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Abstract
In this paper we explicitly show the existence of a class of conformally symmetric
solutions of spherically symmetric massless scalar field collapse with a given confor-
mal factor, where the spatial variations of the conformal factor can be neglected in
the latter stages of collapse. We obtain an equivalent and simpler form of the Roberts
model for a massless scalar field. Our solution becomes self-similar near the central
singularity and the critical phenomenon that is observed in self-similar collapse, will
also be valid for this new class of solutions.
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1 Introduction

Our intention is to consider gravitational collapse with massless scalar fields in the
presence of a conformal symmetry. In particular we seek a connection to the critical
phenomena in the latter stages of the collapse process. To this end in this section we
provide relevant information relating to the conformal symmetries, massless scalar
fields and the structure of this paper.

1.1 Conformal symmetry

Conformal Killing vectors generate constants of the motion for massless scalar par-
ticles and generate a Lie algebra in the spacetime manifold. The seminal papers of
earlier investigations [1–3] provide general constraints on the kinematical and dynam-
ical quantities. These have enabled studies of conformal symmetries using the 1 + 3
decomposition in particular geometries under various assumptions [4–7]. Conformal
Killing vectors have been studied mainly in highly symmetric spacetimes because the
corresponding conformal equations are difficult to integrate. Spherically symmetric
spacetimes have been widely considered in different treatments [8–12]. Conformal
symmetries have found many applications in relativistic astrophysics and modelling
of spherically symmetric compact stars; some examples are given in recent treatments
[13–16]. Another advance in studying conformal Killing vector in general is the semi-
tetrad 1+1+2 decomposition of spacetime; this was completed by Hansraj et al. [17]
in the presence of a conformal symmetry. The pp-wave spacetimes generalize plane
waves of Minkowski spacetime and provide simple models of gravitational radiation
in general relativity, modified gravity theories or theories with scalar fields. Maartens
and Maharaj [18] and Keane and Tupper [19] showed that pp-wave spacetimes admit
conformal Killing vectors. Scaling properties and conformal symmetries of pp-waves
have been studied by Zhang et al. [20] and these can be related to symmetries of mass-
less particles via chrono-projective transformations, which generate new conserved
quantities. Conformal symmetries have a wide presence, and it would be useful to also
consider its connection to scalar fields.

1.2 Massless scalar field

There has been a lot of work done on the gravitational collapse of massless scalar
fields [21–30], in the context of Cosmic Censorship Conjecture (CCC). Scalar fields
are the simplest form of fundamental fields satisfying the Klein–Gordon equation,
that is derived from a well defined field Lagrangian and therefore constitute a perfect
candidate for a fundamental fieldwhose validitywill hold at any scale. The observation
of scalar fields remains an open question in cosmology. As shown by the detailed
numerical works of Choptuik [27], and later by many other authors (see for example
[31,32]), the black holemass threshold in the space of initial data for classes ofmassless
scalar fields show universality and power-law scaling and this implies evidence of
critical phenomena. This critical phenomenon directly points towards solutions that
are typically self-similar. Therefore we have a scenario where the self-similar solution
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is an attractor in the phase spaceof complete solutions. This critical phenomenonwould
evolve a smooth initial data to either a black hole or a dispersal, and at the boundary
of these two end points lies an infinite time naked singularity that can be visible from
infinity. Although this is a direct counterexample for the censorship conjecture, it
has been shown rigorously by Christodoulou [23], that these naked singularities are
non-generic within the context of a certain parent space.

To mathematically explain the occurrence of a self-similar behaviour in the latter
stages of massless scalar field collapse, Brady [33] suggested the presence of cer-
tain conformal symmetries in the solutions in general, where the conformal Killing
vectors tend to homothetic vectors in the vicinity of the singularity. To look at this
phenomenon more transparently we have generated classes of collapsing massless
scalar field solutions, with a class of conformal factors, that indeed tend to unity in the
vicinity of the central singularity, making the evolution self-similar in the latter stages
of collapse. Existence of these solutions indicates the validity of Brady’s postulate to
some extent.

1.3 This paper

The paper is organised as follows: In Sect. 2 we discuss the spherically symmetric
massless scalar field and the associated field equations. In Sect. 3 we briefly discuss
the equations for the existence of the conformal symmetries in spacetimes that contain
both timelike and lightlike matter fields, and transparently show that such symmetry
always exists. In the next section we consider the special case of homothety, and
by solving the conformal Killing equations and the field equations simultaneously
we derive the well known Robert’s solution in a straightforward fashion. Finally in
Sect. 4, wemake a general ansatz for the conformal factor that enables the spacetime to
become self-similar near the central singularity. We use this ansatz to simultaneously
solve the conformal Killing equations and Einstein field equations to generate a new
class of solutions, that become self-similar at the latter stages of collapse. In Sect. 5
we discuss the significance of our result.

Unless otherwise specified, we use natural units (c = 8πG = 1) throughout this
paper, Latin indices run from 0 to 3. The symbol ∇ represents the usual covariant
derivative and ∂ corresponds to partial differentiation. We use the (−,+,+,+) sig-
nature and the Riemann tensor is defined by

Ra
bcd = Γ a

bd,c − Γ a
bc,d + Γ e

bdΓ
a
ce − Γ e

bcΓ
a
de , (1)

and the Ricci tensor is obtained by contracting the first and the third indices of the
Riemann tensor.

2 Spherical configuration of massless scalar field

As explained beautifully in [34], a massless scalar field φ(xa), is the simplest form of
a matter field, whose equation of motion can be derived from a covariant well defined
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Lagrangian, given by

L = −1

2
gabφ;aφ;b . (2)

This generates the Euler Lagrangian equation for the field as

gabφ;ab = 0 , (3)

and this provides the required wave equation for massless scalar waves. Also we can
obtain the energy momentum tensor from the above Lagrangian by considering the
change in action induced by the change in metric, which in this case has the form,

Tab = φ;aφ;b − 1

2
gab

(
φ;cφ;dgcd

)
. (4)

The above form of the energy momentum tensor for the massless scalar field contains
a very interesting phenomenon. We know that the only types of physical matter fields
are those whose energy momentum tensor either have one timelike and three spacelike
eigenvectors (which includes perfect fluid form of matter) or have double null eigen-
vectors (which includes null radiation). The former is called a Type Imatter field while
the latter is called a Type IImatter field. Interestingly the massless scalar field behaves
like both types depending on the spacetime geometry. For example, it can be easily
checked that a spatially homogeneous scalar field φ behaves like a stiff perfect fluid
in spherical symmetry. On the other hand, being massless, the scalar waves travel on
the null cone, as is evident from the Euler Lagrangian equation. This makes the field
behave like a Type II matter field too. Therefore, to study the spherically symmetric
configuration for a massless scalar field, we consider a general form of the spherically
symmetric metric that allows for an arbitrary combination of Type I and Type II fields,
which is given as [35]

ds2 = −e2ψ(v,r)
[
1 − 2m(v, r)

r

]
dv2 + 2εeψ(v,r)dvdr

+r2(dθ2 + sin2 θdφ2), (ε = ±1), (5)

where m(v, r) is the Misner–Sharp mass function that is related to the gravitational
energy inside a given radius r [36]. When ε = +1, the null coordinate v is the
Eddington advanced time, where r is decreasing towards the future along a ray v =
Const . This depicts ingoing (or collapsing) null congruence with negative volume
expansion. For ε = −1, the null coordinate v is the Eddington retarded time and it
depicts an outgoing null congruence with positive volume expansion. In this paper,
as we focus on gravitational collapse of massless scalar fields, we will keep ε = +1
throughout.

We note that by virtue of the Bianchi identities, the Euler-Lagrangian equation
for the massless scalar field is included in the system of the Einstein field equations
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Gab = Tab and hence it suffices to solve the following system of equations

m,v = 4πr2T r
v , (6a)

m,r = 4πr2T v
v , (6b)

ψ,r = 4πrT r
r . (6c)

For the given formof themetric (5), the non-zero components of the energymomentum
tensor can be written as

T r
v = φ,v

[
φ,ve

−ψ + φ,r

(
1 − 2m

r

)]
, (7a)

T v
v = −1

2
φ2

,r

(
1 − 2m

r

)
, (7b)

T r
r = φ2

,r . (7c)

This gives the following system of Einstein equations:

m,v = 4πr2φ2
,v

[
e−ψ + φ,r

φ,v

(
1 − 2m

r

)]
, (8a)

m,r = 2πr2φ2
,r

(
1 − 2m

r

)
, (8b)

ψ,r = 4πrφ2
,r . (8c)

We may also rewrite (8c) as (using (8b))

ψ,r = 2m,r

r − 2m
, (9)

which relates the two unknown metric functions directly. Solutions to these equations,
subject to required initial and boundary conditions will completely determine the
evolution of a spherically symmetric spacetime containing a massless scalar field as
the matter source.

3 Existence of conformal Killing vectors

Any spacetime (with coordinates xa and metric gab) is said to possess a conformal
Killing vector (CKV) ‘X’, if it solves the following conformal Killing equation

LXgab = S(xa)gab . (10)

If the components of the vector X is represented by Xa then the above equation
simplifies to the set of equations

∇(a Xb) = Sgab . (11)
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We know the CKV becomes a Killing vector when S = 0. In that case the metric
remains invariant when it is Lie dragged along this vector field. The homothetic Killing
vector is a special case of the conformal Killing vector if the conformal function S is
a non-zero constant. Then without any loss of generality we can always take S to be
unity. The spacetimes that possess a homothetic Killing vector are called self-similar
spacetimes. Henceforth wewill denote a CKV as proper if S is a non-constant function
of the coordinates.

We consider the existence of non-trivial CKV’s in the (v, r) subspace of a massless
scalar field spacetime. We note that since the spacetime is spherically symmetric, the
(θ, φ) subspace will have the usual symmetries of a 2-sphere. Therefore a non-trivial
symmetry is likely to lie in the (v, r) subspace. Therefore, we look for a CKV of the
form

X = A(r , v)∂v + B(r , v)∂r , (12)

where A(r , v) and B(r , v) are unknown functions to be determined by solving the
conformal Killing equations (11). We note that due to the spherical symmetry and the
form of the CKV chosen, (11) becomes a set of four non-trivial equations. The (θ, θ)

component of the above equation is given by Br = Sr2 which simplifies as (r �= 0)

B = Sr . (13)

The (r , r) component is given by

eψ A;r = 0. (14)

Since eψ �= 0, we must have A;r = 0 in which case A is a function of v only. We note
here that we can always rescale v so that we can set A(v) = v (except in the case that
X is a Killing vector in which case A is constant). This will be utilized in the sections
that follow to simplify our calculations. Now, we calculate the (r , v) component as
(also noting that eψ �= 0)

Aψ,v + Bψ,r − 2S + A,v + B,r = 0. (15)

Finally, the (v, v) component is calculated as (again noting that eψ �= 0)

−
(
1 − 2m

r

) [
Aψ,v + Bψ,r − S + A,v

] + m,vA

r
+ e−ψ B,v − mB

r2
+ m,r B

r
= 0.

(16)
Substituting (13) into (15) we can rewrite (15) as

Aψ,v + Bψ,r − S + A,v = B

r
− B,r , (17)

and upon inserting (17) into (15) and simplifying we obtain

(
1 − 2m

r

)
B,r + e−ψ B,v + B

r

(
m,r + m

r
− 1

)
+ mvA

r
= 0. (18)
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We treat 18 as an equation in m. The important point to note here is that the function
B(v, r) obeys a first order partial differential equation, and hence the existence of a
solution is guaranteed. A choice of the function S provides an expression for B which
allows for the simplification of (18). This then allows us to solve for the mass function
m, and the function ψ as will be demonstrated in subsequent sections.

4 An example: Homothety and Robert’s solution

To transparently illustrate, how to solve the field equations along with the conformal
Killing equations simultaneously, we derive here the well known example of the solu-
tion originally presented byRoberts [37],which is a self-similar solution and a subclass
of Brady’s solution [33]. The Roberts solution in its original form is given in double
null coordinates and has a complicated form. Since this is the case of homothety, the
function S in (13) is a non-zero constant. Without loss of generality we may set S = 1,
which, from (13), gives B = r . Thus we have that B,r = 1 and B,v = 0, and we can
write (18) (noting we have set A = v)

m,r + v

r
m,v − m

r
= 0, (19)

whose general solution is given by

m = r f
(v

r

)
. (20)

We shall set x = v/r ( f = f (x)) so that m = r f and

m,r = f − x f,x . (21)

Now using (8b) and (8c) we get

m,r = 1

2
rψ,r

(
1 − 2m

r

)
. (22)

A self-similar metric has the property that for any constant c, we have gab(cv, cr) =
gab(v, r). This definitely implies that ψ(v, r) = ψ(x) and hence ψ,r = −ψ,x (x/r).
This allows us to write the RHS of (21) as

f − x f,x = −1

2
xψ,x (1 − 2 f ). (23)

Also, from (8b), we get (assuming φ = φ(x), that makes Robert’s solution a subclass
of Brady’s solution)

f − x f,x
1 − 2 f

= 2πφ2
,x x

2. (24)
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Now m,v = f,x and φ,v = (
φ,x/r

)
. Therefore Eq. (8a) becomes

f,x = 4πφ2
,x

[
e−ψ − x(1 − 2 f )

]
,

which upon using (24), simplifying and solving for f,x gives

f,x = 2 f

x

[
2x f + e−ψ − x

(2x f + 2e−ψ − x)

]
. (25)

Using (25) in (23) and solving for ψ,x we get

ψ,x = − 2 f

2x f − x + 2e−ψ
, (26)

and solving (25) and (26) simultaneously we obtain

f = αx

2β

[
2
√

αx2 + β − x

]
, (27a)

ψ = −1

2
ln(αx2 + β). (27b)

Noting that m = r f (x) we write m and ψ in terms of v and r as

m(v, r) = αv

2βr

[
2
√

αv2 + βr2 − v

]
, (28a)

ψ(v, r) = −1

2
ln

[
αv2 + βr2

r2

]
. (28b)

The above gives the complete solution for the spherically symmetric self-similar
spacetime metric with massless scalar field as the matter source. We note that both
Roberts and Brady obtained the self-similar solutions using double null coordinates,
which is better suited for null fluids. However, as we have shown, one can obtain the
same solution using the general metric for arbitrary combination of Type I and Type
II matter fields (with a single null coordinate) and using the equations for conformal
symmetries. This enables us to directly solve for the mass function, which determines
the trapped regions in the spacetime. Our treatment has the advantage of being simpler
and more transparent.

5 A new class of solutions with proper conformal symmetry

Extensive numerical works by Choptuik [27] and Abrahams and Evans [32], clearly
shows that the numerical evolution of massless scalar field collapse behaves in a self-
similar manner in the vicinity of the central singularity. Although no solid theoretical
proof for the above observation is obtained as yet, we may try to look for one in the
context of conformal symmetry. For example, if these spacetimes indeed possess a
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conformal symmetry whose conformal factor tends to a constant non-zero value in
the vicinity of the central singularity, then in that region the spacetime will evolve in
a self-similar fashion. In this section, we generate a class of solutions that have the
above property. In otherwords, these solutions have proper conformal symmetrywhich
tends to homothety in the vicinity of the central singularity at r = 0. To start with,
we look for existence of the conformally symmetric solutions that have the following
conformal factor

S = 1 + rn f (r), (29)

where f (r) is a C2 function of r at r = 0. It is very clear that for any n ≥ 2 and
for r << 1 (during the latter stages of collapse), the spacetime will indeed become
self-similar for these classes of solutions if they exist. Alsowewould like to emphasise
here that a non-dynamic conformal factor doesn’t imply a non-dynamic spacetime, as
it is very clear with the existence of a dynamic self-similar solution.

We can now immediately solve for the CKV component B(v, r) by using (29)
in (13), and we have

B(v, r) = Sr = r + r (n+1) f (r), (30)

and from which we have B,r = 1 + (n + 1)rn f (r) + r (n+1) f ′(r) and B,v = 0. Now
substituting (30) and the expressions for B,v and Br in (18) we obtain (after some
simplification)

(
1 − 2m(r , v)

r

) (
1 + rn+1(n + 1) f (r)

r
+ rn+1 f ′(r)

)

+
(
r + rn+1 f (r)

) (
m,r + m(r ,v)

r − 1
)

r
+ m,vv

r
= 0. (31)

The solution for the mass function that allows for such a conformal symmetry is
given as

m(v, r) = P(r) [Q(r) + F(χ)] , (32)

where we have defined

χ = v exp

[
−

∫
dr

r (n+1) f (r) + r

]
, (33)

and the function F(χ) is an arbitrary function of integration. The functions P(r) and
Q(r) are given as follows

P(r) = exp

[∫
2rn+1

( d
dr f (r)

) + 1 + f (r) (2n + 1) rn

r ( f (r)rn + 1)
dr

]
, (34)
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and

Q(r) = −
∫ exp

[∫ 2rn+1
(

d
dr f (r)

)
+1+ f (r)(2n+1)rn

r( f (r)rn+1) dr

] (
rnn f (r) + rn+1

( d
dr f (r)

))

f (r)rn + 1
.

(35)
We can also use the Eq. (9), to solve for the metric function ψ(r , v), and the general
solution is then given by

ψ(v, r) = W (r) + G(χ). (36)

where

W (r) = −
(∫

rn+1
( d
dr f (r)

) + f (r)rn (−1 + n)

r + rn+1 f (r)
dr

)
, (37)

and the function G(χ) is another arbitrary function of integration. We would like to
point out here that the freedom of arbitrariness of the functions F(χ) and G(χ) no
longer remains, once we invoke the Einstein field equation

ψ(v, r),r = 2m(v, r),r
r − 2m(v, r)

. (38)

Noting that

χ,r = − χ

r (n+1) f (r) + r
, (39)

the above field equation gives the constraint for the functions F(χ) and G(χ) as

W,r −2
(PQ),r + P,r F

r − 2(PQ + PF)
= χ

r (n+1) f (r) + r

(
G,χ − 2

F,χ

r − 2(PQ + PF)

)
. (40)

Any arbitrary functions F and G that satisfy the above differential constraint will
then solve the system of field equations. It can be easily seen that the above class
of solutions becomes the self-similar Robert solution when we put f = 0. Thus
this class of solutions with proper conformal symmetry generalises the class of self-
similar solutions. Also these solutions have the property as observed by Choptuik
in his numerical simulations: these tend to homothety in the vicinity of the central
singularity.

6 Discussion

Lake [36] conjectured the existence of an open set in the vicinity of the singularity in
the spacetime manifold, where any continual collapse of realistic matter fields would
behave in a self-similar fashion. Although there is no rigorous analytical proof for this
claim, robust numerical studies for massless scalar field collapse indeed points in this
direction. More interestingly, a recent study of gravitational collapse of generalised
Vaidya spacetimes with the most general possible conformal symmetry also showed
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the existence of such open set, specially in the transition zone of naked singularity
and black hole phases [38]. These observations definitely warrant detailed studies of
conformal symmetries that are associated with the spacetimes of fundamental matter
fields.

In thiswork,we explicitly showed the existence of classes of solutions of spherically
symmetric massless scalar field collapse, that possess a given form of conformal
symmetry, where the spatial variations of the conformal factor can be neglected in the
latter stages of collapse. It is interesting to observe that we obtain an equivalent form
of the Roberts [37] model for a massless scalar field using the conformal symmetry
approach. Our form is simpler and does not require double null coordinates; we have
instead a conformal symmetry. Needless to say, these new class of solutions have
the same properties that was observed by Choptuik, that is, these solutions become
homothetic in the vicinity of the central singularity.Also,we transparently showedhow
the existence of conformal symmetries helps to integrate the field equations together
with the conformal Killing equations, to find new and physically interesting solutions.
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