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Abstract
In Gedankenexperiment mentioned in the title, the imprecision in space-time mea-
surement is related to the spreading of clock’s wave-function with the passage of time
required for the measurement. Special relativity puts a bound on the measurement
time, it cannot be reduced arbitrarily as the signal used for the measurement cannot
propagate with speed greater than that of light. In view of this reasoning, one is led to
conclude that the clock should be heavy enough to slow down its wave-function from
spreading with time. However, the general relativity puts an upper bound on clock’s
mass, since its size must remain greater then the Schwarzschild radius associated to it.
This way one reaches a limit in length measurement. However, as is discussed below,
an additional insight into the question comes by taking into account self-gravitational
effects. As a result, the uncertainty in length measurement is reduced to the Planck
length.
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1 Preface

One of the characteristic features of quantum mechanical system is the presence of
zero-point-fluctuations. That is, even in the ground state, physical quantities are char-
acterized apart from their average values with the fluctuations, which are usually
estimated by the mean square deviations. It is enough to mention that the vacuum
fluctuations of the electromagnetic field is responsible for a number of well known
phenomena. For instance, it stimulates a spontaneous emission of atom [1], its another
manifestation is Casimir force [2–5] and theLamb shift also can be explained bymeans
of it [6]. In general, it is hard to estimate the rate of zero-point-fluctuations in quantum
field theory, as it turns out to be a divergent quantity. Alternatively, one could try to use
various Gedankenexperiments for estimating order of magnitude of the fluctuations of
a given physical quantity. Such Gedankenmessungen usually account for the unavoid-
able disturbances caused by the interaction during the measuring process. One may
recall a well known example of this sort of discussion concerning the electromagnetic
field [7,8]. In contrast to other fields, the metric that describes the gravitational field
- determines at the same time the background space-time. Thus, one may consider
the measurement of gravitational field by means of the motion of test particles [9–14]
(as is the case with electromagnetic field [7,8]) or one may discuss the measurement
of space-time characteristics like curvature [15–17] and space-time intervals [18,19].
While there are no objections that the quantum fluctuations prevent one from measur-
ing position with greater accuracy than the Planck length, lP ≈ 10−33cm, [20], there
is still controversy about the rate of length fluctuations [21–28]. Karolyhazy supple-
mented the discussion of Salecker and Wigner [18,19] by noting that the minimum
size of a clock is set by its Schwarzschild radius and found that the length l cannot be
measured with greater accuracy than δl � l2/3P l1/3 [21]. This result was criticized by
devising new Gedankenexperiments [22,24,25,27] and supported again in a series of
papers [23,26,28]. We are not going to discuss the counterexamples and their refuta-
tions but instead we shall argue that the bound δl � lP , which is considered by some
authors to be the proper one, can readily be achieved by taking into account the effect
of self-gravity in Salecker–Wigner–Karolyhazy Gedankenexperiment.

2 Salecker, Wigner, Karolyhazy

In order to demonstrate principal limitations on space-time measurement due to
quantum and gravitational effects Salecker and Wigner proposed the following
Gedankenexperiment [18,19]. The clocks are placed at the points the distance between
which is being measured (the clock can be viewed as a spherical mirror inside which
light is bouncing), and by measuring the time a light signal takes from one clock to
another we estimate the distance between those points. Clock is characterized with
some mass m and radius rc. Because of clock’s size, the points are marked with the
precision� rc. In addition clocks are subject to quantum fluctuations, δ p � 1/rc, that
give for fluctuation velocity: δv � 1/mrc. Thus, the total uncertainty in measuring
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the length l = t (we use � = c = 1 system of units) takes the form

δl � rc + lδv � rc + l

mrc
.

Minimizing this equation with respect to rc, one gets

rc �
√

l

m
, δl �

√
l

m
. (1)

It seems that at the expense of mass we can always minimize the δl as much as we
want. But, as it was noticed byKarolyhazy, gravity brings new insight into the problem
[21,23]. Namely, the clock is characterized by the Schwarzschild radius rg � l2Pm
and to avoid its gravitational collapse, the size of clock should be greater than its
Schwarzschild radius

l2Pm �
√

l

m
.

It gives an upper limit on m

m � l1/3l−4/3
P ,

and puts a lower bound on δl

δlmin � l1/3l2/3P . (2)

Let us note that the above discussion has been carried out without paying any
attention to the self-gravitational effects. However, one has to draw attention to the fact
that the optimal measurement in Salecker–Wigner–Karolyhazy Gedankenexperiment
is done by a clock whose characteristics are very close to that of a black hole [29]. If
we bear inmind that it means the wave-function describing the clock to be shrunk to its
Schwarzschild radius, we are driven to the conclusion that the gravitational attraction
becomes very strong and it may drastically affect the wave-packet expansion. We
discuss this matter in the next section.

3 Suppresion of Wellenpaket expansion due to self-gravity

In the above discussion the clock (as a whole) is treated as a free quantum mechanical
object/body described by the Gaußsche Wellenpaket

ψ(t, r) = e−r2/4a2

(2π)3/4

[
rc

(
1 + i t

2mr2c

)]−3/2

,
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where

a2 = r2c

(
1 + i t

2mr2c

)
.

From this wave-packet one finds

δl(t) �
√
r2c + t2

4m2r2c
� rc + t

4mrc
. (3)

Taking now into account the self-gravity of the Gaußian wave-packet - its dynamics
gets modified. For gravity prevents expansion, on general grounds one concludes that
the value of δl should be smaller than the expression (3). To get a qualitative picture,
let us denote by rwp the radius of the wave-packet. Without gravity

rwp(t) �
√
r2c + t2

4m2r2c
, rwp(0) = rc , ṙwp(0) = 0 . (4)

The quantum mechanical acceleration responsible for this expansion has the form

r̈wp(t) = 1

4m2
(
r2c + t2

4m2r2c

)3/2 = 1

4m2r3wp
. (5)

One can derive the results (1, 2) immediately from Eq.(4). Minimizing the rwp(t)with
respect to rc one gets

rc =
√

t

2m
.

After substituting it into Eq.(4) one finds

rwp(t) =
√

t

m
.

On the other hand, the gravitational acceleration that prevents expansion of the wave-
packet looks like [30]

ag = l2Pm

r2wp
.

So that, the net acceleration takes the form

a = 1

4m2r3wp
− l2Pm

r2wp
.
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Thus, we have to solve the equation

r̈wp = 1

4m2r3wp
− l2Pm

r2wp
, ⇒ ṙ2wp

2
+ 1

8m2r2wp
− l2Pm

rwp
= const. ≡ A . (6)

As rwp(0) = rc, ṙwp(0) = 0, one finds

A = 1

8m2r2c
− l2Pm

rc
.

The solution can be written in the form

rwp∫
rc

dx√
2A + 2l2Pm

x − 1
4m2x2

= t . (7)

A typical form of the potential governing the dynamics of rwp is shown in Fig.1. It
has a minimum at

rc = 1

4l2Pm
3

, (8)

corresponding to the state of stable equilibrium. Gaußian wave-packet having this
radius in the initial state neither contracts nor expands in course of time. From Eq.(8)
one sees that the larger the mass—the smaller the clock size. However, there is an
upper bound on the mass set by the Schwarzschild radius,

mmax � rc
l2P

,

which together with Eq.(8) yields

rc � lP , ⇒ δl � lP .

It seems likely that one will arrive at the same result by solving the Schrödinger–
Newton system [30–32]

i∂tψ = − 1

2m
�ψ − mϕψ , �ϕ = 4πl2Pm |ψ |2 , (9)

with the initial state given by the Gaussian wave-packet

ψ(t = 0, r) = e−r2/4r2c(
2πr2c

)3/4 .
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Fig. 1 The potential:
1/8m2r2wp − l2Pm/rwp

rwp

1/
8m

2
r2 w

p
−

l2 P
m
/r

w
p

It is worth noting that, apart from the above discussed effect, the self-gravity implies
also the reduction of clock’s mass. As this observation is significant for all discussions
concerning the space-time measurements, let us confine our attention to this problem
now.

4 Reduction of mass due to self-gravity

According to the papers [33–37], we can safely say that self-gravity affects the clock’s
mass. The conclusion reached in the papers [33–35] implies the modification of the
clock mass in the following way

m = mc + l2Pm
2
c

2rc
⇒ mc = l−2

P

(√
r2c + 2l2Prcm − rc

)
, (10)

where m is to be identified with the mass in absence of gravity: lP → 0. It is plain to
see that mc is always positive. Duff, in his expository paper [37], points out that it is
not a proper conclusion and suggests the correct version in the form

mc = m

(
1 − l2Pm

2rc

)
. (11)

The source of this mistake is well explained in [37], however, we will not dwell
on the details. Instead we point out that the Eq.(11) itself is very suggestive for the
speculation (see [33]) that leads to the Eq.(10). Namely, one can interpret the Eq.(11) as
the correction to the mass due to self-gravity in the framework of Newtonian gravity.
However, one may claim that in general relativity it is the total mass that interacts
gravitationally and not just the mass m. This way one arrives at Eq.(10). We shall
consider both expressions separately.

Let us assume that the reader has no objections with regard to the Eq.(10) and
pose the question - how to operate with these two masses in the above discussed
Gedankenexperiment? Before proceeding further, we have to make a few remarks to
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clarify the Eq.(10). mc is the mass that enters the exterior Schwarzschild solution.
Hence, this mass determines the Schwarzschild radius. In addition, one has to require
rc > l2Pm/2 in order for the solution to exist [33,37]. Thus,wedemand that rc > l2Pm/2
and rc > 2l2Pmc.

To carry the idea further, let us note that in Salecker–Wigner–Karolyhazy
Gedankenexperiment the clock is described by the wave-function whose breadth is
given by Eq.(4). Therefore, rwp plays the role of the radius of clock-mass distribution
and, accordingly, one has to replace rc in Eqs.(10, 11) by this expression (recall that
rwp(0) = rc)

mc = l−2
P

(√
r2wp + 2l2Prwpm − rwp

)
, (12)

mc = m

(
1 − l2Pm

2rwp

)
. (13)

mc is the mass determining the gravitational field that affects the dynamics of the
wave-packet. The Eq.(6) gets modified as

ṙ2wp

2
+ 1

8m2r2wp
− l2Pmc

rwp
= const. . (14)

In view of Eq.(12), the one-dimensional potential governing the time evolution of rwp

in Eq.(14) takes the form

1

8m2r2wp
−

√
1 + 2l2Pm

rwp
+ 1 .

It has the same qualitative behavior as the potential depicted in Fig.1. It has aminimum
at the point determined by the equation

rc = 1

4l2Pm
3

√
1 + 2l2Pm

rc
.

Now rc is greater than the solution (8). From this equation it readily follows that for
m � l−1

P the minimum occurs at rc � lP .
Now let us turn to the Eq.(13). In this case the potential governing the dynamics of

rwp reads

(
1

8m2 + l4Pm
2

2

)
1

r2wp
− l2Pm

r
.

Hence
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rc = 1

4l2Pm
3

+ l2Pm ,

and again rc � lP for m � l−1
P .

5 Concluding remarks

The results can be summarized as follows. Salecker and Wigner found that one can
always choose the size of the clock in such way that the total uncertainty in length
measurement isminimized to δl � √

l/m. One can read this result also in the following
way. If there is a clock of size rc and mass m, then the maximum distance which can
be measured by this clock with accuracy rc is rc � √

lmax/m [29] [see Eq.(1)].
Their discussion uses the finiteness of the speed of light and the quantum mechanical
expansion of thewave packet describing the clock - nomention of the effects of general
relativity. Further insight into this Gedankenexperiment was obtained by Karolyhazy,
who noted that minimum size of the clock is set by the Schwarzschild radius and
thus one can not measure the length with greater accuracy than δl � l2/3P l1/3. This
rate of length fluctuations is certainly much lager than δl � lP lending thus extra
interest to the issue from the standpoint of experimental signatures. It should be noted,
however, that such clock is very close to the black hole and one naturally expects strong
gravitational effects that will essentially affect the wave packet dynamics. We have
seen that self-gravity prevents the expansion of the wave-packet and thus reduces the
uncertainty in lengthmeasurement to δl � lP . Onemore point of importance related to
self-gravity is themass reduction. In view of the discussion presented in Sect. 4, we see
that it does not change our conclusion made in the previous section but, in any case, it
would be desirable if one could provide a numerical study of the Schrödinger–Newton
equation by taking into account the effect of the mass reduction due to self-gravity. For
this purpose one could use basic idea underlying the Schrödinger–Newton equation
(9) as a guide. This system makes use of the Schrödinger equation in the background
gravitational field, which in its turn is created by themass distributionm|ψ(t, r)|2. But
the self-gravitational mass reduction implies that the gravitational field for an external
observer, r � rwp, is sourced by the reduced mass mc. Hence, one has to make the
following replacement in Eq.(9)

m|ψ(t, r)|2 → mc|ψ(t, r)|2 .

FromEqs.(12, 13) it is obvious that as far as rwp 	 l2Pm - the corrections are negligibly
small.

In closing this section, we wanted to draw attention to the fact that the modifica-
tion of Schrödinger–Newton system by replacing m with the gravitating mass, see
Eqs.(12, 13), implies the dependence of the equation on the wave-packet breadth.
The modification of Schrödinger equation due to quantum fluctuations of the back-
ground space suggested in [38,39] is of similar nature. To stress once more our point
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of view, physically meaningful incorporation of lP into quantum mechanics should
be expressed by some function of the ratio lP/rwp rather than by a function of lP 〈p〉,
where 〈p〉 stands for average momentum. Otherwise one may obtain evidently mis-
leading results [38].

Acknowledgements Author is indebted to Avtandil Achelashvili and Zurab Kepuladze for useful discus-
sions.
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