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Abstract
The objective of the present paper is to study 4-dimensional almost pseudo Ricci sym-
metric perfect fluid spacetimes (APRS)4.We show that a Robertson–Walker spacetime
is (APRS)4 and vice versa under certain condition imposed on its scale factor. Some
popular toy models of F(R)-gravity are also studied under the current setting and
various energy conditions are investigated.
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1 Introduction

A semi-Riemannian manifold is said to be locally symmetric if the curvature tensor
is parallel in the sense that ∇r Ri jkl = 0. After Cartan [7] completely classified all
locally symmetric Riemannian spaces, the notion has been weakened bymany authors
to different extent such as conformally symmetric manifolds [10], recurrent manifolds
[22], conformally recurrent manifolds [1], pseudo symmetric manifolds [9], weakly
symmetricmanifolds [20], weaklyRicci symmetricmanifolds [21] etc. Later Chaki [8]
introduced a pseudo-Ricci symmetric manifold (PRS)n as a non-flat semi-Riemannian
manifold whose Ricci tensor Ri j of type (0, 2) is not identically zero and satisfies the
condition

∇i R jk = 2Ai R jk + A j Rki + Ak Ri j ,

where Ai is a non-zero 1-form.
When Ai vanishes, we obtain a Ricci-symmetric manifold, that is, the Ricci tensor

satisfies∇i R jk = 0. With its several interaction with general relativistic works, Chaki
and Kawaguchi [11] are motivated to generalize further the concept and introduced
an almost pseudo-Ricci symmetric manifold (APRS)n . A non-flat semi-Riemannian
manifold is called an (APRS)n if its Ricci tensor Ri j is not identically zero and satisfies
the condition

∇i R jk = (Ai + Bi )R jk + A j Rki + Ak Ri j , (1)

where Ai and Bi are two 1-forms called associated 1-forms. If Ai = Bi , an (APRS)n
reduces to a pseudo-Ricci symmetric manifold, making (PRS)n a particular case of
(APRS)n . Several authors studied (APRS)n in different settings, see [15–17] etc and
the references therein.

A Lorentzian manifold is said to be an almost pseudo Ricci symmetric spacetime
[14] if the Ricci tensor Ri j satisfies (1). Bektas and Ozen Zengin [2] recently investi-
gated a perfect fluid (APRS)4 spacetime solution of Einstein’s field equations without
cosmological constant, where the four-velocity vector field ui = Ai which motivated
us towards the present study.

The Einstein’s field equations (EFE)

Ri j − R

2
gi j = κ2Ti j ,

are unable to explain the late time inflation of universe without assuming the existence
of some yet undetected components abbreviated as dark energy. Here κ2 = 8πG,
G is the Newton’s gravitational constant, R is the Ricci scalar and Ti j is the energy
momentum tensor describing the matter content of the spacetime.

Some researchers started believing that EFE might break down at a large scale and
tried to modify it to get some higher order field equations of gravity. One of these
modified gravity theories is obtained by replacing the Ricci scalar R in the Einstein–
Hilbert action with an arbitrary function F(R) of R. The F(R) theories, despite being
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the simplest generalization, are believed to be the unique one among higher-order
gravity theories which can avoid the long known and fatal Ostrogradski instability
[18]. Of course the viability of such functions are constrained by several observational
data and scalar–tensor theoretical results. However, we have certain functions which
could be able to explain thewhole cosmic history of the universe starting from the early
accelerated expansion, decelerated expansion and the late time accelerated expansion.
Additionally we can always propose some phenomenological assumption about the
formof the function F(R) and later verify its validity from the present viability criteria.

The matter content in the gravitational field equations is more often than not
assumed to be a perfect fluid continuum having density, pressure and possessing
dynamical and kinematical quantities like velocity, acceleration, vorticity, shear and
expansion, in which case the energy momentum tensor Ti j of type (0, 2) is given by

Ti j = pgi j + (σ + p)uiu j , (2)

where σ and p are the energy density and the isotropic pressure respectively, the
timelike ui is the velocity vector field of the fluid. θ = ∇i ui is termed as the expansion
scalar of the fluid, u̇l = ui∇i ul is the acceleration vector,

s jl = 1

2
hij h

r
l (∇i ur + ∇r ui ) − θ

3
h jl

is the shear tensor, where h jl = g jl + u jul is the orthogonal projector. Physically,
the expansion measures the rate of change of the volume of a fluid element per unit
volume, and the shear tensor measures the shearing deformation of a fluid element.
The vorticity which measures the local rotation of the fluid is given by

� jl = 1

2
hij h

r
l (∇i ur − ∇r ui ),

mathematically it is equivalent to the curl of the velocity vector field ui of the fluid.
In addition, p and σ are related by an equation of state governing the particular

sort of perfect fluid under consideration. In general, this is an equation of the form
p = p(σ ). In this case, the perfect fluid is called isentropic. Moreover, if p = σ ,
then the perfect fluid is termed as stiff matter. A stiff matter equation of state was
first introduced by Zeldovich [23,24] and used in his cosmological model in which
the primordial universe is assumed to be a cold gas of baryons. The stiff matter era
preceded the radiation era with p = σ

3 , the dust matter era with p = 0 and followed
by the dark matter era with p = −σ [12].

The present paper is organized as follows: After the introduction, in Sect. 2 an
equivalent condition for a Robertson–Walker spacetime to be an (APRS)4 is deduced.
Next, we study almost pseudo Ricci symmetric spacetimes with constant Ricci scalar
which satisfy F(R)-gravity equations. In the next section we discuss the energy con-
ditions in such a setting, followed by some toy models of F(R)-gravity investigated
in (APRS)4 with constant R. We close the study with a discussion.
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5 Page 4 of 14 A. De, T.-H. Loo

2 Robertson–Walker spacetime as an (APRS)4

The current favored model of our universe is spatially homogeneous and isotropic
or mathematically speaking, a warped product R ×a(t) M3, popularly known as a
Robertson–Walker (RW) spacetime. Here the manifold M3, in general, is a space
form of curvature −1, 0 or 1 but recent observational data convince us of a spatially
flat universe k = 0 case. The function a(t) is called the scale factor of the universe
and ȧ

a = H the Hubble parameter. In this section we show that the RW spacetime
is almost pseudo Ricci symmetric if and only if the scale factor a(t) satisfies certain
conditions.

The line element and the Ricci scalar in a spatially flat RW spacetime are respec-
tively given by

ds2 = −dt2 + a2(t)
(
dr2 + r2dθ2 + r2 sin2 θdφ2

)
,

R = 6
aä + ȧ2

a2
.

The Ricci tensor takes the form

R jl = (P − Q)u jul + Pg jl = −Qu jul + Ph jl (3)

where

P = aä + 2ȧ2

a2
, Q = 3

ä

a
(4)

and ui = (∂t )
i is the four-velocity of the fluid with u ju j = −1 and

∇ j ul = ȧ

a
h jl . (5)

It is clear from (4) that

∇i P = − ui Ṗ, ∇i Q = −ui Q̇. (6)

Taking covariant derivative on (3), with the help of (5)–(6) we obtain

∇i R jl = (∇i P − ∇i Q)u jul + (P − Q){∇i u j ul + ∇i ulu j } + ∇i Pg jl

= Q̇ui u j ul + (P − Q)
ȧ

a
{hi j ul + hilu j } − Ṗui h jl . (7)

Now let us further assume that it is an (APRS)4 spacetime. By (1) and (3), we obtain

∇i R jl = −Q{(Ai + Bi )u jul + A juiul + Aluiu j }
+ P{(Ai + Bi )h jl + A jhil + Alhi j }. (8)
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By comparing (7)–(8), we have

Q̇ui u j ul + Q{(Ai + Bi )u jul + A juiul + Aluiu j } = Xih jl + Y jhil + Ylhi j (9)

where Xi = P(Ai+Bi )+ Ṗui andY j = PA j−(P−Q)(ȧ/a)u j . Leth jl = g jl+u jul .
Then

hi j h
jl = hli = δli + uiu

l .

Transvecting (9) with h jl , we have

3Xi + 2Y jh
j
i = 0. (10)

Transvecting with ui , we have 3Xiui = 0. Similarly, we have Yiui = 0. It follows
that (10) becomes

3Xi + 2Yi = 0.

Similarly, we obtain 2Xi+3Yi = 0.Solving these two equations gives Xi = Yi = 0
or

P(Ai + Bi ) = −Ṗui ; PAi = (P − Q)
ȧ

a
ui . (11)

If P = 0, then Q = 0 by (11). This case is infeasible due to physical constraints.
Hence we assume that P �= 0. It follows from (11) that P − Q �= 0. Further, the
Eq. (9) is simplified as

(
Q̇ − Q

Ṗ

P
+ 2Q

P − Q

P

ȧ

a

)
uiu j ul = 0.

So

P Q̇ − QṖ − 2Q(Q − P)
ȧ

a
= 0. (12)

A RW spacetime is an (APRS)4 spacetime if and only if the conditions (11)–(12)
are satisfied. Due to physical considerations, we assume that Q �= 0. Hence

0 = 1

Q2a2

(
P Q̇ − QṖ − 2Q(Q − P)

ȧ

a

)
= 1

Q2a2
d

dt

(
Q − P

Qa2

)
.

Since P − Q �= 0, we have

aä − ȧ2

a3ä
= −1

ε
(13)

123



5 Page 6 of 14 A. De, T.-H. Loo

where ε �= 0 is a constant. This is a second order DE. We shall transform it into a first
order DE. To do this, we first transform this equation into

0 = a3

2ȧ

(
2ȧä

1 + ε−1a2

a2
− ȧ2

2ȧ

a3

)
= 1

ε

a3

2ȧ

d

dt

(
ȧ2

ε + a2

a2

)
.

Hence we obtain

ȧ2

a2
(ε + a2) = ψ (14)

where ψ �= 0 is a constant. Furthermore, (13)–(14) imply that

ȧ2

a2
= ψ

ε + a2
; ä

a
= ψ

ε + a2
ε

ε + a2
. (15)

By applying (15) to (4), we compute

p = ψ

ε + a2

{
ε

ε + a2
+ 2

}

p′ = −2aȧ

ε + a2
ψ

ε + a2

{
2ε

ε + a2
+ 2

}

p − q = ψ

ε + a2
2a2

ε + a2
.

Noticing also that (14) gives

ȧ

a

√
|ε + a2| = ε1

where ε1 is a constant with ε21 = |ψ |. By substituting these equations into (11), we
obtain

Ai = 2ε1a2

3ε + 2a2
1√|ε + a2|ui ; Bi = 2ε1a2

3ε + 2a2
1√|ε + a2|

3ε + a2

ε + a2
ui .

Finally we consider three cases:

(a) When ε > 0. Let ε = ε20 with ε0 > 0. Then

ȧ

a

√
ε20 + a2 = ε1.

Furthermore, by the integration formula, we obtain

√
ε20 + a2 − ε0 ln(ε0 +

√
ε20 + a2) + ε0 ln a = ε1t + ε2.
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(b) When ε < 0 and ε + a2 < 0. Let ε = −ε20 with ε0 > 0. Then |ε + a2| = ε20 − a2

and so

ȧ

a

√
ε20 − a2 = ε1.

Furthermore, by the integration formula, we obtain

√
ε20 − a2 − ε0 ln(ε0 +

√
ε20 − a2) + ε0 ln a = ε1t + ε2.

(c) When ε < 0 and ε + a2 > 0. Let ε = −ε20 with ε0 > 0. Then |ε + a2| = a2 − ε20
and so

ȧ

a

√
a2 − ε20 = ε1.

Furthermore, by the integration formula, we obtain

√
a2 − ε20 − ε0 sec

−1 a

ε0
= ε1t + ε2.

Thus we have the following:

Theorem 2.1 A spatially flat RW spacetime is an (APRS)4 spacetime if and only if
either

(a) the scale factor a(t) satisfies the implicit equation:

√
ε20 + a2 − ε0 ln(ε0 +

√
ε20 + a2) + ε0 ln a = ε1t + ε2

and the associated 1-forms are given respectively by

Ai = 2ε1a2

3ε20 + 2a2
1√

ε20 + a2
ui ; Bi = 2ε1a2

3ε20 + 2a2
3ε20 + a2

(ε20 + a2)3/2
ui

where ε0 > 0, ε1 and ε2 are constants; or
(b) the scale factor a(t) satisfies the implicit equation:

√
ε20 − a2 − ε0 ln(ε0 +

√
ε20 − a2) + ε0 ln a = ε1t + ε2

and the associated 1-forms are given respectively by

Ai = 2ε1a2

2a2 − 3ε20

1√
ε20 − a2

ui ; Bi = 2ε1a2

2a2 − 3ε20

3ε20 − a2

(ε20 − a2)3/2
ui

where ε0 > 0, ε1 and ε2 are constants; or
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(c) the scale factor a(t) satisfies the implicit equation:

√
a2 − ε20 − ε0 sec

−1 a

ε0
= ε1t + ε2

and the associated 1-forms are given respectively by

Ai = 2ε1a2

2a2 − 3ε20

1√
a2 − ε20

ui ; Bi = 2ε1a2

2a2 − 3ε20

a2 − 3ε20
(a2 − ε20)

3/2
ui

where ε0 > 0, ε1 and ε2 are constants.

3 (APRS)4 satisfying F(R)-gravity

In an (APRS)4 the covariant derivative of the Ricci tensor satisfies (1). Hence we have

∇i R jk − ∇k Ri j = Bi R jk − Bk Ri j ,

which on contraction over j and k gives us

∇i R = 2RBi − 2Ri j B
j . (16)

If we consider a constant Ricci scalar R, we get from (16),

RBi = Ri j B
j . (17)

Naturally, we consider a non-vanishing R.We consider a modified Einstein–Hilbert
action term

S = 1

κ2

∫
F(R)

√−gd4x +
∫

Lm
√−gd4x,

where F(R) is an arbitrary function of the Ricci scalar R, Lm is the matter Lagrangian
density, and we define the stress-energy tensor of matter as

Ti j = − 2√−g

δ(
√−gLm)

δgi j
.

By varying the action S of the gravitational field with respect to the metric tensor
components gi j and using the least action principle we obtain the f (R)-gravity field
equations

FR(R)Ri j − 1

2
F(R)gi j + (gi j� − ∇i∇ j )FR(R) = κ2Ti j , (18)
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where � represents the d’Alembertian operator and FR = ∂F(R)
∂R . Einstein’s field

equations can be reawakened by putting F(R) = R.
The trace of (18) gives

3�FR(R) + RFR(R) − 2F(R) = κ2T ,

which we can rewrite as

�FR(R) = ∂V eff

∂FR(R)
.

On the critical points, the effective potential V eff has a maximum (or minimum), so
that

�FR(RCP ) = 0

and

2F(RCP) − RCPFR(RCP) = −κ2T .

Here, RCP is the curvature at the critical point. For example, in absence of matter, i.e.,
T = 0, one has the de Sitter critical point associated with a constant Ricci scalar RdS.
For a constant Ricci scalar, we can express the above field Eq. (18) as follows:

Ri j − R

2
gi j = κ2

FR(R)
T eff
i j , (19)

where

T eff
i j = Ti j + F(R) − RFR(R)

2κ2 gi j .

Remembering the term κ2 = 8πG, the quantity Geff = G
FR(R)

can be regarded as the
effective gravitational coupling strength in analogy to what is done in Brans–Dicke
type scalar–tensor gravity theories and further the positivity of Geff (equivalent to the
requirement that the graviton is not a ghost) imposes that the effective scalar degree
of freedom or the scalaron term fR(R) > 0.

In [3–5] cosmological perfect fluid case is considered in various gravity theories.
Motivated by these studies we consider a perfect fluid spacetime that satisfies (19).
Hence using (2) we have

Ri j = κ2(p + σ)

FR(R)
uiu j + 2κ2 p + F(R)

2FR(R)
gi j . (20)

It follows that

Ri j u
j = F(R) − 2κ2σ

2FR(R)
ui . (21)
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Throughout this study we consider a perfect fluid (APRS)4 spacetime solution of
f (R)-gravity equations where the four-velocity vector ui = Bi , so that (17) gives
Ri j u j = Rui . Hence, we conclude that

R = F(R) − 2κ2σ

2FR(R)

or

σ = F(R) − 2RFR(R)

2κ2 . (22)

On the other hand, the trace equation of (20) is given by

R = −κ2σ + 3κ2 p + 2F(R)

FR(R)
.

This, together with (21), gives

p = − F(R)

2κ2 . (23)

This leads to our first result:

Theorem 3.1 In a perfect fluid (APRS)4 spacetime with constant R satisfying F(R)-
gravity; if the four-velocity vector ui = Bi , then its isotropic pressure p and energy
density σ are given by p = − F(R)

2κ2
and σ = F(R)−2RFR(R)

2κ2
. Moreover, both the

pressure and density are constant in this special scenario.

Corollary 3.1 A vacuum (APRS)4 spacetime solution with constant R and ui = Bi is
not viable in the F(R)-gravity theory.

Proof For vacuum case, Ti j = 0 and p = σ = 0. It follows from (23) that F(R) = 0.
��

Remark 3.1 In general relativity, F(R) = R, so the perfect fluid represents a stiff
matter p = σ = − R

2κ2
.

Theorem 3.2 The matter content in a perfect fluid (APRS)4 spacetime with constant
R and ui = Bi satisfying F(R)-gravity obeys the simple barotropic equation of state
p = ωσ if and only if F(R) = λR(1+ω)/2ω.

Proof Suppose p = ωσ . It follow from (22)–(23) that

2ωRFR(R) = (1 + ω)F(R).

Solving this equation gives F(R) = λR(1+ω)/2ω where λ is a constant. The converse
is trivial. ��
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Remark 3.2 Corresponding to the different states of cosmic evolution of the universe
we can conclude:

• The perfect fluid denotes dark matter (ω = −1) if F(R) is a constant function of
R or alternately if the spacetime is scalar flat.

• The perfect fluid denotes stiff matter (ω = 1) if F(R) is a constant multiple of R.
• The perfect fluid denotes radiation (ω = 1/3) if F(R) is a constant multiple of

R2.
• The perfect fluid cannot represent a dust era for any viable F(R).

Theorem 3.3 In a perfect fluid (APRS)4 spacetime with constant R satisfying F(R)-
gravity; if the four-velocity vector ui = Bi , then the fluid either has vanishing
expansion scalar and acceleration vector or represents a dark matter.

Proof ByTheorem 3.1, the pressure and density of the perfect fluid are constant. Using
the conservation of energy ∇ i Ti j = 0 and (2), we obtain

0 = (p + σ){∇ i ui u j + ui∇ i u j }. (24)

Since u ju j = −1, ∇ i u j u j = 0. Contracting by u j on (24) gives

0 = −(p + σ)∇ i ui .

Furthermore, we also have

0 = (p + σ)ui∇ i u j .

Hence, either p + σ = 0 or ∇ i ui = ui∇ i u j = 0. ��
Since a conservative vector field is always irrotational, we get the vorticity of the
perfect fluid is zero.

Theorem 3.4 If a perfect fluid spacetime with constant R satisfying F(R)-gravity
obeys the timelike convergence condition, then σ ≥ F(R)

2k2
.

Proof ui is timelike, hence timelike convergence implies that

Ri j u
i u j ≥ 0.

As discussed earlier, FR(R) > 0 to ensure attractive gravity. Therefore, from (21) we
obtain the result. ��

4 Energy conditions in an (APRS)4

Energy conditions are coordinate-invariant restrictions on the (effective) energy-
momentum tensor which is useful when we explore the possibility of variety of matter
sources, not necessarily only a perfect fluid continuum, which satisfy the Einstein’s
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field equations or the modified theories of gravity and preserve the idea that energy
should be positive. There are several energy conditions; some of which are obsolete
these days like the trace energy condition, some are weaker and included in the other.
But in general, the idea is to contract the energy momentum tensor with arbitrary
timelike or lightlike vectors to produce some scalar fields. We use Theorem 3.1 to
deduce some relevant energy conditions for our study.

• Null energy condition (NEC): the weakest of all, it states that T eff
i j l

i l j ≥ 0 for

all null vector li , or in non-technical terms it says that the energy density of the
fields contributing to T eff

i j , as measured in a natural way by any observer is never
negative. In the present context this condition gives us RFR(R) ≤ 0.

• Weak energy condition (WEC): it states that, T eff
i j t i t j ≥ 0, for all timelike vectors

t i . This also implies, by continuity, the NEC. In the present context, considering
the timelike vector ui we obtain RFR(R) ≤ 0.

• Dominant energy condition (DEC): it states that matter flows along timelike or
null world lines. Mathematically, T eff

i j t i t j ≥ 0 for any timelike t i together with

T eff
i j t i is not spacelike, either null or timelike. By continuity the property should

also hold true for any null vector li . In the present context we obtain, RFR(R) ≤ 0.
• Strong energy condition (SEC): it states that T eff

i j t i t j ≥ 1
2T

i
i t

j t j , for all timelike

vectors t i which after some calculations reduces to RFR(R) ≤ 0.

Since, FR(R) > 0 and we considered R �= 0, we can conclude R < 0 from the
energy conditions.

Finally,we should cite [13]whereCuriel elaborately discussed about various energy
conditions; their consequences in terms of formation of singularities, thermodynamics,
black hole theories etc, and the violations by some classical fields for further insight
on energy conditions and their importance.

5 Analysis of some toymodels of F(R)-gravity in (APRS)4

Here we consider two of the earliest toy models of F(R)-gravity theories to analyze
our results in a perfect fluid (APRS)4 with constant Ricci scalar setting and with the
four-velocity vector ui = Bi .

Case I F(R) = R − μ4

R .

This first model was considered by Carroll et al. [6] to explain the late-time accelera-
tion. The Eq. (20) in this case reduces to

Ri j = κ2(p + σ)

1 + μ4/R2 uiu j + 2κ2 p + R − μ4/R

2(1 + μ4/R2)
gi j ,

with p = − R−μ4/R
2κ2

and σ = − R+2μ4/R2

2k2
.

Case II F(R) = R + αR2.
The most representative model of R2 cosmology is this so called Starobinsky [19]
model with the help of which inflation can be explained without a need for a scalar
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field. The Eq. (20) reduces to

Ri j = κ2(p + σ)

1 + 2αR
uiu j + 2κ2 p + R + αR2

2(1 + 2αR)
gi j ,

with p = − R+αR2

2κ2
and σ = − R+3αR2

2κ2
.

6 Discussion

In the present study we investigate an almost pseudo Ricci symmetric spacetime
(APRS)4 in the modified gravity scenario. The current model of the universe, namely,
the Robertson–Walker spacetime is shown to be almost pseudo Ricci symmetric under
certain condition. We consider an (APRS)4 with constant Ricci scalar satisfying the
f (R)-gravity where the matter content of the gravity theory represents a perfect fluid
with the four-velocity vector ui = Bi and find the expressions for the pressure and
energy density. The fluid in this case is seen to either represents a dark matter or its
expansion scalar, acceleration vector and vorticity vanish. Several energy conditions
are studied in this setting, some toy models of f (R)-gravity is discussed.

Acknowledgements The authors are grateful to the referees for their valuable suggestions towards the
improvement of the paper.
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