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Abstract
Varying the gravitational Lagrangian produces a boundary contribution that has var-
ious physical applications. It determines the right boundary terms to be added to the
action once boundary conditions are specified, and defines the symplectic structure of
covariant phase space methods. We study general boundary variations using tetrads
instead of the metric. This choice streamlines many calculations, especially in the
case of null hypersurfaces with arbitrary coordinates, where we show that the spin-1
momentum coincides with the rotational 1-form of isolated horizons. The additional
gauge symmetry of internal Lorentz transformations leaves however an imprint: the
boundary variation differs from the metric one by an exact 3-form. On the one hand,
this difference helps in the variational principle: gluing hypersurfaces to determine the
action boundary terms for given boundary conditions is simpler, including the most
general case of non-orthogonal corners. On the other hand, it affects the construction of
Hamiltonian surface charges with covariant phase space methods, which end up being
generically different from the metric ones, in both first and second-order formalisms.
This situation is treated in the literature gauge-fixing the tetrad to be adapted to the
hypersurface or introducing a fine-tuned internal Lorentz transformation depending
non-linearly on the fields. We point out and explore the alternative approach of dress-
ing the bare symplectic potential to recover the value of all metric charges, and not just
for isometries. Surface charges can also be constructed using a cohomological pre-
scription: in this case we find that the exact 3-form mismatch plays no role, and tetrad
and metric charges are equal. This prescription leads however to different charges
whether one uses a first-order or second-order Lagrangian, and only for isometries
one recovers the same charges.
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1 Introduction

The tetrad description of General Relativity is classically equivalent to the metric one:
even though there is an additional gauge symmetry associated with internal Lorentz
transformations, the Lagrangian and field equations are equivalent, and physical solu-
tions can be put in one-to-one correspondence. There is, however, a subtlety in the
presence of boundaries: the bare boundary 3-forms that can be read off the arbitrary
variation of the tetrad andmetric Lagrangians, are not equal. The difference is a certain
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exact 3-form [1], namely a 2d boundary term, and it is present in both first-order and
second-order versions of the Lagrangian. In this paper, we revisit and continue the
work started in [1] and discuss further implications of the 2d boundary mismatch.

The variational principle has recently been addressed in metric variables in [2–4],
and in tetrad variables in [5,6], with a renowned attention to null hypersurfaces and to
corner terms. We were particularly motivated by the results of [3], where a geometric
decomposition of the symplectic potential for all types of hypersurfaces was derived,
with arbitrary variations in the space-like and time-like cases, and variations restricted
to a partial Bondi gauge in the null case; and of [2,4], where the null case was studied
with arbitrary variations. These results can be reproduced and elegantly written in
terms of differential forms using the tetrad symplectic potential, provided one takes
into account the 2d boundary mismatch: using the bare tetrad symplectic potential,
one reproduces only the 3d bulk part of the metric decomposition, whereas the 2d
boundary part is different. This was shown in [1] for non-null hypersurfaces. In this
paper, we complete the analysis for the null case in arbitrary coordinates. These results
are presented in Sect. 3, after an initial Sect. 2 that reviews the mismatch of the bare
symplectic potentials.

The mismatch between tetrad and metric symplectic potentials shows up on the 2d
boundary of an individual hypersurface, but cancels out when different hypersurfaces
are glued together to form the boundary of a closed region, since it comes from
a globally defined exact 3-form. Hence, it does not affect the variational principle.
There are, nonetheless, two interesting features associated with this mismatch. First,
the tetrad and metric symplectic potentials give different canonical pairs at the corner:
internal vectors instead of spacetime vectors, and a factor of two. This is discussed
in Sect. 4. Second, gluing together the hypersurfaces turns out to be computationally
much simpler with the tetrad potential than with the metric potential, even though
the final result is the same. The reason for this lies in the simpler variations of scalar
products with internal indices, which use a fixed Minkowski metric. This is discussed
in Sect. 5.

The second topic we investigate in this paper is the construction of surface charges
with covariant phase space methods [7–10]. In this context, the tetrad-metric mis-
match has stronger consequences: two symplectic potentials equal up to an exact
form can give different symplectic structures, Hamiltonian generators and charges.
This is indeed the case with the bare tetrad and metric symplectic potentials for
General Relativity [1]. First of all, the bare tetrad potential gives rise to inter-
nal Lorentz charges which are absence in metric variables: one is thus associating
two inequivalent phase spaces to the same set of physical solutions. Moreover, the
charges associated with diffeomorphisms obtained from the bare tetrad potential do
not coincide with the metric ones. This inequivalence spoils the covariant phase space
derivation of the first law of black hole mechanics from diffeomorphism symme-
try. To resolve this problem, it was proposed in [11,12] to associate the first law
with a fine-tuned combination of diffeomorphisms and internal gauge transforma-
tions.

There exist an alternative procedure: one can restore the full equivalence of the
phase space, and as a consequence of all charges, by dressing the bare tetrad symplec-
tic potential with the exact 3-form of [1]. With such a dressed symplectic potential,
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the internal Lorentz charges are set to zero, the diffeomorphism charges match the
metric ones, and the first law is derived as in the metric theory. In other words, the
dressed symplectic potential provides a gauge-invariant phase space for tetrad General
Relativity, where by gauge here we mean the internal Lorentz transformations, and
gives a complementary understanding of the prescription of [11,12]. In Sect. 6, we
present a comparison of all Noether and Hamiltonian charges using both choices for
the symplectic potential, and allowing for arbitrary field-dependent gauge parameters
and diffeomorphisms. The comparison shows the extent of the mismatch between
bare potentials: not a single charge in tetrad variables, be it Hamiltonian or Noether,
matches the corresponding metric one. There is one important exception though, dis-
cussed in Sect. 7. If one gauge fixes the internal Lorentz symmetry to have a tetrad
adapted to the hypersurface, the bare tetrad charges coincide with those of the metric
theory for isometries (but not for general diffeomorphisms). This explains why the
mismatch was not observed in [13], where the Poincaré charges at spatial infinity
were recovered using an adapted tetrad. Since working with an adapted tetrad is quite
customary, this may also be the reason why the mismatch went mostly unappreciated
so far.

The above considerations are valid whether one uses a second-order Lagrangian
or a first-order Lagrangian with independent tetrad and connection variables. In the
latter case, one can have an extension of General Relativity to gravity theories with
torsion, depending on the matter coupling chosen. For completeness, we provide in
Sect. 8 explicit formulas in the presence of torsion, and a brief comment on possible
new features, in particular in the presence of the Barbero-Immirzi parameter.

One question that arose in doing this work was whether the non-gauge-invariance
of the bare phase space in tetrad variables could be dealt with using the cohomolog-
ical prescription for the charges [14–16] (aka Barnich–Brandt (BB) charges), instead
of the Hamiltonian prescription of covariant phase space methods. This alternative
prescription is free of ambiguities; in particular the freedom to add an exact 3-form
to the symplectic potential is eliminated working with the unique weakly-vanishing
Noether current. This turns out to be the case, as we discuss in Sect. 9, even though
some care is needed: the order of the Lagrangian now matters. We briefly review the
cohomological prescription, and recall two useful facts. First, in General Relativity
with metric variables (in the second-order formalism), the BB charges are equivalent
to the Hamiltonian ones for isometries, but they differ for general diffeomorphisms by
an extra surface term [16]. Second, the homotopy operator responsible for the extra
surface term has vanishing action for all theories in the first-order formalism. The
BB charges for first-order tetrad GR must then always coincide with the Hamiltonian
ones with bare tetrad symplectic potential, as indeed found in [17] (see also [18]).
Since we have already pointed out that the bare tetrad Hamiltonian charges differ
from the metric ones (in both first and second order formalisms), we conclude that
also the tetrad BB charges differ from the metric Hamiltonian ones (as well as from
the metric BB charges) for general diffeomorphisms. And, in fact, the charges found
in [17] do not match the familiar second-order metric ones in general, and the authors
follow the same fine-tuning of [11,12] to recover them in the presence of isometries.
Having clarified this point, we compute the BB charges with tetrad variables in the
second-order formalism. We show that in this case the cohomological prescription
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leads to vanishing internal Lorentz charges, and all diffeomorphism charges are equal
to themetric ones. Therefore the cohomological prescription does solve the non-gauge-
invariance problem, but only if one uses a second-order action, and not a first-order
one.

This discussion brings to the foreground the fact that the BB prescription leads to
different charges depending on whether one uses a first-order or second-order formal-
ism. Tetrad gravity is one example where this difference shows up for BB charges,
and we briefly present a second example provided by Yang-Mills theory in first-
order and second-order formalism. The equivalence of the charges is obtained only
for isometries, namely Killing diffeomorphisms in General Relativity and parallel
gauge transformations in Yang-Mills theory. Yet, surface charges can have applica-
tions beyond the case of isometries or asymptotic symmetries, hence this difference is
worth pointing out in our opinion. This is in contrast to the Hamiltonian prescription
for the charges, where the change from second-order to first-order is harmless for any
gauge transformation and not just for isometries (unless one looks at modified theories
of gravity with torsion).

Throughout the paper we fix units 16πG = 1. We use signature with mostly plus;
Greek letters for spacetime indices and capital Latin letters for internal indices. The
spacetime Hodge dual is denoted by �. To simplify the notation for the pull-back of

differential forms, wewill use
�= to refer to equalities valid for the pull-back of 3-forms

on the hypersurface �. It will be implicitly assumed that subsequent equalities in the
same equation are also pulled-back.

2 Variation of the gravitational action with boundaries

The tetrad Lagrangian for General Relativity can be elegantly written as a 4-form,

Le = 1

2
εI J K L eI ∧ eJ ∧

(
FKL − �

6
eK ∧ eL

)
. (2.1)

Here, F I J = dωI J + ωI K ∧ ωK
J is the curvature 2-form, ωI J ≡ ωI J (e) is the Levi-

Civita Lorentz connection, and � is the cosmological constant. The associated action
principle must be supplemented by appropriate 3d and 2d boundary terms, depending
on the boundary conditions chosen for the dynamical fields. We will come back to
these in Sect. 5.

Varying the Lagrangian (2.1), we obtain the field equations and an exact 4-form,
induced by integrating by parts the identity δF(ω) = dω(δω),

δLe = δeI ∧ E
(e)
I + dθe(δ), (2.2)

where

E
(e)
I = εI J K L eJ ∧

(
FKL − 2

3
� eK ∧ eL

)
, (2.3a)
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θe(δ) = 1

2
εI J K L eI ∧ eJ ∧ δωK L . (2.3b)

In terms of Hodge duals, which will be used below,

(
�E

(e)
I

)μ = −2
(
Gμ

I + �eμ
I

)
(2.4a)

(�θe)
μ = 1

3! (θe)νρσ ενρσμ = 2e[μ
I eν]

J δωI J
ν . (2.4b)

In the above formulas, we always intend forωI J a Levi-Civita connection; hence δωI J

is a short-hand notation for the full expression in terms of tetrad variations, similarly
to the notation used in the metric formalism.

We want to compare the tetrad boundary variation (2.3b)–(2.4b) with the corre-
sponding one in metric variables. The tetrad is related to the spacetime metric by
gμν = eIμe

J
ν ηI J , and the Lorentz connection to the tangent bundle connection by

�
μ
νρ = eμ

I DνeIρ = eμ
I

(
∂νeIρ + ωI J

ν eJρ

)
, or equivalently, by

ωK L
μ = eKν ∇μe

νL . (2.5)

From this, it follows that F I J
μν = eIρeJσ Rρσμν , and (2.1) is equivalent to the Einstein-

Hilbert (EH) Lagrangian,

Lg = (
gμνRμν − 2�

)
ε, (2.6)

where ε is the volume 4-form. The variation of the EH Lagrangian gives the field
equations plus an exact 4-form, induced by the identity gμνδRμν = 2∇μ(gρ[σ δ�

μ]
ρσ ),

δLg = (
Gμν + �gμν

)
δgμνε + dθg(δ), (2.7)

where

θg(δ) = 1

3! (�θg)
μεμνρσ dxν ∧ dxρ ∧ dxσ , (2.8a)

(
�θg

)μ = 2gρ[σ δ�μ]
ρσ = 2gμ[ρgν]σ ∇νδgρσ . (2.8b)

The potentials θ(δ) for the boundary variations are defined up to the addition of
an exact 3-form, and hereafter we will refer to (2.4b) and (2.8b) as bare potentials.
They play an important role in many physical applications, notably in covariant phase
space methods: they are used to define the symplectic potential �(δ) associated with
a complete or partial Cauchy hypersurface �,

�(δ) :=
∫

�

θ(δ). (2.9)

With a slight abuse of language, we will also refer to the 3-form integrands as sym-
plectic potentials.
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2.1 Matching the symplectic potentials: the dressing 2-form

The Lagrangians in tetrad andmetric variables are equivalent, and so are the variations
and the field equations. There is, though, no guarantee that the bare symplectic poten-
tials are equivalent, because of the cohomology ambiguity in extracting the potential
from an exact form. To compare the bare tetrad and metric potentials, we take the
functional variation of the Lorentz connection (2.5) and plug it in (2.4b). This leads to

(�θe)
μ = 2e[μ

I eν]
J

[
δeIλ∇νe

Jλ + eIλδ�
λ
νρe

Jρ + eIλ∇νδe
Jλ

]

= 2δe[μ
I ∇νe

ν]I + 2gρ[νδ�μ]
νρ + 2e[ν

I ∇νδe
μ]I

= (
�θg

)μ + ∇ν

(
2e[ν

I δeμ]I) , (2.10)

exposing explicitly their non-equivalence. Taking the Hodge dual of this expression
(see “Appendix B” for explicit formulas), we can equivalently write it as

θg(δ) = θe(δ) + dα(δ), (2.11)

where

α(δ) = �(eI ∧ δeI ) = −1

2
εI J K L eI ∧ eJ

(
eρK δeLρ

)
(2.12)

is the 2-form introduced in [1] (and shortly after in [19,20]; see also [21] for a related
expression in the canonical formalism), and hereafter dubbed DPS 2-form or dressing
2-form.1

Eq. (2.12) shows that the bare tetrad andmetric potentials differ by an exact 3-form.
The origin of this difference lies in the additional (gauge) structure the tetrad field: the
variation eI ∧ δeI has no metric equivalent, since it corresponds to the antisymmetric
part of the tensorial tetrad perturbations.

3 Geometric decomposition of the boundary variation

The first application of the boundary variations that we consider is the variational prin-
ciple. To identify the boundary terms needed for a well-defined variational principle
with given boundary conditions, it is useful to separate the variations in tangential and
orthogonal pieces, and give them an interpretation in terms of intrinsic and extrinsic
geometry of the hypersurface. We show in this Section how this familiar procedure in
metric variables (see, e.g., [2–4] for recent work) can be performed using tetrad vari-
ables, and comment on the role of the mismatch (2.11). We specify the hypersurface
with a Cartesian equation, and keep it fixed while allowing arbitrary variations of the
metric and tetrad fields. For restricted variations preserving the induced metric on the
hypersurface with adapted tetrads, see [5].

1 Its original derivation [1] was in the first-order formalism, and included the contribution of the Barbero-
Immirzi term; see Sect. 8.
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3.1 Non-null hypersurfaces

The bulk part of the potential has a familiar form in metric variables. The use of tetrads
gives a different derivation thereof, but the only novelty to focus on here is really the
2d boundary mismatch.

3.1.1 Preliminaries

Consider an hypersurface � with normal 1-form nμ. If � is either space-like or
time-like, we can normalize nμ to be unit-norm, and denote s := n2 = ∓1. We
define the projector tensor qμν := gμν − snμnν , and the extrinsic curvature of the
hypersurface by Kμν := qρ

μqσ
ν∇ρnσ , with trace K = ∇μnμ. The extrinsic curvature

is a symmetric tensor, and we can write its tetrad projection as Kμ
I = qρ

I∇ρnμ. We
denote the volume 3-form by d� := inε = snμd�μ, where d�μ := snμd� is the
oriented volume element in the conventions of [3]. Accordingly, the pull-back of a
3-form θ is

θ
�= s

3!θμνρεμνρσnσd� = 1

3!θμνρεμνρσd�σ = (�θ)μd�μ. (3.1)

If �(x) = 0 denotes the Cartesian equation of the hypersurface, we can take
adapted coordinates xμ = (�, ya) and then qab = gab, q := det qab > 0 and
d� = √−sq d3y.

If the hypersurface has a boundary ∂�, we denote by r̂ its outgoing unit-norm
normal within T�, so that r̂μnμ = 0. We will restrict our attention to the case when
∂� is space-like, thus r̂2 = −s and we can write the projector on ∂� as γμν =
qμν + sr̂μr̂ν = gμν − snμnν + sr̂μr̂ν . We denote the area 2-form by dS := ir̂ d� =
nρ r̂σdSρσ , where dSρσ = −2n[ρ r̂σ ]dS is the oriented surface element with both
outgoing normals. Accordingly, the pull-back of a 2-form α on ∂� is

α
∂�= 1

2
αμνε

μνρσnρ r̂σdS = −1

4
αμνε

μνρσdSρσ = −1

2
(�α)μνdSμν. (3.2)

If R(y) = 0 denotes the Cartesian equation of the boundary of the hypersurface, we
can take adapted coordinates xμ = (�, R, θ A) and then γAB = gAB , γ := det γAB

and dS = √
γ d2θ .

3.1.2 Geometric decomposition

The geometric decomposition of the bare symplectic potential (2.3b) in tetrad variables
for arbitrary variations was discussed in [1]. We give here the result, and review its
derivation below. Using the short-hand notation � I J = eI ∧ eJ , one gets

�e(δ) =s
∫

�

εI J K L
[
δ� I J ∧ nK dωn

L − δ
(
� I J ∧ nK dωn

L)]

+ s
∫

∂�

εI J K L � I J nK δnL (3.3a)
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=s
∫

�

(
Kμνδq

μν − 2δK
)
d� −

∫

∂�

2r̂ I δn
I dS. (3.3b)

The bulk term can be recognized as the familiar EH result; see, e.g., [3,22]. The
integrand of the boundary term is instead different, as to be expected from (2.11). It
can be rewritten in terms of spacetime vectors as follows,

2r̂ I δn
I = 2r̂μδnμ + 2r̂ I n

μδeIμ = r̂μδnμ + (nμr̂ I − r̂μnI )δe
I
μ. (3.4)

In the last step we used r̂μδnμ = −δr̂μnμ = −(r̂ I nμ + nI r̂μ)δeIμ − nμδr̂μ, and
nμδr̂μ = 0 since r̂μ has no components outside T�.

On the other hand, the pull-back to the boundary ∂� of α(δ), see Eq. (2.12), gives

∫

∂�

α(δ) = −1

2

∫

∂�

εI J K L � I J eρK δeLρ =
∫

∂�

(
nμr̂ I − r̂μnI

)
δeIμdS. (3.5)

Adding (3.5) to the bare tetrad potential (3.3b), we see that this contribution cancels
the round-bracket term proportional to the variation of the tetrad in (3.4), giving

�g(δ) = �e(δ) +
∫

∂�

α(δ) = s
∫

�

(
Kμνδq

μν − 2δK
)
d� −

∫

∂�

r̂μδnμdS, (3.6)

which is the complete metric result including the boundary term. The difference in
the boundary terms between the bare and dressed potentials is in a factor of 2 and an
additional variation of the tetrad field.

The formula (3.3) provides an independent and, to our taste, shorter and more ele-
gantway of deriving the geometric expression of the gravitational symplectic potential.
Given its relevance, we review below the proof done in [1].

3.1.3 Proof of Eq. (3.3)

To derive the geometric decomposition (3.3), we start from an expression for the trace
of the extrinsic curvature in tetrad variables:

1

2
εI J K L eI ∧ eJ ∧ nK dωn

L �= 1

2
εI J K Le

I
μe

J
ν n

K Dρn
Lsεμνρσnσd�

= s
(
n2∇μn

μ − nI n
μDμn

I
)
d�

= Kd�, (3.7)

where we used the inverse tetrad identity (A.3a) and the fact that nI DμnI = 0.
Comparing the variations of the first and last expressions will allow us to derive (3.3).
The variation of the first expression gives

1

2
εI J K L δ

(
eI ∧ eJ ∧ nK dωn

L)
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= 1

2
εI J K L

[
� I J ∧ nK δωLMnM + δ� I J ∧ nK dωn

L

+ 2� I J ∧ δnK dωn
L − dω� I J nK δnL

] + 1

2
d

(
εI J K L � I J nK δnL

)
, (3.8)

after an integration by parts to remove the variations of derivatives. The first term in
the right-hand side contains the symplectic potential, since its pull-back reads as

1

2
εI J K L � I J ∧ nK δωLMnM

�= −nI e
μ
J δωI J

μ d�
�= − s

2
θEC (δ). (3.9)

The second term gives

εI J K L δeI ∧ eJ ∧ nK dωn
L �= −δeIμ

(
qρ
I ∇ρn

μ − qμ
I ∇ρn

ρ
)
d�

= 1

2

(
Kμν − Kqμν

)
δqμνd�, (3.10)

where we used the inverse tetrad identity (A.3b) in the first equality, and the identities

Kμνδq
μν = qρ

μq
ν
σ ∇σnρδgμν = −2Kμ

I δeIμ, (3.11a)

δq = −qqμνδq
μν = −qqμνδg

μν = 2qqμ
I δeIμ (3.11b)

in the second equality. The third term vanishes identically because n is unit-norm, and
the fourth term vanishes because the Levi-Civita connection is torsion-free. We are
left with the boundary term whose pull-back, with our orientation conventions, gives

1

2
εI J K L eI ∧ eJ nK δnL

∂�= 1

2
εI J K L eIμe

J
ν n

K δnLεμνρσnρ r̂σdS = −sr̂I δn
I dS.

(3.12)

Coming back to Eq. (3.7), the variation of the final expression gives

δ(Kd�) =
(
δK − 1

2
Kqμνδq

μν
)
d�. (3.13)

Putting everything together, the second term of (3.13) cancels with the second term
of Eq. (3.10), and we find

∫

�

δKd� = − s

2
�EC (δ) + 1

2

∫

�

Kμνδq
μνd� − s

∫

∂�

r̂ I δn
I dS. (3.14)

Isolating the symplectic potential, we arrive at Eq. (3.3b).
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3.2 Null hypersurfaces

This case requires a longer discussion, because the bulk part of the potential presents
some subtleties already in metric variables, mainly due to the lack of a standard
normalization of the hypersurface normal. We use the fact that picking a foliation
of the null hypersurface allows us to introduce a preferred normalization, and bridge
among various results in the literature. We then discuss the boundary mismatch using
tetrads, which is essentially the same as in the non-null case.

3.2.1 Preliminaries

To distinguish the case of a null hypersurface, we will refer to it as N . Its normal
1-form nμ has vanishing norm, n2 = 0, and this also means that nμ is tangent to N .
Being hypersurface orthogonal and null at N , it is automatically geodesic, namely
nμ∇μnν = k(n)nν , with k(n) the inaffinity or tangential acceleration. A null hypersur-
face is thus always ruled by null geodesics. The pull-back of the metric is degenerate,
with signature (0,+,+), and has 5 components. These define a complex 3d dyad up
to an SO(2) rotation,

gμν
N= m(μm̄ν). (3.15)

The equivalence class of nμ up to rescalings can be defined intrinsically to N as the
null eigenvector of the induced metric, and ε(2) := im ∧ m̄ provides an area 2-form.
If we define the hypersurface with Cartesian equation �(x) = 0, the normal will
generically be of the form

nμ = − f ∂μ�, (3.16)

with f > 0 so to have the vector future-pointing. In adapted coordinates (v = �, ya),
with a = 1, 2, 3, the volume 3-form on N is

dN :=
√−g

f
d3y, (3.17)

and dNμ = −nμdN is the oriented volume element. Accordingly, the pull-back of a
3-form on N is

θ
N= − 1

3!θμνρεμνρσnσdN = 1

3!θμνρεμνρσdNσ = (�θ)μdNμ. (3.18)

Since the vector is null, there is no preferred normalization and thus no preferred
choice of f . The choice f = 1 is often made to simplify some calculations. Another
convenient choice becomes available if one picks a foliation of N given by the level
sets of a parameter r along the null geodesics (not necessarily affine). We can then
require that nμ transports slices into slices, namely indr = 1. This fixes f = −1/gvr ,
and nμ = (∂r )

μ + bμ
1 , where b

μ
1 is the shift vector of the 2+1 foliation. This choice

123
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is ‘canonical’ in the following sense. Denote θ A, A = 2, 3, the coordinates on the 2d
slices S of the foliation, with induced space-like metric γAB , with determinant γ > 0,

and pull-back of the area 2-form ε(2) S= dS := √
γ d2θ . Since the inverse spacetime

metric has vanishing component gvv = 0, an explicit calculation shows that

√−g = N
√

γ , (3.19)

where N := −1/gvr is identified with the lapse function. Therefore the normalization

f = N =
√−g√

γ
⇔ indr = 1 (3.20)

is ‘canonical’ in analogy with the f = N normalization occurring in the ADM 3 + 1
decomposition. And indeed, in the canonical analysis on null foliations, it is (3.16)
with f = N that appears in the momenta conjugated to the induced metric on a null
hypersurface. More on this below.

With the choice (3.20), the volume 3-form simplifies to dN = drdS. This volume
form is foliation dependent. However, we can require indr = 1 for any foliation of
the null generators, and dN = drdS always, if we restrict the θ A coordinates to be
constant along the generators, namely the shift vector bμ

1 to vanish.2 See [23] for more
details.

In working with null hypersurfaces, it is very convenient to use the Newman-
Penrose (NP) formalism. This is easiest done if N is part of a null foliation, so that
nμ is null everywhere. In this case we can pick any transverse null vector lμ such that
nμlμ = −1, and define the spacetime projector

γμν = gμν + lμnν + nμlν = 2m(μm̄ν). (3.21)

The forms (mμ, m̄μ) provide an extension of the complex dyad (3.15) off N , and
the set (l, n,m, m̄) forms a NP tetrad. To fix ideas, we will think of N as a section
of a past light-cone.3 If n2 �= 0 off N , we can identify nμ as one element of a NP
tetrad only at N . Most of the formulas below are local on N and will still apply, but
in some cases there are additional contributions from the non-zero ∂μn2 ∝ nμ. We
will procede assuming n2 = 0 everywhere, and point out at the relevant places the
additional contributions.

With the projector (3.21), one builds the null-hypersurface analogue of the extrin-
sic geometry, namely the deformation tensor and its decomposition into shear and
expansion,

Bμν := γ ρ
μγ σ

ν∇σnρ = σ(n)μν + 1

2
γμνθ(n). (3.22)

2 We thank José Luis Jaramillo for clarifying this point to us.
3 For a future light cone, it is convenient to denote the normal by lμ, to match with the NP literature.
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The divergence of the normal, which gives the trace of the extrinsic curvature in the
non-null case, now gives

∇μn
μ = θ(n) + k(n). (3.23)

The geodesy of nμ guarantees that the expansion θ(n) and the projected shear λ :=
m̄μm̄νσ(n)μν are independent of the choice of lμ. We recall that the freedom in picking
lμ is a 2-parameter family of Lorentz transformations preserving nμ,

lμ 
→ lμ + b̄mμ + bm̄μ + |b|2nμ, mμ 
→ mμ + bnμ, b ∈ C. (3.24)

If a foliation of N is chosen, the freedom (3.24) can be used to adapt the NP tetrad
to the foliation, by making (mμ, m̄μ) integrable and tangent to cross sections of the
geodesics.

If N has a space-like boundary ∂N , we can always take a foliation such that the
boundary is part of it, namely it is defined by a level set of r . We can then adapt the
NP tetrad to this foliation that contains the boundary. With our choices of orientations
and N a past light-cone, the pull-back of a 2-form on the boundary is

α
S= 1

2
αμνε

μνρσ lρnσdS. (3.25)

Choosing a foliation ofN misaligned with the boundary will introduce an additional
corner diffeomorphism [4,24,25] that will be mentioned below.

3.2.2 Variations

An important aspect of working with a null hypersurface is that it automatically
imposes a partial gauge fixing on the metric. This can be made manifest in adapted
coordinates with v = �, where n2 = 0 translates to gvv = 0 at N . Therefore, one
cannot consider arbitrary variations of the metric tensor if one wants to restrict atten-
tion to a null hypersurface, but only those with δgvv = 0.4 In covariant terms, the
allowed variations are restricted to those satisfying

nμδnμ = 0. (3.26)

This follows from δnμ = (δ ln f )nμ, allowing here for the most general set-up where
f can depend on the metric, which in turns implies nμδnμ = 0 and (3.26). A metric-
dependent normalization also contributes to the variation of inaffinity, since

δk(n) = nμ∇μδ ln f + δnμ∇μ ln f . (3.27)

4 This fact has a subtle consequence in the canonical formalism based on null foliations [26–29]: the
partially gauge fixed action depends on 9 metric components only, and one loses at first sight one of
Einstein’s equations. This “missing” equation is usually recovered through a somewhat ad-hoc extension
of the phase space. The situation is improved working in the first order formalism, where all equations are
recovered without extensions of the phase space; see [29].
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If N is an individual null hypersurface in the foliation, the above variation has an
additional contribution 1

2 (δ ln f ) lμ∂μn2.
Since the null hypersurface is ruled by its geodesics, it is often convenient to pick

coordinates (r , θ A) where r is a parameter along the geodesics, not necessarily affine,
and θ A are constant along the geodesics. This introduces two additional gauge-fixing
conditions gvA = 0, and we will refer to it as partial Bondi gauge for historical
reasons [30]. In the partial Bondi gauge only the component nr is allowed to vary,
since nμ = −Ngvμ = −Ngvrδ

μ
r . If we then choose the ‘canonical’ normalization

(3.20), all components are fixed and δnμ = 0.Notice that this is achievedwhile leaving
one last coordinate freedom, reparametrizations of r . In particular the inaffinity is still
arbitrary and so its variation, given now by just the first term of (3.27). This partial
gauge-fixing and ‘canonical’ normalization is the set-up used in [3]. The complete
Bondi gauge corresponds to fixing the remaining gauge freedom in terms of the r
coordinate, requiring it for instance to be an area coordinate, or an affine parameter for
the null geodesics. The latter condition can be imposed fixing gvr = −1 as is typically
done in the NP analysis of gravitational radiation. This implies a unit lapse, N = 1,
and (3.27) vanishes in a greement with the fiex affinity of r .

Another useful relation is the variation of the normal nμ along the transverse vector
lμ, which is given by

lμδnμ = lμδnμ + δ ln
√−g − δ ln

√
/γ = δ ln

(√−g

f
√

/γ

)
, (3.28)

wherewe introduced the notation δ ln /γ := −γμνδγ
μν . Notice that the quantity /γ only

makes sense inside a variation, since (3.21) has zero determinant. If we fix a foliation
and adapt the NP tetrad to it, then δ ln /γ = δ ln γ . It follows that in the ‘canonical’
normalization (3.20), we have

lμδnμ f =N= 0. (3.29)

With a non-adapted NP tetrad instead, δ ln /γ �= δ ln γ . The difference is a variation
of the 2d shift vector of the foliation of the null hypersurface. Therefore these two
variations will again coincide if the shift vector vanishes, namely in the partial Bondi
gauge gvA = 0.

We have thus highlighted two special properties of the partial Bondi gauge: it makes
it possible to use

√
γ drd2θ as null volume form independently of the choice of foli-

ation, and it makes its logarithmic variation equal to −(1/2)γμνδγ
μν , independently

of the choice of lμ.

3.2.3 Geometric decomposition

After these preliminaries, we can now state themain new result of this Section, namely
the geometric decomposition of the tetrad symplectic potential on a null hypersurface
N . We first give the result and discuss it, and provide a detailed derivation below. The
decomposition reads as
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�e(δ) =
∫

N
εI J K L

[
δ� I J ∧ lK dωn

L − δ
(
� I J ∧ lK dωn

L)

+ � I J ∧
(
δlK dωn

L + δnK dωl
L
) ] +

∫

∂N
εI J K L� I J lK δnL (3.30a)

=
∫

N

[ − Bμνδγ
μν + 2δ

(
θ(n) + k(n)

) + 2ω(n)μδnμ
]
dN +

∫

∂N
2l I δnI dS,

(3.30b)

where

ω(n)μ := ημ + k(n)lμ, ημ := γ ρ
μl

σ ∇ρnσ , (3.31)

and we recall that the volume form depends on the normalization of nμ as in (3.17). It
can be explicitly checked that the bulk term is independent of the choice of lμ, namely
invariant under (3.24). We have chosen it here so that it acts as normal of the boundary
∂N . The 2d boundary term can be rewritten in terms of spacetime vectors as follows,

2lI δn
I = lμδnμ + lμδnμ + (

nμlI − lμnI
)
δeIμ. (3.32)

To derive the geometric decomposition for the symplectic potential in metric vari-
ables, we evaluate the pull-back of the 2-form α(δ),

∫

∂N
α(δ) = −1

2

∫

∂N
εI J K Le

I ∧ eJ eρK δeLρ =
∫

∂N

(
lμnI − nμlI

)
δeIμdS. (3.33)

Adding this contribution to (3.30b), we obtain a formula for the dressed, metric-
equivalent symplectic potential:

�g(δ) =
∫

N

[ − Bμνδγ
μν + 2δ(θ(n) + k(n)) + 2ω(n)μδnμ

]
dN

+
∫

∂N

(
lμδnμ + lμδnμ

)
dS. (3.34)

Let us briefly compare this expressionwith the ones already present in the literature.
If we introduce a foliation ofN , we can take the canonical normalization f = N and
adapt the NP tetrad to it. Then,

�fol
g (δ) =

∫

N

[ − Bμνδγ μν + 2δ
(
θ(n) + k(n)

) + 2η(n)μδnμ
]√

γ drd2θ +
∫

∂N
lμδnμdS.

(3.35)

The bulk term coincides with the one of [4]. The boundary is only one of two terms
found in [4]. Notice, however, that we assumed the boundary to be part of the foliation
(or in other words, we chose a foliation adapted to the boundary), whereas it appears
to be completely general in [4]. We leave this question open for future work.
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If we furthermore restrict the variations to those with δnμ = 0, (3.34) reduces to

�Bondi
g (δ) =

∫

N

[−Bμνδγ
μν + 2δ

(
θ(n) + k(n)

)] √
γ drd2θ +

∫

∂N
lμδnμdS.

(3.36)

This matches in both bulk and boundary terms the expression given in [3] in the same
set-up with a partial Bondi gauge.

Finally, let us consider the special case when the null hypersurface is an isolated
horizon [31–33]: in this case the shear and expansion vanish, and the inaffinity is the
surface gravity and it is constant. Thenwithout choosing a foliation, the null symplectic
potential reduces to

�IH
g (δ) =

∫

N
2ω(n)μδnμ dN +

∫

∂N

(
lμδnμ + lμδnμ

)
dS. (3.37)

In NP notation, (3.31) reads

ω(n)μ = (α + β̄)mμ + c.c. + k(n)lμ, (3.38)

and (α + β̄) is a normal-tangential component of ∇μnν onN . This can be recognized
as (minus) the rotational 1-form of the isolated horizons framework,5

ω(n)μ = −ωIH
μ . (3.39)

We see that our geometric decomposition (3.34) correctly reproduces various spe-
cial cases in the literature. As for the most general case, there will be also an additional
contribution from n2 �= 0 off N that is given at the end of the Section.

Taking it into account, our decomposition should be compared with the one com-
puted with metric variables in [2].We leave the question of their equivalence for future
work.

Next, we show how this decomposition can be obtained in a quick and elegant way
using tetrads.

3.2.4 Proof of Eq. (3.30)

Our starting point is the divergence of the normal, as in the non-null case. This can be
written in tetrad variables as follows,

1

2
εI J K L eI ∧ eJ ∧ lK dωn

L N= −1

2
εI J K L eIμe

J
ν l

K Dρn
LεμνρσnσdN

5 Recall that the pull-back on the connection index of the gradient of nμ gives

∇←μnν = [
γ lμ − (α + β̄)mμ

]
nν + (λmμ + μm̄μ − νlμ)mν + c.c..

In this formula only, γ is not our notation for the 2d metric determinant, but one of the NP spin coefficients,
k(n) = −γ − γ̄ . The term above proportional to nν is the rotational 1-form, and coincides with minus
(3.38). The term proportional to mμ vanishes under the isolated horizon conditions.

123



Boundary effects in General Relativity with tetrad… Page 17 of 52 83

= ∇μn
μdN = (θ(n) + k(n))dN . (3.40)

Notice that the left-hand side is independent of the choice of l, namely invariant under
(3.24). Taking an arbitrary variation of the first expression we find

1

2
εI J K Lδ

(
� I J ∧ lK dωn

L)

= 1

2
εI J K L � I J ∧ lK δωLMnM + 1

2
εI J K L

[
δ� I J ∧ lK dωn

L

+ � I J ∧
(
δlK dωn

L + δnK dωl
L
)

− dω� I J lK δnL
]

+ 1

2
d

(
εI J K L� I J lK δnL

)
,

(3.41)

after an integration by parts to eliminate the derivatives on the variations. As before,
the first term in the right-hand side contains the symplectic potential, since

1

2
εI J K L � I J ∧ lK δωLMnM

N= −nI e
μ
J δωI J

μ dN N= 1

2
θe. (3.42)

For the second term, we use the inverse formula for the tetrad (see (A.3b)), finding

εI J K L δeI ∧ eJ ∧ lK dωn
L N= −[

(eρ
I + lρnI )∇ρn

μ − (eμ
I + lμnI )∇ρn

ρ
]
δeIμdN

= −[
γ

ρ
I ∇ρn

μ − (γ
μ
I − nμlI )∇ρn

ρ − k(n)n
μlI

]
δeIμdN ,

(3.43)

where γ
μ
I = γ μνeIν . The third and fourth terms combine together to give

1

2
εI J K L eI ∧ eJ ∧ (δlK dωn

L + δnK dωl
L)

N=
− [

δeIμ
(
γ ν

I n
μlσ ∇νn

σ − k(l)n
μnI + k(n)n

μlI − nμlI∇νn
ν
) + 2δnμl[ν∇μ]nν

]
dN .

(3.44)

We now restrict the variation to preserve the null nature of the hypersurface. This
eliminates the term proportional to k(l) in (3.44), since δeIμn

μnI = −nμδnμ = 0.
Adding up (3.43) and (3.44), we arrive at

εI J K L

[
δeI ∧ eJ ∧ lK dωn

L + 1

2
eI ∧ eJ ∧ (δlK dωn

L + δnK dωl
L)

]

N= −δeIμ
[
γ ν

I

(∇νn
μ + nμlσ ∇νn

σ
) − γ

μ
I ∇νn

ν
]
dN − 2δnμl[ν∇μ]nνdN

= 1

2

[
Bμνδγ

μν − (θ(n) + k(n))γμνδγ
μν − 2

(
γ ρ

μl
σ ∇ρnσ − θ(n)lμ

)
δnμ

]
dN ,

(3.45)
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where we used the identities

Bμνδγ
μν = γ ρ

μ γ σ
ν ∇ρnσ δgμν = −2γ ρ

I γ μσ ∇(ρnσ)δe
I
μ = −2γ ρ

I (∇ρn
μ + lσ ∇ρnσ n

μ)δeIμ,

(3.46a)

δ ln
√

/γ = −1

2
γμνδγ

μν = γ
μ
I δeIμ. (3.46b)

Finally for the boundary term, we have

1

2
εI J K L � I J lK δnL

∂N= 1

2
εI J K L eIμe

J
ν l

K δnLεμνρσ lρnσdS = −lI δn
I dS. (3.47)

Coming back to (3.41), the variation of the final expression gives

δ
(
(θ(n) + k(n))dN

)
= δ(θ(n) + k(n))dN + (θ(n) + k(n))

(
δ ln

√−g

f

)
dN .(3.48)

Putting everything together, the last term in (3.48) combines with the second term of
(3.45) giving (3.28), and we obtain

∫

N

[
δ(θ(n) + k(n))

]
dN = 1

2
�e(δ) + 1

2

∫

N

[
Bμνδγ

μν − 2δnμ(γ ρ
μl

σ ∇ρnσ + k(n)lμ)
]
dN

−
∫

∂N
lI δn

I dS. (3.49)

Solving for the symplectic potential, we get Eq. (3.30b).
If n2 = 0 only at N , we get an additional 1

2 l
μ∂μn2dN in the right-hand side of

(3.40), and an additional 1
2 (δl

μ + eρ
I δe

I
ρl

μ)∂μn2dN in the right-hand side of (3.45).
Assuming that δn2 = 0 and thus nμδnμ = 0 still hold, the final result for the potential
is then (3.30b) with the additional term

− 1

2

∫

N
lμ∂μn

2 (δ ln f ) dN (3.50)

on the right-hand side.

4 Canonical pairs

The symplectic potential can be used to read off the canonical pairs of the Lagrangian
in a covariant way, without introducing an explicit Hamiltonian 3+1 decomposition.
In this Section we look at the canonical pairs corresponding to the bare tetrad and
metric-equivalent choices of symplectic potentials. This will allow us to point out the
differences in the corner pairs. The bulk pairs coincide, but for null hypersurfaces it
will nonetheless be useful to discuss them in some detail to understand the relation
between various results in the literature.
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4.1 Non-null hypersurfaces

Introducing the unimodular induced metric q̂μν := (−sq)1/3qμν , we can rewrite the
bulk and boundary terms of the symplectic potentials (3.3b)–(3.6) as

��
e (δ) = ��

g (δ)

= s
∫

�

[
4

3
K δ ln

√−sq + (−sq)−1/3
(
Kμν − 1

3
Kqμν

)
δq̂μν

]
d� − 2δ(Kd�)

(4.1)

�∂�
e (δ) = −2

∫

∂�

r̂ I δn
I dS, (4.2)

�∂�
g (δ) = −

∫

∂�

r̂μδnμdS. (4.3)

In the bulk of the Cauchy hypersurface, we have two canonical pairs, as in theHamilto-
nian formalism: the traceless part of the extrinsic curvature conjugated to the conformal
metric, and the trace of the extrinsic curvature conjugated to the conformal factor.

The symplectic potential provides us also with a canonical pair on the boundary
of the Cauchy hypersurface. This pair is affected by the cohomology ambiguity, and
the result is different with tetrad or metric variables. In both case, the conjugated pair
is given by the normal to the hypersurface � and the densitized (by the area density√

γ ) normal of the boundary within T�. The differences are a factor of 2 and the
nature of the vectors: internal vectors with the bare tetrad potential versus spacetime
vectors with the metric potential. In other words, it includes a non-trivial variation of
(a projection of) the tetrad.

4.2 Null hypersurfaces

On null hypersurfaces it is possible to give a finer identification of the canonical pairs,
if one introduces a foliation along the null generators, say by the level sets of r as
before, and adapts the NP tetrad. We can then introduce a uni-modular induced metric
on the 2d slices,

γ̂ μν := √
γ γ μν, γ̌μν = γ −1/2γμν. (4.4)

This allows us to diagonalize the shear and expansion contained in Bμν ,

Bμνδγ
μν = σ(n)μνδγ̂

μν + θ(n)δ ln
√

γ , σ(n)μν = 1

2
£n γ̌μν. (4.5)
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Using this decomposition in the symplectic potentials on a null hypersurface, we can
rewrite the bulk and boundary terms (3.30b) and (3.34) as

�N
e (δ) = �g(δ)

=
∫

N

[ − σ(n)μνδγ̂
μν + δ(θ(n) + 2k(n)) + 2ω(n)μδnμ

]
dN +

∫

N
δ(θ(n)dN ),

(4.6)

�∂N
e (δ) = 2

∫

∂N
lI δn

I dS, (4.7)

�∂N
g (δ) =

∫

∂N
(lμδnμ + lμδnμ)dS. (4.8)

Let us first discuss the bulk part. The first term is the well-known spin-2 pair made
by the shear and the conformal 2dmetric.6 It dates back to Sachs’ initial value problem
[34], shows up in the canonical analysis [24,25,27,35], and features prominently in
Ashtekar’s symplectic structure at I [36]—where all other terms vanish. The second
term is the spin-0 pair, made by the 2d conformal factor and its momentum. The latter
is given by the combination θ(n) +2k(n), and appears in this form also in the canonical
formalism [27,35] and in the analysis of [4]. Notice the factor of 2, which introduces
a mismatch between the spin-0 momentum and the divergence of the hypersurface
normal, which was the result in the space-like case. The third term has three com-
ponents because of (3.26), and describes a spin-1 pair, given by the tangent to the
null generators and the rotational 1-form of the isolated horizon framework. From the
canonical perspective of [27], the two components in ημ describe the momentum to
one of the shift vectors of the 2+2 formalism, whereas the inaffinity piece would be
the canonical momentum to the gauge-fixed metric component gvv .7

Having fixed a foliation, we can now choose the canonical normalization (3.20),
which results in dN = √

γ drd2θ and lμδnμ = 0, eliminating one component of the
spin-1 momentum. The bulk symplectic potential is now identical to the one derived
in [4,24,27]. If one further fixes the partial Bondi gauge, δnμ = 0 and the spin-1
piece drops out of the potential entirely. It remains the gauge freedom to choose the
r coordinate, freedom which affects for instance the inaffinity and its factor of 2 in
the spin-0 momentum. Choosing r to be an affine parameter, the inaffinity variation
vanishes, and θ(n) ≡ ∂r

√
γ : the spin-0 term becomes entirely a corner term, indeed,

one of Sachs’ corner data [24]. We refer the reader to [4] for further discussions of the
relevance of the spin-1 and spin-0 pairs.

In this discussion we used a foliation of N to separate the spin-0 and spin-2 parts
of the canonical pairs, but in the special case of a non-expanding horizon, θ(n) = 0
and one can identify the pairs without introducing a foliation. This is for instance the

6 The fact that the momentum of the spin-2 configuration variables is a spatial derivative and not a velocity
is the gravitational equivalent of the light-cone constraint of light-front field theory inMinkowski spacetime.
In the first-order formalism, this crucial relation appears as a second class secondary constraint [29].
7 And requires the extension of the phase space mentioned in a previous footnote, see also discussion in
[29].
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case of future null infinity where only the spin-2 shear pair appears [36,37], or of an
isolated horizon where only the spin-1 pair appears [31,32], see (3.37).8

An interesting remark about the canonical pairs on a null hypersurface is that all
momenta have a connection interpretation in the first-order formalism: In particular
the shear and spin-0 momenta are the components of the connection on the little
group of a null direction, respectively the null traslations for the shear, and the helicity
rotation for the spin-0 momentum θ(n) + 2k(n) [35]. This is in contrast with the case
of non-null hypersurfaces, the momenta are component of the extrinsic curvature,
which in the first-order formalism are hypersurface-orthogonal parts of the Lorentz
connection, and do not transform as a connection under the little group preserving
the hypersurface normal. This is the reason why one needs either to complexify the
variables or to introduce (the term in the action proportional to) the Barbero-Immirzi
parameter in order to achieve a connection formulation. The connection interpretation
of the momenta is a remarkable characteristic of a null hypersurface, and for the shear
part it dates back to the seminal work at future null infinity [37,39].

5 Variational principle and corner terms in the action

An advantage of using tetrads is that it is much simpler to join the boundary terms and
obtain the variational principle on a closed region of spacetime with (non-orthogonal)
corners, as pointed out in [5]. There the authors restricted attention to the variations pre-
serving the induced metric on the boundary, and adapted the tetrad. Here we consider
arbitrary variations to be able to deal with any boundary conditions one may choose
for the variational principle. In the context of joining boundaries, we can ignore the
dressing 2-form dα(δ) since it is globally exact and therefore its contributions cancel
out. The boundary terms to be added to the action for the variational problem are thus
equivalent in metric or tetrad variables, the advantgae of using the latter is only that it
simplifies evaluating them.

5.1 Joining the boundaries

To keep the presentation brief, we present only the two most common cases of finite
regions, namely a time-like cylinder and a section of a light-cone. Formulas for the
other types of joints considered in the literature, e.g. in [3,5], can be easily derived as
below, paying the necessary attention to signs and relative orientations.

We consider first the time-like cylinder, left panel of Fig 1. The outgoing time-like
normal is future-pointing at �2, and past-pointing at �1. This gives a global minus
sign when applying the formulas of Sect. 3.1 to �1. As for the time-like boundary
T , the outgoing unit normal is space-like and we denote it by r . We use r̂ for the

8 While the formalism at future null infinity does not depend on a choice of foliation, it does depend on
a choice of normalization for the tangent vector, or in other words, on a choice of conformal factor in the
compactification. For recent work aiming at a purely conformal invariant description, see [38].
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Fig. 1 The two standard settings for the variational problem considered in this section. Left panel: The
boundary of the four-dimensional domain of integration consists of a pair of space-like hypersurfaces �1,2
and a time-like one T , joined at the space-like corners C1,2. The figure shows the two basis (n, r̂) and
(r , n̂), where n is the (time-like) unit-norm normal to�2, r is the (space-like) unit-norm normal to T , while
n̂ and r̂ are, respectively, the unit-norm projections of n and r in TT and T�. Right panel: The boundary
of the four-dimensional domain of integration consists of a pair of space-like hypersurfaces �1,2 and a
converging section of a past light-cone N , joined at the space-like corners C1,2. The figure shows the two
basis (τ, r̂) and (n, l), where τ is the (time-like) unit-norm normal to �2, n is the (null) normal toN , while
r̂ and l are, respectively, the unit-norm projections of n in T� and the transverse null vector to n

unit-norm projection of r in T�, and n̂ for the unit-norm projection of n in TT . Using
(3.3b), the total on-shell variation of the tetrad action is

δSe ≈
∫

�2

θ(δ) −
∫

�1

θ(δ) +
∫

T
θ(δ)

=
∫ �2

�1

(2δK − Kμνδq
μν)d� −

∫

T
(2δK − Kμνδq

μν)d� − 2
∫ C2

C1

(r̂ I δn
I + n̂ I δr

I )dS.

(5.1)

To evaluate the corner term, we follow the standard procedure (see, e.g., [40–43], and
more recently [3,5]) and introduce an SO(1, 1) transformation between the basis (n, r̂)
and (r , n̂),

nI = sinh η rI + cosh η n̂ I , r̂ I = cosh η rI + sinh η n̂ I . (5.2)

Here, sinh η = nI r I is the boost between the two hypersurfaces, and it vanishes in
the case of orthogonal corners. Using these formulas and their inverses, we have

r̂ I δn
I + n̂ I δr

I = 1

cosh η
(rI δn

I + nI δr
I ) = δη. (5.3)

Plugging this in (5.1), we find the corner contribution−2δη dS. This can be recognized
as the non-orthogonal corner contribution to the variation of the EH action [42]. It can
also be derived from the metric boundary terms of (3.6):

r̂μδnμ + n̂μδnμ = 2(r̂ I δn
I + n̂ I δn

I ) = 2δη. (5.4)
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The one-line derivation of the corner term can be advantageously compared with the
rather longer one required in metric variables; see, e.g., [3,42].

In our second example, we replace the time-like boundary with a section of a past
light-cone; see right panel of Fig. 1. To avoid a notational problem, we now use τμ

for the future-pointing time-like normal, and keep nμ for the null normal to N . In
the adapted NP tetrad (l, n,m, m̄), the integrable vectors (mμ, m̄μ) foliateN , and lμ

is tangent to light rays outgoing from N . Using (3.3b) and (3.30b) the total on-shell
variation of the tetrad action is

δSe ≈
∫

�2

θ(δ) −
∫

�1

θ(δ) +
∫

N
θ(δ)

=
∫ �2

�1

(2δK − Kμνδq
μν)d� +

∫

N

[−Bμνδγ
μν + 2δ

(
θ(n) + k(n)

) + ω(n)μδnμ
]
dN

+ 2
∫ C2

C1

(−r̂ I δτ
I + lI δn

I )dS. (5.5)

The change of basis at the corners is given by [5]

τ I = 1√
2
(eηl I + e−ηnI ), r̂ I = 1√

2
(eηl I − e−ηnI ), (5.6)

where τI n I = −eη/
√
2 measures the boost among the normals, and it vanishes when

τ I = (l I + nI )/
√
2. From these relations it follows that

− 2r̂ I δτ
I + 2lI δn

I = −2δη, (5.7)

and thus the corner contribution to the variation is −2δη dS. In terms of spacetime
tensors, using (3.4) and (3.32), one finds that

− 2r̂ I δτ
I + 2lI δn

I = −r̂μδτν + lμδnμ + lμδnμ. (5.8)

Comparing the last two equations, we have recover the corner term derived in [3,5],
here generalized without any coordinate or internal Lorentz gauge fixing, and the
associated restricted variations. Again, we would like to stress the simplicity and the
generality of the derivation performed with tetrads variables.

5.2 Variational problems with non-orthogonal corners

The tetrad and metric Lagrangians (2.1) and (2.6) give a well-defined variational
principle with boundary conditions fixing the extrinsic curvature, or the projected
connection in the first-order formulation. Dirichlet boundary conditions fix instead
the induced metric, and in this case one has to supplement the Lagrangians with
boundary terms to have a well-defined variational principle. The required boundary
terms can be read off the formulas of the previous Section imposing the Dirichlet
condition δqμν = 0 at the boundary.
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If the boundary is the time-like cylinder of Fig. 1, left panel, we have

δDSe ≈
∫ �2

�1

2δKd� −
∫

T
2δKd� −

∫ C2

C1

2δη dS

= 2δ

(∫ �2

�1

Kd� −
∫

T
Kd� −

∫ C2

C1

ηdS

)
=: −δ I3d − δ I2d . (5.9)

This is a total variation, and we can identify the usual Gibbons-Hawking and Hayward
boundary terms. In tetrad variables, these can be written as

I D3d = s 2Kd� = s 2∇μn
μd� = s εI J K L eI ∧ eJ ∧ nK dωn

L , (5.10a)

I D2d = 2ηdS = 2 sinh−1(nI r
I )dS = 1

2
sinh−1(nI r

I ) εI J K L eI ∧ eJ nK r L . (5.10b)

Recently, it has also been suggested to consider mixed boundary conditions δK =
0 = δq̂μν [44–46], where q̂μν is the unimodular representative of the conformal class
of induced metrics. The boundary variation in this case can be read from (4.1), and
the only difference is a numerical factor in the 3d boundary term to be added to the
action,

Imixed
3d = s

2

3

∫

�

Kd�. (5.11)

For the past light-cone of Fig. 1, right panel, Dirichlet boundary conditions impose
δγμν = 0 on the null boundaries. Notice that, when the connection is on-shell in the
absence of torsion, this also implies that δθ(n) = 0.9 Then,

δDSEC ≈
∫ �2

�1

2δKd� −
∫

N
(2δk(n) + ω(n)μδnμ)dN −

∫ C2

C1

2δηdS, (5.12)

but this is not a total variation. The obstruction is the δnμ term. Since nμ is tangent to
the null hypersurface, its variation must be also fixed in order to have a well-defined
variational principle, as discussed in [2,3,5]. This can be achieved working in partial
Bondi gauge, which fixes δnμ = 0 while still allowing variations of the inaffinity. In
this gauge,

δD+BondiSEC ≈
∫ �2

�1

2δKd� −
∫

N
2δk(n)dN −

∫ C2

C1

2δηdS

= 2δ

(∫ �2

�1

Kd� −
∫

N
k(n)dN −

∫ C2

C1

ηdS

)
=: −δ I3d − δ I2d .

(5.13)

9 See, e.g., [47] for the contribution of the torsion to the expansion, and to null geodesic congruences in
general.
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This is now a total variation, and we can identify the boundary terms to add to the
action. The space-like ones are the same as before. The 3d null boundary term is
2k(n)dN , but since δθ(n) = 0 with Dirichlet boundary conditions, it can also be taken
to be the following covariant tetrad expression,

I D+Bondi
3d = 2(θ(n) + k(n))dN = 2∇μn

μdN = εI J K L eI ∧ eJ ∧ lK dωn
L . (5.14)

As for the new corner term, in tetrad variables this reads

I D2d = 2ηdS = 2 ln(−√
2 nI τ

I )dS = 1

2
ln(−√

2 nI τ
I ) εI J K L eI ∧ eJ lK nL .

(5.15)

We remark that the 3d boundary term has a universal form for all hypersurfaces
when written as the divergence of the hypersurface normal. The expression in the null
case is however coordinate-dependent, because the inaffinity depends on the choice
of the r coordinate. Only upon completing the gauge-fixing, one has an unambiguous
expression. The simplest choice is r an affine parameter, for which the boundary term
vanishes. Alternatively, this dependence of the boundary action on the parameters of
the null generators could be eliminated adding an additional corner term [3,5], but it
was also argued not to affect physical quantities [5].

6 Hamiltonian surface charges

Theories with local gauge symmetries, like Yang-Mills and General Relativity, admit
an elegant extension of Noether’s theorem, that shows how the charges—relevant for
conservation or balance laws—are associated with surface integrals. These surface
charges date back to the ADM analysis [48] and subsequent literature; see e.g., [49–
51]. A convenient modern framework to address this question is the covariant phase
space prescription [7–9], whose mathematical structure was later also associated with
a variational bi-complex or jet bundle [14,15]. The literature slightly branches off three
different viewpoints, depending on the mathematical tools one focuses on: the (pre)-
symplectic 2-form, the Noether charge from the symplectic potential, or Anderson’s
homotopy operator. This branching, together with the use of similar names for dif-
ferent quantities, can create some confusion in comparing results. For this reason we
decided to include a brief introduction to fix notations and conventions, even though
the material is well-covered in the literature. As a slight generalization to much of
the literature, we allow throughout for field-dependent gauge parameters. This has
relevance for questions of integrability or multipole decompositions. We hope not to
alienate the reader familiar with these notions, and invite her to skip the next subsec-
tion.
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6.1 Covariant phase spacemethods

In covariant phase space methods [7–10,13,36,52], one associates a symplectic poten-
tial to a hypersurface � from the integral (2.9) of the boundary variation of the
Lagrangian. We follow [10,13] and denote with δ a specific functional variation, cor-
responding to a vector field over the field space F ; and with �(δ) = Iδ� is the inner
product in F between a 1-form and a vector field. The pre-symplectic 2-form is the
exterior derivative in field space, � := d�. It can be written in terms of standard
functional differentials as follows,

�(δ1, δ2) = δ1[�(δ2)] − δ2[�(δ1)] − �([δ1, δ2]). (6.1)

This quantity depends a priori on the hypersurface � chosen to evaluate the integrals,
but it can be easily shown to be closed in spacetime, d� ≈ 0, if the fields and their
linear variations are on-shell; see, e.g., [9].

Having a pre-symplectic form at disposal, one can look for the Hamiltonian gener-
ator associated with a symmetry δε

/δHε := �(δ, δε) = δ[�(δε)] − δε[�(δ)] − �([δ, δε]). (6.2)

The slashed delta used in this definition is meant to highlight that the right-hand side
is not necessarily a total functional variation. When it is, we say that the expression is
integrable, and refer to Hε as the Hamiltonian generator. Simple sufficient conditions
for integrability are

δε[�(δ)] = 0, [δ, δε] = 0. (6.3)

It can be shown by explicit calculation that for internal gauge and diffeomorphism
symmetries, the integrand in (6.2) is exact. Therefore /δHε is a surface integral, if
� has a single boundary, or the difference of two surface integrals if � has two
disconnected boundaries. When the generator is integrable, we will then refer to Hε

on one boundary as the Hamiltonian charge.
These charges and their fluxes are themain object of interest in covariant phase space

methods. A proof that on general grounds these quantities are always surface integrals
was given in [52]. Because of this proof, some literature refers to the Hamiltonian
charge also as Iyer-Wald charge. We briefly sketch the proof, which will allow us to
introduce a second quantity of interest, the Noether charge, and to better appreciate
the issue of integrability. We consider arbitrary gauge parameters, including field-
dependent ones and, accordingly, we keep track of terms in δε and [δ, δε].

The starting point is the variation of the Lagrangian under a gauge symmetry. By
definition of Lagrangian symmetry, this can be at most a boundary term,

δεL = E(φ)δεφ + dθ(δε) = dYε . (6.4)
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The quantity

j(δε) := θ(δε) − Yε (6.5)

is closed on-shell, i.e., d j(δε) ≈ 0, and can be taken as definition of Noether current
for the symmetry ε [52]. For gauge symmetries, this current is also exact on-shell (see,
[10,52] for the general proof and below for explicit cases), and we denote

j(δε) ≈ dqε . (6.6)

The associated surface integral

Qε :=
∫

�

j(δε) ≈
∫

∂�

qε (6.7)

is referred to as Noether charge [52]; we will follow this naming. A straightforward
calculation then gives

/δHε ≈
∫

�

(dδqε − δεθ(δ) − dqδε + δYε − Yδε) . (6.8)

We now distinguish the two cases of internal gauge symmetries and diffeomor-
phisms. For internal gauge symmetries, which we denote with ε = λ, the variation of
the Lagrangian is exactly zero, so Yλ = 0. The symplectic potential is gauge-invariant,
meaning δλθ(δ) = 0. We have that the Noether current coincides with the symplectic
potential, and (6.8) reduces to

/δHλ ≈
∫

∂�

(δqλ − qδλ) . (6.9)

For field-independent gauge parameters, theHamiltonian generator associated to inter-
nal gauge symmetries is integrable and it coincides with the Noether charge (6.7).

For diffeomorphism, which we denote with ε = ξ , the variation of a generally
covariant Lagrangian gives Yξ = iξ L . The Noether current does not coincide with the
symplectic potential, and (6.8) gives

/δHξ ≈
∫

∂�

(
δqξ − iξ θ(δ) − qδξ

)
. (6.10)

The integrability of this expression requires a case by case study.
It is useful to make these expressions more concrete with two notable examples: the

Yang-Mills and Einstein-Hilbert Lagrangians. The first is given by L = − 1
2Tr(F ∧

�F), with symplectic potential θ(δ) = −Tr(δA ∧ �F). The Lagrangian is invariant
under a gauge transformation δλA := −dAλ, and

j(δλ) := θ(δλ) = d Tr (λ�F) . (6.11)
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Hence, the Noether charge is

Qλ :=
∫

�

j(δλ) =
∫

∂�

Tr (λ�F) . (6.12)

We further observe from (6.11) that for a covariantly constant gauge transformation,
dAλ = 0, the Noether current vanishes on-shell in vacuum: in this case the Noether
charge obeys a 3d conservation law, namely its value is independent of deformations
of the integration surface ∂�. This is the standard case of interest for charges. To
compute the Hamiltonian generator, we first observe that the symplectic potential is
gauge-invariant, δλθ(δ) = 0. We then have

/δHλ = δ[�(δλ)] − �([δ, δλ]) ≈
∫

∂�

Tr (λ�δF) . (6.13)

For field-independent gauge parameters, δλ = 0 and [δ, δλ] = 0. The Hamiltonian
generator is then integrable, and the Hamiltonian charge coincides with the Noether
charge (6.12).

For the second example, the Einstein-Hilbert Lagrangian (2.6) has the symplectic
potential (2.8b), and

j(δξ ) := θ(δξ ) − iξ L = dκξ + E
(e)
I ξ I ≈ dκξ , (6.14)

where (E
(e)
I )μνρ = 2εμνρα(Gαβ + �gαβ)eβ I ≈ 0, and

κξ := −1

2
εμνρσ ∇ρξσdxμ ∧ dxν (6.15)

is the Komar 2-form. The Noether charge for diffeomorphisms is the surface integral
of the Komar 2-form,

Qξ :=
∫

�

j(δξ ) ≈
∫

∂�

κξ . (6.16)

As for the YM case, this expression becomes independent of the integration surface
∂� only in vacuum and in the case of isometries, namely when ξ satisfies the Killing
equation. This is proved using dκξ = �(2∇ν∇[νξμ]dxμ) = −2�(Rμνξ

νdxμ) for
a Killing vector. Hence, the Noether current (6.14) vanishes in vacuum and for an
isometry.10

The explicit form of the Hamiltonian generator (6.10) is

/δHξ ≈
∫

∂�

(
δκξ − iξ θ(δ) − κδξ

)

= −1

2

∫

∂�

εμνρσ

[
(δ ln

√−g)∇ρξσ + δgρα∇αξσ + ξρ
(∇αδgασ + 2∇σ δ ln

√−g
)

10 Excluding the presence of singularities.
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− ξα∇ρδgσα
]
dxμ ∧ dxν . (6.17)

The integrability of this expression is non-trivial. The only simple case concerns
field-independent diffeomorphisms tangential to ∂�, for which the second and third
terms in the first equality vanish. The generator is then manifestly integrable, and
the Hamiltonian charge coincides with the Noether charge given by the Komar 2-
form. For non-tangential diffeomorphisms the situation is more subtle and one has
to do a case by case study; see e.g., time diffeomorphisms and the ADM energy at
spatial infinity, which is not given by the Komar 2-form alone. The situation should
be compared with the Noether charge (6.16), which is always well-defined. However,
it is the Hamiltonian charge that generates the symmetry in phase space. Furthermore,
as we recall next the definition of the Noether charge used above is ambiguous, since it
is changed adding boundary terms to the Lagrangian, whereas the Hamiltonian charge
it is not.

As before, the most relevant situation for physical applications concerns the case of
isometries (be them global or asymptotic), for which the value of the charges doesn’t
depend on the surface of integration chosen in vacuum. Nonetheless, we will keep a
general mind in this paper and consider all charges, including those not associated
with isometries, and thus a priori surface-dependent.

6.1.1 Ambiguities

There are two ambiguities in the definition of the symplectic potential [52]:

I . Boundary terms: if one adds a boundary term to the Lagrangian (without intro-
ducing new fields), i.e., L 
→ L + dY , then θ 
→ θ + δY . This is like a change of
polarization in the phase space (e.g., pdq going to−qdp). It affects the symplectic
potential and the value of the Noether charge, but does not affect the symplectic
structure and Hamiltonian charges.

I I . Cohomology ambiguity: the Lagrangian gives a unique prescription for dθ . In
extracting the symplectic potential θ , one is always free to add an exact form to
it, so the symplectic potential is only defined up to the cohomology ambiguity
θ 
→ θ + dα for an arbitrary 2-form α. This ambiguity does affect the symplectic
structure and Hamiltonian charges, as well as the symplectic potential and Noether
charges.

A third ambiguity of covariant phase space methods is the fact that the surface charge
itself is only defined up to the addition of an exact 2-form, but this is often irrelevant
since attention is restricted to compact (but not necessarily connected) ∂�.

The ambiguity I I plays an important role in our considerations about tetrad GR. To
highlight it, we call bare the symplectic potential that can be read off the variation of
the Lagrangianwithout any additional inputs. As discussed in [1] andmore extensively
below, the Noether and Hamiltonian charges obtained from the bare tetrad symplectic
potential differ from those obtained in metric variables, even though the space of
physical solutions is the same. This is a direct consequence of the mismatch (2.11).
It can then be compensated exploiting the ambiguity I I to dress the bare symplectic
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potential with the dressing 2-form (2.12), thus restoring equivalence with the metric
charges.

Another situation in which the ambiguity I I has been used to define an improved
symplectic potential is in the context of renormalization of the super-Lorentz charges
at null infinity [53]. Dressing the symplectic potential with an exact form can be also
obtained adding a boundary term that depends on new fields to the initial Lagrangian,
as done in [6,54–56]. In particular the results of [6,56] indicate that themain properties
of our dressed tetrad symplectic potential, namely zero Lorentz charges and metric-
equivalent diffeomorphism charges, can be obtained with a boundary Lagrangian
describing the induced geometry on a null boundary in terms of spinors.

6.2 Bare and gauge-invariant pre-symplectic forms for tetrad General Relativity

Applications of covariant phase space methods to the tetrad action with the bare
symplectic potential can be found in [13,57–59]. In the rest of this Section, we provide
a comparative analysis of all charges associated with the two choices of symplectic
potentials: the bare θe defined in (2.3b), with pre-symplectic 2-form

�(δ1, δ2) = 1

2

∫

�

εI J K L

(
δ1�

I J ∧ δ2ω
K L − δ2�

I J ∧ δ1ω
K L

)
. (6.18)

And the dressed, metric-equivalent one θ ′
e := θe + dα ≡ θg defined in (2.8b), with

pre-symplectic 2-form

�′(δ1, δ2) = �(δ1, δ2) + �α(δ1, δ2), (6.19a)

�α(δ1, δ2) = −1

2

∫

∂�

εI J K L

[
δ1

(
� I J eρK

)
δ2e

L
ρ − δ2

(
� I J eρK

)
δ1e

L
ρ

]
. (6.19b)

To study the charges, we briefly recall that the tetrad Lagrangian (2.1) has two
different gauge symmetries: internal Lorentz transformations

δλe
I := λI

J e
J , δλω

I J := −dωλI J , (6.20)

and diffeomorphisms

δξ e
I := £ξ e

I = iξde
I + d(iξ e

I ) = iξdωe
I + dω(iξ e

I ) − (iξω
I
J )e

J , (6.21a)

δξω
I J := £ξω

I J = iξdωI J + d(iξω
I J ) = iξ F

I J + dω(iξω
I J ). (6.21b)

The Lie derivative appearing here is not gauge-covariant under the internal Lorentz
transformations. Any linear combination is also a symmetry of the theory, and this
fact can be used to define a covariant Lie derivative

Lξ := £ξ + δiξ ω, (6.22)

whose action on the fields equals (6.21) with the last terms removed.
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6.3 Internal Lorentz tranformations

The tetrad Lagrangian is exactly invariant under internal Lorentz transformations,
hence the Noether current coincides with the symplectic potential,

j(δλ) = θe(δλ) = −1

2
d

(
εI J K LλI J�K L

)
, (6.23)

and the Noether charge is

Qλ :=
∫

�

j(δλ) = −1

2

∫

∂�

εI J K L λI J�K L . (6.24)

For the Hamiltonian charges, a simple calculations gives

/δHλ ≈ −1

2

∫

�

εI J K L

(
δ� I J ∧ dωλK L + δλ�

I J ∧ δωK L
)

= δQλ −
∫

�

θe([δ, δλ]) = −1

2

∫

∂�

εI J K L λI J δ�K L . (6.25)

This expression is integrable for field-independent gauge transformations, δλ = 0.
In this case the Hamiltonian charges exist, and coincide with the Noether charges
(6.24).Conversely, theNoether charges arewell-defined also for field-dependent gauge
transformations, but they are not canonical generators. We also notice that in the
presence of isometries these charges are independent of the integration surface in
vacuum, so they satisfy a 3d Gauss law like for YM theory. This follows from the fact
that under a Killing diffeomorphism ξ , the tetrad undergoes a gauge transformation
λI J

ξ = −D[I ξ J ] [see the end of this section, Eq. (6.47)], and

j(δλξ ) = −1

2
εI J K LdωλI J

ξ ∧ �K L = 1

2
εI J K Liξ F

I J ∧ �K L

= 1

3
Rμ

αξαεμνρσdx
ν ∧ dxρ ∧ dxσ ≈ 0

in vacuum. These internal Lorentz charges have no counterpart in metric variables.
Let us now compare these results with those obtained using the metric-equivalent,

gauge-invariant (pre)-symplectic form (6.19a). Specializing the contribution of the
dressing 2-form to internal gauge transformations, one gets

j ′(δλ) = θ ′
e(δλ) ≡ 0, (6.26)

with identically vanishing Noether charge. As for the Hamiltonian charge, we have

�α(δ, δλ) = 1

2

∫

∂�

εI J K L λI J δ�K L . (6.27)
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This cancels exactly the internal Lorentz charges (6.25) produced by the bare potential.
Therefore, both Hamiltonian and Noether charges associated to the internal Lorentz
gauge and computed with the gauge-invariant pre-symplectic form (6.19a) are van-
ishing,

H ′
λ ≡ 0 ≡ Q′

λ. (6.28)

6.4 Diffeomorphisms

With the bare symplectic potential, the Noether current for diffeomorphisms reads

j(δξ ) = θe(δξ ) − iξ Le ≈ 1

2
d

(
εI J K L iξω

I J �K L
)

, (6.29)

with Noether charge

Qξ :=
∫

�

j(δξ ) = 1

2

∫

∂�

εI J K L iξω
I J �K L . (6.30)

For the Hamiltonian charges, one has

/δHξ ≈ 1

2

∫

∂�

εI J K L

(
iξω

I J δ�K L − iξ�
I J ∧ δωK L

)

= δQξ −
∫

∂�

(
iξ θe(δ) + 1

2
εI J K L iδξω

I J �K L
)

. (6.31)

As in the metric case, the simplest integrable Hamiltonians are the field-independent
diffeomorphisms tangential to ∂�, for which the Hamiltonian charges coincide with
the Noether charges. In any case, the Noether and Hamiltonian charges constructed
with the bare tetrad potential differ from the metric ones (6.16) and (6.17) recalled in
the previous Section. The difference is manifest since (6.31) is linear in ξ , whereas
(6.17) is not. Worse, (6.30) and (6.31) are not even gauge-invariant, because of the
iξω term. This non-gauge invariance goes of course hand in hand with the presence
of non-zero internal Lorentz charges.

To evaluate the dressed symplectic potential, we first compute

α(δξ ) = −1

2
εI J K L� I J eKρδξ e

L
ρ = −1

2
εI J K L� I J (DK ξ L + iξω

K L), (6.32)

where we see the appearance of

κξ = −1

2
εI J K L � I J DK ξ L = −1

2
εμνρσ ∇ρξσdxμ ∧ dxν, (6.33)

the Komar 2-form in tetrad language. Adding the exterior derivative of (6.32) to (6.29)
we recover the metric result (6.14) for the Noether charges. For the Hamiltonian
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charges, the contribution of the dressing 2-form is

�α(δ, δξ ) = −1

2
εI J K L

∫

∂�

δ(� I J eρK )£ξ e
L
ρ − £ξ (�

I J eρK )δeLρ . (6.34)

There are two useful ways of manipulating this expression. One is

�α(δ, δξ ) = −1

2
εI J K L

∫

∂�

δ(� I J eρK £ξ e
L
ρ ) − � I J eρK £δξ e

L
ρ −

∫

∂�

£ξ α(δ),

(6.35)

leaving the last term implicit.With ∂� compact, we can replace this termwith iξdα(δ).
It then combines with the iξ θe(δ) term in (6.31) to give themetric symplectic potential.
For the first term in (6.35) we use the identity

eν[I Lξ e
J ]
ν = eν[I£ξ e

J ]
ν − iξω

I J = D[I ξ J ], (6.36)

which produces the Komar 2-form (6.33). After these manipulations, adding (6.35) to
the bare contribution (6.31) gives

/δH ′
ξ ≈

∫

∂�

(
δκξ − iξ θg(δ) − κδξ

)
, (6.37)

recovering the metric expression for the charges.
In the second way, we rewrite (6.34) as

�α(δ, δξ ) = −1

2
εI J K L

∫

∂�

δ� I J eρK £ξ e
L
ρ + � I J δeρK Lξ e

L
ρ − Lξ (�

I J eρK )δeLρ .

(6.38)

The first term is the only non-gauge-invariant one, but combines with the iξω term of
(6.31) to give a manifestly gauge-invariant expression,

/δH ′
ξ ≈ 1

2

∫

∂�

εI J K L

(
Lξ (�

I J eρK )δeLρ − δ(� I J eρK )Lξ e
L
ρ − iξ�

I J ∧ δωK L
)
.

(6.39)

This equation is the main new result of this Section, and provides an expression in
tetrad-connection variables that is fully equivalent to the metric charges (6.17). Notice
also that although we are allowing for field-dependent diffeomorphisms, no explicit
variations δξ appear in this way of writing the charges.

6.5 Covariant diffeomorphisms

By linearity, the expressions for the Noether currents and Hamiltonian charges can
be simply added up to deal with the case of arbitrary linear combinations of diffeo-
morphisms and internal Lorentz transformations. For the Noether current, adding up
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Eqs. (6.23) and (6.29) we get

j
(
δ(λ,ξ)

) = j(δλ) + j(δξ ) ≈ 1

2
d

[
εI J K L

(
iξω

I J − λI J
)

�K L
]
. (6.40)

For Hamiltonian charges, adding up Eqs. (6.25) and the first line of (6.31) we get

/δH(λ,ξ) = /δHλ + /δHξ ≈ 1

2

∫

∂�

εI J K L
[
(iξω

I J − λI J )δ�K L − iξ�
I J ∧ δωK L]

.(6.41)

Among the linear combinations, it is useful to look at the covariant Lie derivative
(6.22). The associated quantities can be obtained from the above formulas specializing
toλ = iξω. Notice that this is a field-dependent gauge transformation, but our formulas
are valid in this case as well. We derive, respectively, from Eqs. (6.40) and (6.41)

j(Lξ ) ≈ 0 (6.42)

and

/δHLξ ≈ −1

2

∫

∂�

εI J K Liξ�
I J ∧ δωK L . (6.43)

To obtain the correspondent expressions computed with the dressed symplectic
potential, it suffices to observe that /δH ′

λ = 0, hence

/δH ′
Lξ

= /δH ′
ξ . (6.44)

6.6 Isometries and the Kosmann derivative prescription

Isometries are characterized in metric variables by the Killing equations

£ξ gμν = 2∇(μξν) = 0, Rσμνρξσ = ∇μ∇νξρ. (6.45)

While an isometry leaves the metric invariant, its tetrad can still transform, but by an
internal Lorentz transformation at most. This means that the covariant Lie derivative
associated with a Killing vector is a gauge transformation determined by the vector
itself,

Lξ e
I = λξ

I
J e

J , Lξω
I J = −dωλI J

ξ . (6.46)

These conditions are solved by

λξ
I J = −eρ I Lξ e

J
ρ = −D[I ξ J ]. (6.47)
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Let us now take a linear combination of a diffeomorphism and a fine-tuned gauge
transformation

K(e)
ξ eI := £ξ e

I + δλ̄e
I , (6.48)

with field-dependent parameter

λ̄I J := iξω
I J − λI J

ξ . (6.49)

This Kosmann derivative [11,12] can be defined for an arbitrary diffeomorphism (for
its extension to tensors and spinors see [60]), and satisfies by constructionK(e)

ξ eI = 0
for a Killing transformation. Its key property is to reproduce the metric charges from
the bare tetrad symplectic potential. This follows from the observation that

θe(K(e)
ξ ) = θe(£ξ ) + θe(δλ̄) ≡ θg(£ξ ). (6.50)

From our perspective, this result is easy to understand from the underlying difference
between the symplectic potentials. In fact, notice that

θe(δλ̄) = dα(£ξ ). (6.51)

Therefore, (6.50) follows from the more general equivalence (2.11).

7 Time gauge and adapted tetrads

Even though the bare tetrad symplectic potential gives rise to non-zero internal Lorentz
charges, these charges vanish if one restricts the variations to adapted tetrads only,
namely tetrads with one element always aligned with the normal hypersurface. In the
case of a space-like hypersurface, we adapt the tetrad taking

e0 = n, n2 = −1. (7.1)

This partial gauge-fixing breaks the boost part of the internal Lorentz transformations,
leaving only an SU(2) symmetry acting on the internal indices i = 1, 2, 3. It is often
referred to as time gauge, and it is typically used in General Relativity with Ashtekar-
Barbero variables and in LoopQuantumGravity [61]. As a result of (7.1), the pull-back
of the bare symplectic potential simplifies to

θ tg
e (δ)

�= 1

2
εi jk e

i ∧ e j ∧ δω0k . (7.2)

It contains only the boost part of the connection, which corresponds to the extrinsic
curvature. It is then easy to see that the internal charges (6.25) are all zero:

/δHλ ≈ −1

2

∫

∂�

εI J K L λI J δ�K L = −
∫

∂�

εi jk(λ
0iδ� jk + λ jkδ�0i ) = 0. (7.3)
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The first term vanishes because λ0i = 0 for the little group SU(2) preserving the
gauge-fixed adapted tetrad, and the second term because the pull-backs of nμ and δnμ

on the hypersurface vanish. Fixing the time gauge has removed all internal charges of
the bare potential, there is no more the need to add the dressing 2-form to achieve this.

This however does not mean that the time-gauge bare tetrad symplectic potential
fully coincides with the metric one, and in fact, it still doesn’t. One way to see it is
to show that the dressing 2-form does not completely vanish with adapted tetrads.
Explicitly, one finds

αtg(δ) =
∫

∂�

nμr̂iδe
i
μdS = −

∫

∂�

nμr̂νδg
μνdS. (7.4)

We remark that it is now a purely metric expression, in agreement with the fact that
in the time gauge we have removed all internal charges. But (7.4) not being zero,
we conclude that (7.2) still differs from the metric symplectic potential, and so the
associated phase space. In particular for a diffeomorphism we have

αtg(δξ ) = −
∫

∂�

εi jk�
jk(D[0ξ i] + iξω

0i ) = 2
∫

∂�

nμr̂ν∇(μξν)dS. (7.5)

Thus, the diffeomorphism charges with the bare, time-gauge symplectic potential
differ from the metric expression (6.17) by the term δαtg(δξ ) − αtg([δ, δξ ]), giving

/δHξ ≈
∫

∂�

δκξ − iξ θ(δ) − κδξ + 2δ(nμr̂ν∇(μξν)dS) − 2nμr̂ν∇(μδξν)dS. (7.6)

Inspection of (7.5) shows that this term vanishes for a Killing vector. Therefore, the
bare time-gauge tetrad symplectic potential gives the same Killing charges as the
metric theory.

The same considerations apply to any hypersurface, not just space-like ones. For a
time-like hypersurface with n space-like, one can adapt say e3 = n, and the little group
is SU(1,1). For a null hypersurface with n null, one can adapt say (e0 + e3)/

√
2 = n,

and the little group is ISO(2). In both cases, all SU(1,1) and ISO(2) charges are zero
for the same argument (7.3).

One final comment to connect with some literature [55,62–64]. Let us look back at
(7.2), and add and subtract the quantity

β

(
1

2
εi jke

i ∧ e j ∧ δωmnεkmn

)
≡ βd(ei ∧ δei ). (7.7)

This gives

θ
tg
e (δ) = 1

2
εi jke

i ∧ e j ∧ δAk − βd(ei ∧ δei ), (7.8)

where Ak := ω0k + βεkmnω
mn is the Ashtekar-Barbero connection. Written in this

way, the gauge-fixed bare symplectic potential has a bulk and a boundary contributions,
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respectively, in δA and in δe. It can be easily shown that each term individually has
non-vanishing SU(2) charges

/δH tg
λ =

∫

∂�

λi jδ�
i j , (7.9)

equal and opposite in sign, in agreement with the total charge being zero. This manip-
ulation, which is quite natural from the LQG viewpoint, was pointed out in [33,62],
where an interpretational splitting between the first and second terms as bulk and
boundary degrees of freedom was proposed, and this has given rise to subsequent
work on edge modes [55,63–65].

8 First-order Lagrangians and the Barbero-Immirzi parameter

The tetrad Lagrangian is oftenwritten in the first-order formalism,with an independent
spin connection and only first derivatives appearing:

L(e,ω) = 1

2
εI J K L eI ∧ eJ ∧ FKL(ω) − 2�ε. (8.1)

In the absence of matter couplings sourcing torsion, this Lagrangian is equivalent
to (2.1). In the paper so far we have considered second-order Lagrangians, and we
stress that the differences in bare symplectic potentials and their consequences follow
from the use of the tetrad instead of the metric, and not from a switch from second
to first order which often accompanies the use of tetrads. We report in this Section
the difference between tetrad and metric symplectic potentials when using a first-
order formalism. The results are very similar. One aspect worth mentioning is that the
potentials now differ off-shell by a bulk term, and not just by an exact 3-form. This off-
shell difference is a simple consequence of the fact that although the connection field
equations are equivalent in the two choices of variables, they are off-shell different.

We consider a first-order formalismwith connections that can a priori carry torsion,
but are still metric or tetrad compatible, namely ∇μgνρ = 0 = ω

(I J )
μ . This general-

ization affects our previous manipulations in two aspects. First, the curvature of � has
36 independent components, not just 20 (see, e.g., [47] for a decomposition into its 6
irreps) and it is only one part of the commutator:

[∇ρ,∇σ ] f μ = Rμ
νρσ f ν − T ν

ρσ ∇ν f
μ, (8.2a)

Rμ
νρσ (�) = 2(∂[ρ�

μ
σ ]ν + �

μ
[ρ|λ�

λ
σ ]ν), (8.2b)

where Tμ
νρ = 2�μ

[νρ] is the torsion. Second, the familiar rule to pass from a covariant
divergence to a boundary term through Stoke’s theorem leaves a bulk term behind:

√−g∇μvμ = ∂μ(
√−gvμ) + √−g Tμ

μνv
ν. (8.3)
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Let us now look at theLagragian (8.1). In the first-order formalismwith independent
connection variables, there is a second dimension-2 term in the Lagrangian, whose
coupling constant is (inversely) proportional to the Barbero-Immirzi parameter γ . We
include this term in our analysis for completeness, but the reader interested only in the
basic Lagrangian can easily deduce the relevant formulas setting 1/γ = 0. The more
general tetrad Lagrangian reads

L(e,ω,γ ) = PI J K L eI ∧ eJ ∧ FKL(ω) − 2�ε, (8.4a)

PI J K L = 1

2
εI J K L + 1

γ
ηI [KηL]J . (8.4b)

Its variation gives

δL(e,ω,γ ) = δeI ∧ E
(e)
I + δωI J ∧ E

(ω)
I J + dθ(e,ω,γ ), (8.5)

with field equations

E
(e)
I = 2PI J K L eJ ∧

(
FKL − 2

3
� eK ∧ eL

)
, (8.6a)

E
(ω)
I J = −2PI J K L eK ∧ dωe

L , (8.6b)

and bare symplectic potential

θ(e,ω,γ )(δ) := PI J K L eI ∧ eJ ∧ δωK L . (8.7)

In metric and affine connection the equivalent Lagrangian reads

L(g,�,γ ) = (
gμνRμν(�) − 2�

)
ε − 1

2γ
ε̃μνρσ Rμνρσ (�)d4x . (8.8)

To take the variation, we use the identity

δRμ
νρσ (�) = 2

(
∇[ρδ�

μ
σ ]ν + �λ[ρσ ]δ�

μ
λν

)
, (8.9)

from which it follows that

δL(g,�,γ ) =
[
E(g)

μνδg
μν + E(�)νρ

μ δ�μ
νρ

]
ε + dθ(g,�,γ ), (8.10)

with field equations

E(g)
μν = Gμν + �gμν + 1

γ
ε(μ

λρσ Rν)λρσ (8.11a)

E(�)νρ
μ = gμλ

(
T ν,λρ + 2T α

α
[λgρ]ν) − 1

2γ

(
T ν

αβεμ
ραβ + 2T α

αβεμ
νρβ

)
(8.11b)
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and bare symplectic potential

θ(g,�,γ )νρσ = θ
μ

(g,�,γ )εμνρσ , θ
μ

(g,�,γ ) =
(
2gρ[μgν]σ − 1

γ
εμνρσ

)
gρλδ�

λ
νσ .

(8.12)

For further details on the first order formalism see for instance [66–68].
To compare the two symplectic potentials we proceed as in the second-order theory,

since the relation (2.5) holds also in the presence of torsion. This time, we find

θ
μ

(e,ω,γ ) = 2gρ[νδ�μ]
νρ + ∇ν

(
2e[ν

I δeμ]I) + 1

γ
εμνρσ

(
gνλδ�

λ
ρσ + ∇σ (eIνδe

I
ρ)

)

= θ
μ

(g,�,γ ) + 1

e
∂σ

(
2ee[σ

I δeμ]I + 1

γ
ε̃μνρσ eIνδe

I
ρ

)

+ Tμ
νρe

ν
I δe

Iρ + 1

2γ
εμνρσ T λ

νρ

(
δeIλe

I
σ − eIλδe

I
σ

)
, (8.13)

with the additional torsion-dependent bulk piece due to (8.3). The relation (8.13) can
be rewritten in terms of forms as

θ(g,�,γ ) = θ(e,ω,γ ) + dα + T , (8.14)

where

α(δ) := �(eI ∧ δeI ) + 1

γ
eI ∧ δeI = −PI J K L eI ∧ eJ

(
eρK δeLρ

)
, (8.15)

and the torsion bulk piece reads as

Tαβγ = 1

3!εαβγμT
μ

νρe
ν
I δe

Iρdxα ∧ dxβ ∧ dxγ

+ 1

γ
(TI ∧ δeI − δTI ∧ eI − eIλδT

λ ∧ eI ). (8.16)

See “Appendix B” for more details. We see that in the presence of torsion, the bare
symplectic potentials differ not just by an exact form, but also by a bulk term. The
reason for this is that (8.6b) is not equal to (8.11b), but differs by a boundary term. This
difference vanishes on-shell, and corresponds to the fact that the affine and Lorentz
connections have different ways to encode torsion.

Having kept the short-hand notation δω in most of our previous formulas, we
can adapt most of them easily to the case when ω is arbitrary. For the geometric
decomposition, the curvature part contains a torsion piece; see Eq. (3.8). We have

�(e,ω)(δ) = s
∫

�

εI J K L
[ − δ

(
� I J ∧ nK dωn

L) + δ� I J ∧ nK dωn
L − 2T I ∧ eJ nK δnL

]
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+ s
∫

∂�

εI J K L � I J nK δnL (8.17)

and

�(e,ω)(δ) =
∫

N
εI J K L

[ − δ
(
� I J ∧ lK dωn

L) + δ� I J ∧ lK dωn
L

+ � I J ∧
(
δlK dωn

L + δnK dωl
L
) ]

−
∫

N
2εI J K LT

I ∧ eJ lK δnL +
∫

∂N
εI J K L� I J lK δnL . (8.18)

The part in γ gives the contribution

eI ∧ eJ ∧ δωI J = TI ∧ δeI − δTI ∧ eI − d(eI ∧ δeI ). (8.19)

Adding (8.14) to the two above symplectic potentials, we obtain the corresponding
formulas for the geometric decomposition in metric-connection variables.

8.1 Surface charges

All charges, Noether and Hamiltonian, with this bare symplectic potential, can be
deduced from the ones computed above with the trivial replacement

1

2
εI J K L 
→ PI J K L , (8.20)

namely

/δH(λ,ξ) =
∫

∂�

PI J K L

[(
iξω

I J − λI J
)

δ�K L − iξ�
I J ∧ δωK L

]
, (8.21a)

/δHLξ = −
∫

∂�

PI J K L iξ�
I J ∧ δωK L . (8.21b)

The corresponding formulas for the Noether charges can be obtained with the same
replacement. The explicit dependence of the charges on γ , even in the absence of
torsion, is one more peculiarity of using the bare tetrad symplectic potential. There is
in fact no such contribution when using metric variables, even in the first-order theory
with the Lagrangian (8.8): the contribution to the diffeomorphism charges proportional
to 1/γ is an exact 2-form, and vanishes in the customary case of compact (but not
necessarily connected) surfaces. The independence from γ is a natural feature, since
the physical solutions don’t depend on γ in the absence of torsion.

For the dependence of the charges on higher-order topological terms see [18,59,69,
70]. For further discussions on the role of torsion in computing charges and the first
law, see e.g. [60,67,68,71].
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9 Cohomological methods and Barnich–Brandt charges

There is an alternative definition of surface charges that avoids both ambiguities I and
I I . It is based on ideas of Anderson and Torre [14], and developed by Barnich, Brandt
and Henneaux [15,16]; see [72] for a recent review.

The idea is towork directlywith the field equations, rather thanwith the Lagrangian.
Let us look back at Eq. (2.2), and focus on the term containing the field equations. We
can split this term into a piece linear in the gauge parameters ε, and a piece containing
their derivatives,

E(φ)δεφ = N (ε) + dS(ε). (9.1)

On general grounds, the two terms on the right-hand side are, respectively, the Noether
identities—which vanish exactly—and (once pulled-back on a hypersurface) the con-
straints generating the symmetry—which vanish on-shell. The idea is to use the term
with the constraints to define a weakly-vanishing Noether current S(ε). Comparison
with (6.5) shows that it differs from Wald’s definition of the Noether current by at
most an exact form and a total variation. The weakly-vanishing Noether current is
free from the ambiguity I because it is constructed from the field equations and not
from the Lagrangian. As for the ambiguity I I , there is a priori still a cohomology
ambiguity when extracting S(ε) from (9.1). However, this ambiguity is eliminated
with the prescription of taking the unique weakly-vanishing 3-form.

To fix ideas with an example, for General Relativity in metric variables, one has

E(g)δξ g = (Gμν + �gμν)£ξ g
μν√−gd4x

= 2ξν∇μG
μν√−gd4x − ∂μ(2

√−g(Gμν + �gμν)ξν)d
4x . (9.2)

This identifies Ng(ξ) := 2ξν∇μGμνε are the Bianchi identities, i.e., the Noether
identities for diffeomorphisms. The second term is the weakly-vanishing Noether
current, which can be compactly written as the 3-form

Sg(ξ) = E(e)
I ξ I = 1

3
εαβγμ(Gμν + �gμν)ξν dx

α ∧ dxβ ∧ dxγ ≈ 0, (9.3)

whereweused (2.4a). Its pull-back on a hypersurface gives theHamiltonian constraints
contracted with ξμ. Comparing with (6.14) defined earlier, we see that we have picked
the representative in the cohomology class of Noether currents that vanishes on shell.

To obtain the Hamiltonian generators from the weakly-vanishing Noether current,
one can use a method based on the homotopy operator of Anderson. This is a map
from spacetime p-form to (p − 1)-forms, and we refer the reader to [14,16] for its
formal definition and properties. We only need here its action on a top 4-form and on
a 3-form, which are given by

I(4)
δ =

[
δφ

δ

δ∂μφ
− δφ∂ν

δ

δ∂μ∂νφ
+ ∂νδφ

δ

δ∂μ∂νφ
+ . . .

]
i∂μ, (9.4a)
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I(3)
δ =

[
1

2
δφ

δ

δ∂μφ
− 1

3
δφ∂ν

δ

δ∂μ∂νφ
+ 2

3
∂νδφ

δ

δ∂μ∂νφ
+ . . .

]
i∂μ . (9.4b)

It can then be explicitly checked, e.g. [73], that θ(δ) = I(4)
δ L , and that

ω(δ1, δ2) = W (δ1, δ2) + dE(δ1, δ2), (9.5)

where

W (δ1, δ2) = I(4)
δ1

(E(φ) ∧ δ2φ), E(δ1, δ2) = 1

2
I(3)

δ1
θ(δ2). (9.6)

If we specialize the second variation to a gauge transformation, with the first arbitrary,
we find

W (δ, δε) = I(4)
δ (E(φ) ∧ δεφ) = I(4)

δ dS(ε) = dI(3)
δ S(ε), (9.7)

where in the last step we used a cohomological property of the homotopy operator.
From this and (9.5) it follows that

/δHε =
∫

∂�

I(3)
δ S(ε) +

∫

∂�

1

2
I(3)

δ θ(δε). (9.8)

This expression provides an alternative derivation of the Hamiltonian charges, and
shows the ambiguities of covariant phase space methods in a different light. First, even
though (9.8) depends on θ , the action of the homotopy operator in E has a kernel for
total variations, thus explaining the I -invariance of the Hamiltonian charges. As for
the cohomology ambiguity of type I I , this has been fixed in S as explained earlier,
and therefore it comes entirely from θ in the second term. This prompts the alternative
definition of surface charges where the second term is dropped,

/δQBB
ε :=

∫

∂�

I(3)
δ S(ε) ≡ /δHε −

∫

∂�

1

2
I(3)

δ θ(δε). (9.9)

These Barnich–Brandt (BB) surface charges are completely unambiguous. As a price
to pay, they differ in general from the Hamiltonian generators. However, the difference
vanishes in the case of isometries, namely for diffeomorphisms that are Killing and
for parallel gauge transformations (namely covariantly constant). In fact, an explicit
calculation in General Relativity shows that

I(3)
δ θ(δξ ) = εμνρσ g

ραδgαβ∇(σ ξβ)dxμ ∧ dxν . (9.10)

The BB charge for diffeos is thus given by (6.17) plus (9.10) and the two coincide in
the case of a Killing isometry. Similarly for Yang-Mills theory, one has

I(3)
δ θA(δλ) = �(dAλ ∧ δA), (9.11)
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so the BB charge is (6.13) plus (9.11), and the two coincide for parallel transported
gauge parameters, dAλ = 0.

This coincidence in the presence of isometries is very important for the validity of
this prescription, since it implies that the BB charges reproduce the usual first law of
black hole mechanics as well as the charges associated with asymptotic symmetries.
On the other hand, they will differ in the study of edge modes and may have different
integrability properties.

We close this brief review with two remarks that are useful for the applications to
tetrad General Relativity below. First, as we have briefly mentioned, there is a priori a
cohomology ambiguity in extracting the current S(ε) from the field equations (9.1). It
is the prescription to pick the weakly-vanishing representative in the equivalence class
that eliminates it. One could have taken the same prescription also in the definition
of Noether current from the symplectic potential (6.5), and the two definitions would
then match. Conversely, if one removes this prescription, the cohomology ambiguity
in S(ε) can be used to match the BB charges to the Hamiltonian charges. Indeed,
redefining

S′(ξ) := S(ξ) + 1

2
I(4)

δξ
L. (9.12)

the cohomology methods reproduce the Hamiltonian charges exactly.
The second remark is that the term E defined in (9.6) vanishes for first-order theo-

ries: for these, the symplectic potential does not contain derivatives of the fields, hence
it lies in the kernel of I (3)

δ . This means that the BB charges are different for the same
theory whether in the first or second order formalism. They coincide only in the case of
isometries. This point is certainly appreciated in the cohomological literature, where
the equivalence is always stated for isometries; see, e.g., [17]. It is however a signi-
ficative difference from Hamiltonian charges constructed from the (pre)-symplectic
2-form, which always coincide between second order and first order theories.

We now discuss the applications of this method to tetrad GR.

9.1 Second-order tetrad gravity

For the tetrad Lagrangian (2.1) in second-order formalism, with ωI J ≡ ωI J (e) the
Levi-Civita spin connection, (9.1) gives

δ(λ,ξ)e
I ∧ E(e)

I = N (λ, ξ) + dS(λ, ξ), (9.13)

with Noether identities and weakly-vanishing current are, respectively,

N (λ, ξ) = (iξω
I J − λI J )E

(e)
I ∧ eJ − iξ e

I dωE
(e)
I , (9.14a)

S(λ, ξ) := iξ e
IE

(e)
I . (9.14b)

Notice that the weakly-vanishing Noether current does not see the internal gauge
transformations. We believe that the reason for this is that the constraint associated
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to it, part of the torsionless condition, is an identity in the second-order formalism.
Furthermore, (9.14b) is identical to the metric current given by (9.3). Since the homo-
topy operator is invariant under field redefinitions, we conclude that the BB charges
for tetrad gravity in the second-order formalism are the same as the metric ones:

/δQBBe
ξ ≡ /δQBBg

ξ , /δQBBe
λ ≡ 0. (9.15)

This result can be confirmed by a rather lengthy calculation.
These results show that the cohomological prescription gives the same charges in

both tetrad and metric variables, unlike the Hamiltonian prescription, provided one
uses a second-order formulation. The situation changes with a first-order formulation,
as we discuss next.

9.2 First-order tetrad gravity

Starting from the field equations (8.6) and considering a general gauge variation (inter-
nal plus diffeomorphism), we have

δ(λ,ξ)e
I ∧ E

(e)
I + δ(λ,ξ)ω

I J ∧ E
(ω)
I J = N (λ, ξ) + dS(λ, ξ), (9.16)

with

N (λ, ξ) = (iξω
I J − λI J )(E

(e)
I ∧ eJ − dωE

(ω)
I J ) − iξ e

I dωE
(e)
I

+ iξT
I ∧ E

(e)
I + iξ F

I J ∧ E
(ω)
I J

= εI J K L [(λI J − iξω
I J )eK ∧ (dωT

L − FLM ∧ eM ) + iξ e
I eJ ∧ dωF

KL ],
(9.17)

and

S(λ, ξ) := iξ e
IE

(e)
I + (iξω

I J − λI J )E
(ω)
I J

= εI J K L
[
iξ e

I eJ ∧ FKL + (iξω
I J − λI J )eK ∧ T L)

]
. (9.18)

See, e.g, [17,74–76] for more details. The weakly-vanishing Noether current now
sees both gauge transformations. To compute the associated charges, we apply (9.9),
finding

/δQBB
(λ,ξ) =

∫

�

I (3)
δ S(λ, ξ) = 1

2

∫

∂�

εI J K L [(iξωI J − λI J )δ�K L − iξ�
I J ∧ δωK L ].

(9.19)

It should be stressed that the cohomological method is significantly simpler to apply in
the case of first order theories, as a glance at (9.4) immediately shows. The result coin-
cides with the Hamiltonian charges (6.41) computed with the bare tetrad symplectic
potential, but not with the metric charges.
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This fact has two implications. First, the BB prescription gives different charges for
the same theory whether in first-order or second-order formulation. Only in the case of
isometries, one can recover the same charges using the fine-tuning of [11,12], as shown
in [17]. This is different from Hamiltonian charges that always give the same answer
for any gauge transformation. Second, it means that if one works with the first-order
formalism, also with the BB charges one runs into the same problem of assigning
non-vanishing Lorentz charges to solutions which are in one-to-one correspondence
with torsion-less metric General Relativity. However, there is now no way out, as long
as one sticks with the unique prescription of the weakly-vanishing Noether current.
An alternative possibility is to give up the uniqueness of the weakly-vanishing current,
exploiting the cohomology ambiguity in the definition of S, and dress the current with
an exact 3-form,

S′(λ, ξ) := S(λ, ξ) + dα(λ, ξ), (9.20)

constructed so that BB charges associated to internal Lorentz transformations vanish,
and the diffeomorphism ones coincide with the metric theory. It is easy to check that
this can indeed be achieved, and the exact 3-form to be added is the same DPS α(δ)

in (2.12). Indeed,

/δQBB
α = −I(3)dα(δλ) = 1

2
εI J K L δ

(
eI ∧ eJ

)
λK L = −/δQBB

λ . (9.21)

And similarly for diffeomorphisms.

9.3 First-order tetrad gravity with Barbero-Immirzi parameter

This is a trivial extension that can again be obtained through the substitution (8.20),
giving

/δQBB
(λ,ξ) =

∫

∂�

PI J K L [(iξωI J − λI J ) δ�K L − iξ�
I J ∧ δωK L ]. (9.22)

The result coincides with the Hamiltonian charges (8.21a) computed with the bare
symplectic potential. We remark the non-trivial dependence of the charges on the
Barbero-Immirzi parameter, which has no classical meaning in the absence of torsion.
This is, as before, one more reason to doubt the physical meaning of these charges, at
least at the classical level.

9.4 Yang-Mills BB charges in second-order and first-order formalisms

In concluding this Section we provide a second example showing how the BB
charges differ whether one considers a first- or second-order Lagrangian beyond the
case of isometry. Applying the cohomological prescription to the second-order YM
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Lagrangian one gets

/δQBB,2nd
λ =

∫

∂�

Tr

[
λ�δF − 1

2
�(dAλ ∧ δA)

]
, (9.23)

where we recognize the general structure (9.9) with the Hamiltonian charge (6.13)
and the additional term (9.11). YM theory can also be formulated in the first-order
formalism using the Lagrangian

L A,B = Tr

[
B ∧ F − 1

2
B ∧ �B

]
. (9.24)

Applying the cohomological prescription in this case gives

/δQBB,1st
λ =

∫

∂�

Tr [λδB] ≈
∫

∂�

Tr [λ�δF] . (9.25)

As anticipated, the charges are equal only for isometries.

10 Conclusions

In this paper we investigated the boundary variation of the gravitational Lagrangian
in tetrad variables, using either a second-order or first-order formalism, and compared
it with the variation in metric variables. Our analysis contains two rather independent
parts. In the first part, we studied the geometric decomposition of the boundary varia-
tion, a calculation that has applications to the identification of canonical pairs and to
the variational problem. We showed that using tetrads one can reproduce the results
already known in the literature in an elegant and shorter way, and gain better control in
the trickier case of null hypersurfaces. Our results, in particular for null hypersurfaces,
allow to bridge among various analysis present in the literature, explaining the relation
between different parametrizations and hypothesis used. We highlighted the role of
the Bondi gauge, and provided formulas for arbitrary variations that do not require the
Bondi gauge. These expose a spin-1 pair whose momentum is the rotational 1-form of
isolated horizons. The main new result in the first part is the derivation of the formulas
(3.30b) and (3.34), and their relation to various cases studied in the literature. The
material presented shows, in our opinion, that tetrad variables are a more convenient
tool than the metric to address the variational problem and evaluate boundary and
corner terms, as already advocated in [5].

In the second part, we studied the construction of covariant surface charges, first as
Noether charges à laWald and asHamiltonian generators, then as BB charges. Here the
use of tetrad variables is not straightforward and requires some care, because a blind
application of covariant phase spacemethods to the tetrad Lagrangian produces results
which are generally different from those obtained inmetric variables. The difference is
traced back to the mismatch of the bare symplectic potentials by an exact 3-form. The
difference vanishes for Killing diffeomorphisms, provided one restricts attention to
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adapted tetrads, and this is the reasonwhy it was not observed in [13]. Alternatively, the
metric Killing charges can also be reproduced without adapting the tetrad, but adding a
fine-tuned internal Lorentz transformation, as done in [11,12,17]. For diffeomorphisms
that are not Killing however, the mismatch cannot be avoided adapting the tetrad,
and this can be physically relevant for balance laws and in the context of charges
associated with finite boundaries or subleading corrections to asymptotic symmetries.
Mathematically, it can also affect the question of integrability. If one wants to match
all diffeomorphism charges, one possibility is to dress the symplectic potential in a
suitable way, a procedure which is equivalent to—but more general than—the fine
tuning of [11,12,17], and allows one to work always with ordinary Lie derivative
without the need of the Kosmann derivative. This can be done adding the exact 3-
form identified in [1], as explored in this paper, or adding a spinorial boundary action
as in [6,56]. A first consequence of doing so is that one restores the first law of
black hole mechanics as a manifestation of the invariance of the Lagrangian under
standard diffeomorphisms, as in the metric theory, and further proves its invariance
under cohomological ambiguities [1]. The fact that the spinorial boundary action of
[6,56] reproduces the same results of the dressing formcalls out for a closer comparison
of the two approaches, which we leave for future work. Among the results presented
in the second part we highlight the new covariant expression for the diffeomorphism
charges in tetrad variables given by (6.39).

The situation is somehoworthogonal if one uses theBBprescription for the charges:
these are the same in tetrad ormetric variables, however differ if one uses a first-order or
second-order Lagrangian, unless they refer to Killing diffeomorphisms, or covariantly
constant gauge parameters, in which case they coincide. This situation is not particular
toGeneral Relativity, but it is an inherent structure of the cohomologicalmethods used.

We hope that the results and comparisons presented will help set the use of surface
charges with tetrad variables on firmer grounds, and be taken as a starting point to
address in these variables open questions currently being explored in both metric or
tetrad variables, like renormalization of the symplectic structure and charges,multipole
expansions, edge modes and entanglement entropy.

In the course of the paper we have pointed out a few reasons to prefer a prescrip-
tion for charges in tetrad variables that match those of metric variables, and used the
dressing 2-form to achieve it. The same exact 3-form arises naturally in the geometric
approach of [20]. It would be interesting to see whether it will appear also in the
Batalin-Vilkovisky approach currently being developed for the Einstein-Cartan action
[77]. The question of what is the right prescription will likely require additional con-
siderations. Our reasons were purely classical, like the fact that the covariant phase
space is a structure associated to the space of solutions, and these are in one-to-one
correspondence between the metric and tetrad formulation of theory, or their contrast-
ing dependence on γ . However, tetrad variables are argued to provide a preferable path
towards quantum gravity, and it may be that the additional internal Lorentz charges
are given physical weight in a quantum context, as argued for instance in [62]. On
the other hand, it has been shown that a certain quantization of the area à la LQG
arises also in a context with vanishing internal Lorentz charges [78]. We leave further
investigations of these issues to future work.
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Appendix A: Conventions

We denote by ε
˜μνρσ the completely antisymmetric spacetime density with ε

˜0123
= 1,

and ε̃μνρσ ε
˜μνρσ = −4!. It is related to the volume 4-form by

ε := 1

4!εμνρσ dxμ ∧ dxν ∧ dxρ ∧ dxσ , εμνρσ := √−g ε
˜μνρσ . (A.1)

For the internal Levi-Civita εI J K L the density notation is unnecessary, and we use the
same convention, ε0123 = 1. Hence the tetrad determinant is

e = − 1

4!εI J K L ε̃μνρσ eIμe
J
ν e

K
ρ eLσ . (A.2)

Accordingly,

4e[μ
I eν]

J = −εI J K Lεμνρσ eKρ eLσ , (A.3a)

6e[μ
I eν

J e
ρ]
K = −εI J K Lεμνρσ eLσ , (A.3b)

which are used in the main text.
For the Hodge dual operator, � : �p 
→ �n−p satisfies

�2ω(p) = −(−1)p(n−p)ω(p), ω(p) ∧ �θ(q) = ω(p)�θ(q)

√−gdnx . (A.4)

In components,

(�ω(p))μ1..μn−p := 1

p!ω
(p)
α1..αp

εα1..αpμ1..μn−p , (A.5a)

ω(p)
α1..αp

:= − 1

(n − p)!εα1..αpμ1..μn−p (�ω
(p))μ1..μn−p , (A.5b)

(�ω(p))μ1..μn−p := 1

p!ω
(p)α1..αpεα1..αpμ1..μn−p , (A.5c)

ωα1..αp := − 1

(n − p)!ε
α1..αpμ1..μn−p (�ω(p))μ1..μn−p . (A.5d)
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Appendix B: Dressing 2-form

Tomake somemanipulations with the dressing 2-form of [1] more manifest, we report
here some useful explicit formulas. First, we have

�(eI ∧ δeI ) = −1

2
εI J K L eI ∧ eJ (eKαδeLα ) = ε ρσ

μν eIρδeIσ dxμ ∧ dxν, (B.1a)

eI ∧ δeI = −ηI J K L eI ∧ eJ (eKαδeLα ) = eI [μδeIν] dxμ ∧ dxν . (B.1b)

Second, the explicit expression of the Hodge dual of the exact 3-form dα(δ) is, in the
general case including the Barbero-Immirzi term,

(�dα)μ = 1

3! (dα)ναβεναβμ = 1

2
∂νααβεναβμ = 1

2
∂ν

(
ε

ρσ
αβ eIρδeIσ + 2

γ
eI [αδeIβ]

)
εναβμ

= 1

2
∂ν

(
eeIρδeIσ − 1

2γ
eIγ δeIδ ε̃ γ δ

ρσ

)
ε̃

ρσ
αβ εναβμ

= −2∂ν

(
eeI [νδeμ]I + 1

2γ
ε̃μνγ δeIγ δeIδ

)
, (B.2)

where in the final step we used

eν
I g

μσ δeIσ = −eμ
I δeIν . (B.3)

Finally when torsion is present, we have the following additional relations

∂σ (2ee[σ
I δeμ]I ) = ∇σ

(
2e[σ

I δeμ]I) − Tμ
νρe

ν
I δe

Iρ, (B.4a)

∂σ (ε̃μνρσ eIνδe
I
ρ) = εμνρσ

[
∇σ (eIνδe

I
ρ) − 1

2
T λ

σν(δeIλe
I
ρ − eIλδe

I
ρ)

]
, (B.4b)

in agreement with (8.3).
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