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Abstract
Vacuum gravitational fields admitting a light-like Killing field were systematically
studied starting around 1960. Besides the already known plane waves, a second class
of gravitational wave fields was found. In contrast to plane waves, their wave surfaces
were not flat, but had a negative Gaussian curvature. Recently, such solutions found
attention again as “twisted gravitational waves”. In the paper we review and extend the
earlier results. In suitable coordinates, the metric assumes a simple shape. The waves
are then determined by a single function that satisfies a Laplace equation in cylindrical
coordinates. The “twisted waves” prove to be a special case.

Keywords General Relativity · Exact solutions · Gravitational waves

1 History and summary

Einstein hoped to explain the discrete quantum structure of matter in terms of
singularity-free solutions of a nonlinear unified field theory [1]. In particular, the
graviton was expected to be represented by an exact solution of the nonlinear vac-
uum field equations of gravity. What would this solution look like? Analogous to a
photon, the graviton had to be a massless particle moving with the velocity of light.
Also, the field configuration of a single graviton without interaction was expected to
be preserved during its motion in a direction kμ. These two conditions led to specific
geometric requirements: kμ had to be a null vector in the geometry created by the
graviton, and this geometry should not change as the graviton moves along the inte-
gral curves of kμ. This means, that the single classical graviton in Einstein’s vision
should admit a null Killing field, just as an isolated particle with non-zero rest-mass
has a time-independent gravitational field, admitting a time-like Killing vector.

Such heuristic ideaswere discussed at the beginning of the Sixties of the last century
in Papapetrou’s research group at the former Prussian Academy of Sciences in Berlin.
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The author as amember of the groupworked on the characteristic initial value problem
for the vacuum field equations of General Relativity at that time [2,3]. His method
was not applicable in the case that the tangent vector of the initial null hypersurface
was a Killing vector (that is, if the hypersurface was a horizon). This special case had
to be treated separately.1

So there was ample reason to handle vacuum fields with a null Killing vector.
Surprisingly, it was pretty easy to find the general solution [2,5]. There were two types
of solutions, depending on the Killing field being a gradient or not. The first case
corresponded to the—already at that time—well known plane waves. In the second
case a new class of exact solutions emerged, also with apparently free functions.
The essential difference between both types is the character of their wave surfaces,
two-dimensional surfaces orthogonal to the propagation direction of the wave. For
a gradient Killing field the wave surfaces are Euclidean planes with zero Gaussian
curvature—hence the name “plane waves”.2 The wave surfaces of the new class had
non-constant negative Gaussian curvature.

Plane waves have little similarity with Einstein’s classical graviton problem, but
also the new class of solutions was a disappointment in this respect. Just like many
other solutions to Einstein’s vacuum equations, the new metrics had true singularities
that could not be removed by a coordinate transformation. Freely specifiable functions
could be interpreted as wave amplitudes, and the solutions led asymptotically to plane
waves—features which could qualify the metric as a gravitational wave, but the sin-
gularities were hard to explain. Thus only a short communication was published at the
time. The fields received little attention until a recent rebirth as “twisted gravitational
waves” [6–9].

As explained in Sect. 2, all these solutions belong to Kundt’s class of vacuum
fields. In Sects. 3 and 4 we derive the general solution. We closely follow the original
treatment, which is otherwise only available in German. In Sect. 5 an interpretation
as a gravitational wave is attempted and some special cases are discussed. For the
sake of completeness, Sect. 6 shortly deals with plane waves, whose interpretation as
gravitational waves is undisputed. Section 7 explains in some detail the relation to the
“twisted gravitational waves” (TGW). It is shown that the TGW’s are special cases of
our solution.

The article deals exclusively with vacuum fields. At the end we briefly consider the
extension to non-vacuum gravitational fields.

2 Relation with Kundt’s class

A null Killing field kμ satisfies the relations3

1 See the note added in proof of [4], p. 914.
2 We consistently use the term “plane wave” for what is often referred to as “pp wave”.
3 Greek letters range from 0 to 3, Latin letters from 1 to 3, Capital latin letters from 2 to 3. Other conventions
are those of [10] or [11].
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kμ;ν + kν;μ = 0, (1)

kμkνgμν = 0. (2)

It follows kμ;νkν = 0, so the field kμ represents a geodesic null congruence. A
general geodesic null congruence kμ can be characterized by several scalars, obtained
by decomposing the covariant derivative of kμ. Expansion θ , the square of the shear
amount |σ |2 and twist ω are given by

θ = 1

2
kμ

;μ, (3)

|σ |2 = 1

2
k(μ;ν)k

μ;ν − 1

4

(
kμ

;μ
)2

, (4)

ω2 = 1

2
k[μ;ν]kμ;ν . (5)

The scalars are related by the Raychaudhuri equation

θ,μkμ − ω2 + θ2 + |σ |2 = −1

2
Rμνkμkν . (6)

Obviously, the Killing congruence defined by (1) and (2) is a non-expanding shear-
free geodesic null congruence, but not apriori twist-free. Equation (6) shows that for
vacuum fields also the twist vanishes.

Kundt has studied a number of gravitational fields related to the problem [12–14,32].
His class of solutions assumes a geodesic null congruence with zero expansion and
twist. For vacuum fields one concludes from (6) that Kundt’s fields are also shear-free.
Thus our solution belongs to Kundt’s class.

3 The field equation R��k�k� = 0 in adapted coordinates

For the integration of the field equations it is useful to introduce coordinates adapted
to the symmetry. We choose kμ as tangent to the x0-lines:

kμ = δ
μ
0 , (7)

thus (1), (2) reduce to

gμν,0 = 0, g00 = 0. (8)

The second condition g00 = 0 is equivalent to |gik | = 0. Since the four-dimensional
metric is nonsingular by assumption, |gμν | �= 0, we have rank(gik) = 2. Thus there
exists at least one two-dimensional submatrix of (gik)with non-vanishing determinant,
say

|g AB | = g22g33 − g23g23 �= 0. (9)
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With the quantities

μ = (g12g33 − g13g23)/|g AB |, λ = (g13g22 − g12g23)/|g AB | (10)

we can write

|gμν | = −|g AB |(g00 − μg02 − λg03)2. (11)

This implies |g AB | > 0.
We try to simplify the metric by transforming x1 into a null coordinate. One of the

coordinate transformations preserving the conditions (8) is

x̄0 = x0, x̄1 = f (x1, xA), x̄ A = xA (12)

with a function f (x1, xA). The condition ḡ11 = 0 for a null coordinate x̄1 takes the
form

σAσB g AB = 0 (13)

with

σ2 = μ f,1 + f,2, σ3 = λ f,1 + f,3. (14)

Since |g AB | > 0, one concludes σA = 0 or explicitly

μ f,1 + f,2 = λ f,1 + f,3 = 0. (15)

This system of differential equations for the single function f requires

μ,3 − λ,2 + λμ,1 − μλ,1 = 0 (16)

as integrability condition. Surprisingly, the field equation Rμνkμkν = 0 or in adapted
coordinates

R00 = −1

2
g2
01(μ,3 − λ,2 + λμ,1 − μλ,1)

2 = 0 (17)

provides just this integrability condition. Moreover, the transformation (12) leads also
to

ḡ1A = g1A f,1 + g AB f,B = 0. (18)

Finally, we may reach for the two-dimensional metric gAB a diagonal form gAB =
eφδAB by means of

x̄0 = x0, x̄1 = x1, x̄ A = xA(xi ). (19)

123



Vacuum gravitational fields with a null Killing vector Page 5 of 15 10

After these simplifications, the line element becomes (omitting the bar)

ds2 = 2g01dx0dx1 + g11dx21 + 2g1Adx1dxA + eφ(dx22 + dx23 ). (20)

The five field functions g1i and φ depend on xi . This form of the line element is
preserved under the transformations

x̄0 = x0 + ϕ(xi ), x̄1 = x̄1(x1), x̄ A = x̄ A(xi ) (21)

with arbitrary functions ϕ(xi ), x̄1(x1), only x̄ A(x1, xA) has to satisfy the two-
dimensional Laplace equation

Δx̄ A ≡ ∂2 x̄ A

(∂x2)2
+ ∂2 x̄ A

(∂x3)2
= 0. (22)

The metric (20) already satisfies the vacuum equations R00 = 0 and R0A = 0. One
can use coordinate transformations still available to simplify and solve the other field
equations.

4 Solving the remaining field equations

Some remaining vacuum equations, written as R22 − R33, R23, R01, R22 + R33, are
respectively

φ,2m,2 − φ,3m,3 = m,22 − m,33 + (m,2)
2/2 − (m,3)

2/2 ≡ A, (23)

φ,2m,3 + φ,3m,2 = m,2m,3 + 2m,23 ≡ B, (24)

Δm + (m,2)
2 + (m,3)

2 = 0, (25)

Δφ + Δm + (m,2)
2/2 + (m,3)

2/2 = 0. (26)

Here we have set g01 = em (we can assume that g01 has the same sign everywhere,
a zero would mean |gμν | = 0). Under the assumption (m,2)

2 + (m,3)
2 �= 0 we solve

(23,24) for φ,2 and φ,3:

φ,2 = (Am,2 + Bm,3)/((m,2)
2 + (m,3)

2), (27)

φ,3 = (Bm,2 − Am,3)/((m,2)
2 + (m,3)

2). (28)

A short calculation shows, that because of (25), the integrability condition φ,23 = φ,32
as well as the field equation (26) are already satisfied.

The coordinates xA are only fixed up to harmonic transformations with (22). Fol-
lowingWeyl [15], we introduce special canonical coordinates. Let x̄2 = f (x1, x2, x3)
be a set of functions of xA, parametrized by x1, which satisfies Δ f = 0. Then there
always exists another set of harmonic functions, say x̄3 = g(x1, x2, x3), satisfying
the Cauchy–Riemann equations f,2 = g,3, f,3 = −g,2. Since (25) can be written
Δem = 0, em is already such a harmonic function. Thus we are able to set em = x2
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(we can imagine x2 as a kind of radial coordinate). The determination ofφ from (23,24)
now becomes trivial and leads to

eφ = a(x1)/
√

x2, (29)

where a(x1) is a free function.
Introducing canonical coordinates xA also simplifies the integration of the remain-

ing field equations R1i = 0. Writing g12 = x2q2, g13 = x2q3 with two functions
qA(x1, x2, x3), the conditions R12 = 0 and R13 = 0 lead to

q3,23 − q2,33 + a,1/(x2)
5/2 = 0, (30)

q2,32 − q3,22 + 5(q2,3 − q3,2)/x2 = 0, (31)

which can be integrated to give

q2,3 − q3,2 = (a,1x3 − b)/(x2)
5/2. (32)

b = b(x1) is a second free function. We still have one transformation x̄0 = x0 +
ϕ(xi ), x̄i = xi at our disposal, which leads to

q̄A = qA + ϕ,A (33)

and will be used to reach q2 = 0. Then from (32) after integration

q3 = 2

3
(a,1x3 − b)/(x2)

3/2. (34)

Here a function c(x1, x3) resulting from this integration has been transformed to zero
with help of (33). The last equation R11 = 0 can now be written4

∂2H

∂x22
+ 1

x2

∂ H

∂x2
+ ∂2H

∂x23
= x−7/2

2 (b − a,1x3)
2/a + x−3/2

2 (a2
,1/a − 2a,11/3), (35)

where we have set g11 = r H(x1, x2, x3). The general solution H of (35) is repre-
sented as the sum of a particular solution and the general solution of the homogeneous
equation

∂2F

∂x22
+ 1

x2

∂ F

∂x2
+ ∂2F

∂x23
= 0. (36)

It is not difficult to find a particular solution of the inhomogeneous equation, so the
general solution of (35) can be written

H = F + 4

9
x−3/2
2 (b − a,1x3)

2/a + x1/22

(
4

9
a2
,1/a − 8

3
a,11

)
. (37)

4 The corresponding equation (28) in [5] is misprinted: instead of 4/3 read 2/3. The misprint was noted in
[16]. Also equation (30) in [5] is misprinted: instead of 3a2/(4x32 ) read 3/(4a2x32 ).
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The metric now becomes

ds2 = 2x2dx0dx1 + H x2dx21 + 4

3
√

x2
(a,1x3 − b)dx1dx3 + a√

x2

(
dx22 + dx23

)
,

(38)

with two arbitrary functions a(x1) and b(x1). In this form the metric was published
[5]. It is not mentioned in [5] that the functions a(x1) and b(x1) are still subject to
coordinate changes of the type (21) and (22). The transformations

x̄0 = x0 + ϕ, x̄1 = q(x1), x̄2 = x2/q,1, x̄3 = p(x1) + x3/q,1 (39)

with two arbitrary functions p(x1) and q(x1) (q,1 �= 0) send a und b to new functions

a → a(q,1)
3/2, b → (2b + 2a,1 pq,1 + 3ap,1q,1 + 3apq,11)/(2

√
q,1). (40)

In particular, choosing p and q according to

q,1 = a−2/3, p,1 = −2

3
ba−1/3 (41)

we may reach standard values a = 1 and b = 0. With this gauge the metric becomes
diagonal, depending only on the function F(x1, x2, x3):

ds2 = 2x2dx0dx1 + x2Fdx21 + 1√
x2

(
dx22 + dx23

)
. (42)

For later use we note another form of the metric with an arbitrary non-vanishing
spurious function τ(x1), allowing for self-similar changes of x1, also a constant a �= 1
is left:

ds2 = 2τ x2dx0dx1 + Fτ 2x2dx21 + a√
x2

(
dx22 + dx23

)
. (43)

In deriving (42) starting from the definition equations (1), (2) we have made no
further restricting assumptions, except of (m,2)

2+ (m,3)
2 �= 0 (dropping this assump-

tion leads to the plane wave branch). We can therefore expect that (42) represents the
general solution to the problem under discussion.

Solutions of the vacuum equations admitting non-isotropic Killing vectors exist in
large numbers [10]. It is perhaps noteworthy that in the case of a null Killing field
(with kμ;ν �= 0) only one simple solution class (42) exists. The solution is governed
by a single function F(x1, x2, x3), which satisfies the linear differential equation (36).
For the other solution class with kμ;ν = 0, the plane waves, a similar statement applies
(Sect. 6).

123



10 Page 8 of 15 G. Dautcourt

5 Properties of the solutions

The null hypersurfaces x1 = const with kμ as tangential vector can be regarded as
propagation fronts of a gravitational wave. Each three-dimensional propagation front
is formed by a set of two-dimensional wave surfaces orthogonal to kμ. Wave surfaces
can be used to define an amplitude of the wave: Besides kμ, there is another null
direction orthogonal to a wave surface, say lμ. Geodesic continuation of lμ generates
a null hypersurface for everywave surface,which is called conjugate to the propagation
front x1 = const . Then part of the geometry of the conjugate hypersurfaces at their
intersection with the wave surfaces can serve as geometrical measure of the wave
intensity. The required data are those which could also be taken as initial data in a
characteristic initial value problem related to the null hypersurfaces. A convenient
datum is the complex Penrose function

P = |P|eiθ = Rμνρσ lμm̄νlρm̄σ (44)

with amplitude |P| and phase θ . mμ is a complex null vector spanning the directions
in the wave surfaces, m̄μ complex-conjugated. The Penrose function depends only on
the inner geometry of the conjugated null hypersurfaces. For the general metric (42)
one obtains

P = −1

2
x−3/2
2

(
x2

∂2F

∂x22
+ 5

4

∂ F

∂x2

)
+ i

2
x−3/2
2

(
x2

∂2F

∂x2∂x3
+ 3

4

∂ F

∂x3

)
. (45)

This simple interpretation of the metric as a progressing gravitational wave cannot
hide that one is far from a physical understanding. The outstanding feature of the
solution is the singularity for x2 → 0, for which no convincing physical interpretation
seems to be available. The invariants of the Riemann tensor

I1 = Rμνρσ Rμνρσ − i Rμνρσ R∗μνρσ = 3

4
x−3
2 , (46)

I2 = Rμνρσ Rρσαβ Rαβ
μν + i Rμνρσ Rρσαβ R∗

αβ
μν = − 3

16
x−9/2
2 (47)

show this singularity. The singularity is also visible in the Gaussian curvature of the
wave surfaces:

K = −1

4
x−3/2
2 . (48)

For large x2 the wave surfaces become flat and the invariants tend to zero. These are
signs that the fields asymptotically tend to plane waves.

We leave the problem of singularities open for the time being, and move on to some
explicit solutions. Equation (36) has the form of a three-dimensional Laplace equation
in cylindrical coordinates (r = x2, z = x3) for a function F with axial symmetry, i.e.
independent of the azimuth. The trivial case F = 0 leads to
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ds2 = 2x2dx0dx1 + 1√
x2

(
dx22 + dx23

)
. (49)

This is one of the simplest curved Ricci-flat geometries. Themetric can be transformed
into one of the Kasner solutions [17] and was discovered independently several times.
Harrison found the solution as case III-2 among his 30 Ricci-flat metrics [18], but
in coordinates which hide its simplicity. The solution also belongs to the so-called
“one-dimensional gravitational fields” discussed in [19].

Equation (49) admits two independent null Killing vectors kμ = δ
μ
0 , lμ = δ

μ
1

and is the only metric in our class with this property. The Petrov type is D. The
two sets of null hypersurfaces x0 = const and x1 = const are both horizons with
vanishing shear and expansion of their inner geometries. Their intersections are two-
dimensional surfaces with the negative Gaussian curvature (48). Equation (49) can be
considered as the unique solution of a characteristic initial value problem starting from
a pair of conjugated horizons together with a given two-dimensional geometry of their
intersection. If one writes the metric in space-time coordinates, its static character
becomes visible, so it is certainly not a gravitational wave. A wave intensity formally
calculatedwith (45) is zero. The solution is however the key to a physical understanding
of equally singular solutions, that clearly show a wave character.

A function F = f (x1), also a trivial solution of (36), can be reduced to F = 0 by
a coordinate transformation. Simple, but non-trivial solutions result from a separation
ansatz F = A(x1, x2)B(x1, x3), leading to

1

A

d2A

dx22
+ 1

x2

1

A

d A

dx2
= −k,

1

B

d2B

dx23
= k, (50)

k may depend on x1. For k = 0, this effectively gives

F = U (x1)x3 + V (x1)lnx2 + W (x1)x3lnx2. (51)

We interpret this metric as superposition of three gravitational waves, which transmit
information stored in the functions U , V and W of x1. The total amplitude and phase
as measured by the Penrose function are

P = 3i

8
x−3/2
2 U − 1

8
x−5/2
2 V − 1

8
x−5/2
2 x3W + i

2
x−3/2
2

(
1 + 3

4
lnx2

)
W . (52)

From the Penrose function we can read off the different polarization modes of the
U , V and W -waves: The real part of P corresponds to ⊕-polarization, the imaginary
part to ⊗-polarization. It is seen that the U -wave has ⊗-polarization, the V -wave
⊕-polarization. W -waves show both types of polarization.

If in (50) k differs from zero and is positive, one obtains solutions involving Bessel
functions. A basic solution with Bessel functions of the first kind is

F = J0(
√

kx2)e
±√

kx3 . (53)
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The corresponding polarization amplitudes are:

P⊕ = e±√
kx3

8x3/22

(
√

k J1(
√

kx2) + 4kx2 J0(
√

kx2)), (54)

P⊗ = e±√
kx3

8x3/22

(∓4J1(
√

kx2) ± 3
√

k J0(
√

kx2)). (55)

Another solution results, if the Bessel functions of the first kind in (53)–(55) are
replaced by Bessel functions of the second kind (Weber functions), with different
behaviour at the singularity x2 → 0 and for x2 → ∞.

For a negative k one has similar expressions with waves oscillating in x3. Because
of the linearity of (36), all solutions can be superimposed linearly with coefficients
depending arbitrarily on x1.

One may think of other solutions, but the given examples are sufficient to illustrate
the class. The Petrov type is in general II, in special cases D.

6 Plane waves

To complete the discussion, we shortly consider planewaves, the other class of vacuum
solutions in case of a null Killing vector. There were many papers on plane waves
around 1960 (and earlier), either with Brinkmann-like coordinates or in the Rosen
form [12–14,20–26]. Plane waves result if we drop the condition (m,2)

2 + (m,3)
2 �= 0

and assume m = m(x1). It is easy to see that the Killing vector is a gradient (and
therefore covariantly constant), if and only if m is independent of x A. Again we can
use coordinate transformations to simplify the solution. For Brinkmann coordinates,
we can write the line element (for a derivation, see e.g. [10])

ds2 = 2dx0dx1 + Adx21 + dx22 + dx23 . (56)

As in our previous case, a single function A = A(x1, x2, x3) governs the solutions, but
now A satisfies (in the vacuum case) the two-dimensional Laplace equation ΔA = 0.
We take the local solution which is quadratic in the transversal coordinates x A:

A = α(x1)(x23 − x22 ) + 2β(x1)x2x3. (57)

Also here the null hypersurfaces x1 = const serve as propagation fronts. The com-
plex Penrose function of the conjugated null hypersurfaces as a measure of the wave
intensity reduces to

P = α(x1) + iβ(x1), (58)

in accordance with our expectation. The wave surfaces are Euclidean planes.
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7 “Twisted gravitational waves”

Recently solutions admitting a null Killing field were considered in a series of papers
[6–9] under the heading “twisted gravitational waves” (TGW). The authors have car-
ried out an extensive study of some of these metrics, including an investigation of
particle movements.

The term “twisted” is used here in an unusual way: In the standard literature [10,
11,13,27] a congruence kμ is called twisted, if k[μ;νkρ] �= 0, which is equivalent to
the non-vanishing of the twist-scalar ω. Instead, the authors call solutions twisted, if
k[μ;ν] differs from zero. Thus “twisted metrics” in this unconventional sense may have
(and in case of the above papers actually do have) a vanishing twist-scalar ω.

The authors consider solutions Ψ (x̄1, x̄2) of the partial differential equation

∂

∂ x̄2

(
Ψ

∂2Ψ

∂ x̄21

)
= 0, (59)

also written

Ψ
∂2Ψ

∂ x̄21
= V (x̄1) (60)

with an arbitrary function V (x̄1). Then the metric given by

ds2 = −Ψ 4dx̄0dx̄1 + λ2 Ψ 4
(

∂Ψ

∂ x̄2

)2

dx̄22 + 1

Ψ 2 dx̄23 (61)

(λ > 0 is a constant) is Ricci-flat and admits a null Killing vector kμ = δ
μ
0 . The metric

is only implicitly known, since it depends on a solution of the differential equation
(59).

Since we claim to have found the general Ricci-flat solution in the null Killing
vector case, given by (42) or (43), there must exist a coordinate transformation that
relates a solution of the form (61) to our solution.

TGW coordinates are noted as x̄μ, our coordinates are xμ. The null Killing vector
has in both metrics the components kμ = δ

μ
0 . Coordinate transformations preserving

this property are again of the type (21). Rewritten in inverse form we have

x0 = x̄0 − ϕ(x̄i ), x1 = x̄1,

x2 = h(x̄i ), x3 = k(x̄i ). (62)

Using (43) with the spurious function τ(x1) instead of (38) allows to use the same
coordinate x1 in both metrics.

We first consider some explicit solutions discussed in [6–8]. One of them is the
Harrison metric [18], given by (using the form found in [8])

ds2 = −x̄4/32 dx̄0dx̄1 + x̄6/51 dx̄22 + x̄−2/3
2 x̄−2/5

1 dx̄23 . (63)
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In these coordinates the Harrison metric does not have the standard structure (61), but
still belongs to the TGW class. The transformation

x0 = x̄0 + 9

5
x̄1/51 x̄2/32 , x1 = x̄1,

x2 = (3/4)4/3 x̄4/51 x̄4/32 , x3 = (3/4)1/3 x̄3 (64)

leads from Harrison to the solution (43) with

a = 1, F = 0, τ = −25/3

34/3
x−4/5
1 . (65)

Another simple example is the so-called w-metric, arising from (61) with Ψ =
x̄1 + x̄2 and λ = 1:

ds2 = −(x̄1 + x̄2)
4dx̄0dx̄1 + (x̄1 + x̄2)

4dx̄22 + (x̄1 + x̄2)
−2dx̄23 . (66)

Here the transformations

x0 = x̄0 + x̄1 + 2x̄2, x1 = x̄1,

x2 = (x̄1 + x̄2)
4/2, x3 = 2x̄3 (67)

generate (43) with

a = 1

4
√
2
, F = 0, τ = −1. (68)

Thus the transformed w-metric essentially coincides with the transformed Harrison
metric: Obviously, “Harrison” and “w” represent the same metric in different coordi-
nate systems, both of which are equivalent to the basic solution (49). The relations

x̂0 = x̄0 + 9x̄1/51 x̄2/32 /5 − 2x̄1/51 x̄1/32 /3−1/3 + 5x̄1/51 /34/3,

x̂1 = 5x̄1/51 /34/3, x̂2 = 31/3 x̄1/51 x̄1/32 − 5x̄1/51 /34/3, x̂3 = 31/3 x̄3 (69)

give the w-metric coordinates x̂μ in terms of the Harrison coordinates x̄μ.
Turning now to the general case (61), we show that the relations

x0 = x̄0 − ϕ(x̄1, x̄2, x̄3),

x1 = x̄1, x2 = h(x̄1, x̄2), x3 = 2x̄3/λ (70)

with

h(x̄1, x̄2) = Ψ 4(x̄1, x̄2)/2 (71)
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and suitable ϕ transform the TGW metric into (43) with τ = −1. The transformation
equations

gμν = ∂xμ

∂ x̄α

∂xν

∂ x̄β

ḡαβ

give for the index pair (μ, ν)=(2,2) or (3,3)

a = λ2

4
√
2
. (72)

The pairs (0,0), (0,1) and (0,3) provide the derivatives ϕi = ∂ϕ
∂ x̄i

. The remaining
equations are already satisfied. We find

ϕ1 = −λ2
(

∂Ψ

∂ x̄1

)2

− F̄

2
, ϕ2 = −2λ2

∂Ψ

∂ x̄1

∂Ψ

∂ x̄2
, ϕ3 = 0, (73)

where the constancy of a is already taken into account. The integrability conditions
require ϕ2,3 − ϕ3,2 = 0, ϕ3,1 − ϕ1,3 = 0, ϕ1,2 − ϕ2,1 = 0. The last two give

∂ F̄

∂ x̄3
= 0,

∂ F̄

∂ x̄2
= 4λ2

∂2Ψ

∂ x̄21

∂Ψ

∂ x̄2
. (74)

The function F(x1, x2, x3) is written here F̄(x̄1, x̄2, x̄3) as function of the TGW coor-
dinates:

F̄(x̄1, x̄2, x̄3) ≡ F(x̄1, x2[x̄1, x̄2], x3[x̄1, x̄3]). (75)

In original coordinates F satisfies the linear equation (36). Translated into TGW
coordinates by means of (70), the transformed function F̄ satisfies

∂2 F̄

∂ x̄22
+

(
h2

h
− h22

h2

)
∂ F̄

∂ x̄2
+ λ2h2

2

4

∂2 F̄

∂ x̄23
= 0, (76)

where h2 = ∂h
∂ x̄2

etc. Inserting (71) and (74) we find

∂Ψ

∂ x̄2

(
Ψ

∂3Ψ

∂ x̄2∂ x̄21
+ ∂2Ψ

∂ x̄21

∂Ψ

∂ x̄2

)
= 0. (77)

Since ∂Ψ
∂ x̄2

�= 0, the basic equation (59) for Ψ is recovered. Clearly, this relation must
be satisfied, thus that metrics of the type (61) can be transformed into our metric. For
the function F̄ we obtain

F̄ = 4λ2V (x̄1) lnΨ (78)
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up to an added arbitrary function of x̄1. Translated into our coordinates we have the
result: The TGW metrics are the special case F = V (x1) ln x2 of our solution. In
particular, the Harrison metric (or w-metric) corresponds to F = 0.

8 Final remarks

Many of the issues concerning nonplanar waves need further clarification. In recent
years the “cosmic jet” property was intensively investigated: Test particles can gain
(or lose) energy in time-dependent gravitational fields, e.g. plane waves [28,29]. It
would be interesting to study this question also for the nonplanar waves presented in
this article.

Another task is the extension beyond vacuum fields. In the presence of a cosmo-
logical constant the vacuum field equations can be written Rμν = Λgμν . Hence all
conclusions drawn from Rμνkμkν = 0 in Sect. 2 remain valid, we again arrive at
the metric (20). Recently such solutions with Λ �= 0 have been found by Firouzhjahi
and Mashhoon [9]. Also non-vacuum gravitational fields with a twist-free null Killing
vector have been discussed, e.g. electro-vac solutions [30,31]; for a survey see [10].
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