π)C(s, S),

DÊ (ξref )

(g,π)[h, p] = 0.

(ii) There exists ξ ∈ Ξ̂ satisfying

DΦF
(g,π)[ξ ] = 0.

Note that this version of the theorem does not force the Killing vector to vanish on the
boundary, but rather it is orthogonal to the initial data hypersurface there. By fixing
ξ� = 1 on � Corollary 1 becomes:

Corollary 2 Suppose (g, π) ∈ C(s, S) with (s, S) ∈ L1, and P
μ is a past-pointing

timelike vector, then the following statements are equivalent:

(i) For all (h, p) ∈ T(g,π)C(s, S), Dm(g,π)[h, p] = Dm BY
(g,π)(�)[h, p].

(ii) (g, π) is a stationary initial data set, whose stationary Killing vector is pro-
portional to P

μ at infinity and (−m0, 0, 0, 0) on �, with the same constant of
proportionality.

Remark 4 Bartnik’s geometric boundary conditions ask that the induced metric on the
boundary and mean curvature are prescribed, as well as the trace of K with respect
to the boundary metric and a projection, K Aknk . One would like to prove that critical
points of the mass, subject to these quantities being fixed, correspond to stationary
solutions. In the time-symmetric case, onewould like to prove that critical points of the
mass subject to only the mean curvature being fixed, correspond to static solutions.
While Corollary 2 does not prove this, it does illuminate a connection. Since first
posting this article to arXiv, the static case has been established by Anderson and
Jauregui [3] and in full generality by An [1,2], in both cases working on a phase space
modelled on weighted Hölder spaces.

By choosing different conditions on ξ , both at infinity and on �, we will obtain
different conditions for solutions to be stationary; essentially, these ideas can be used
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to find the appropriate condition for the existence of a Killing vector with prescribed
boundary conditions. In [20], we use similar ideas to prove that the first law of black
hole mechanics gives a condition for stationarity, when the boundary conditions on
the Killing vector are inspired by bifurcate Killing horizons. Here we can include
the quasi-local generalised angular momentum used in [20] to obtain a similar result,
without the area/surface gravity term (as the metric is fixed on � here). One can also
infer that Ê (ξref ) has no critical points when ξ∞ = 0 from the fact that DΦF has
trivial kernel in L2−1/2. That is, one immediately has the expected, or perhaps even
obvious, result that the Brown–York mass (equivalently, the mean curvature of �) has
no critical points.
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