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Abstract
General relativistic effects in the weak field approximation are calculated for elec-
tromagnetic Laguerre–Gaussian beams. The current work is an extension of previous
work on the precession of a spinning neutral particle in the weak gravitational field of
an optical vortex. In the current work, the metric perturbation is extended to all coor-
dinate configurations and includes gravitational effects from circular polarization and
intrinsic hyperbolic momentum. The final metric reveals frame-dragging effects due
to intrinsic spin angular momentum (SAM), orbital angular momentum (OAM), and
spin–orbit coupling.When investigating the acceleration of test particles in thismetric,
an unreported gravitational phenomenon was found. This effect is analogous to the
motion of charged particles in the magnetic field produced by a current-carrying wire.
It was found that the gravitational influence of SAM and OAM affects test-rays travel-
ing perpendicular to the intense beam and from this a gravitational Aharonov–Bohm
analog is pursued.

Keywords Optical vortices · Optical orbital angular momentum · Spin angular
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1 Introduction

Gravity is a familiar force experienced by us daily: it is the force that holds us to the
earth’s surface, and it is the force that keeps the planets in orbit around our star. In 1687,
Newton presented the first quantification of the gravitational force in his Principia and
showed that the gravitational force between two massive bodies is proportional to
the product of their masses and inversely proportional to the square of the distance
between them [1]. While Newton’s universal law quantified the gravitational force,
it did not provide a description of gravity, and it was not until 1915, when Einstein
discovered general relativity (GR), that a more in-depth understanding of gravity as
being due to the geometry of spacetime was given [2]. This description of gravity
lead to new phenomena such as black holes, closed timelike curves, and gravitational
waves and lensing. In Einstein’s field equations, the geometry of spacetime is related
to the energy–momentum configuration of a source and since light possesses energy
and momentum, it too is expected to produce a gravitational field. In 1931, Tolman
et al. theoretically pursued such a task by calculating general relativistic effects from
a pencil of light [3].

General relativistic effects produced by beams of light have received renewed
interest in recent years [4–9]. Interest in this field of research has been motivated
by: curiosity, recent advancements in laser technology [10, 11] and experimental
devices employed to detected relativist effects such as gravitational waves [12, 13],
and geodetic and frame-dragging precessions [14]. Currently, for all measurable gen-
eral relativistic phenomena, experimentalist have played the role of the observer and
not the role of the originator of such gravitational perturbations [12–15]. The reason
for this is clear when considering the magnitudes of gravitational perturbations far
away from massive bodies such as the sun. To get an idea of the strength of general
relativistic effects in the vicinity of a powerful laser beam, the metric perturbation
h � κρL (where κ is Einstein’s constant, and ρL is the linear energy density) embed-
ded in a flat background Minkowski spacetime can be estimated [4–9] for modern
high-powered lasers such as the National Ignition Facility (NIF) laser and the Her-
cules laser systems [10, 11]. The NIF laser system delivers 6 m-long pulses each
having an energy of 4 MJ resulting in a linear energy density of ρL ≈ 6.7× 105 J/m.
Multiplying this energy density by Einstein’s constant κ ≈ 2.1× 10−43 m J−1 gives a
metric perturbation on the order of h ≈ 10−37. For comparison, the Advanced Laser
Interferometer Gravitational-Wave Observatory (LIGO) has a detection sensitivity on
the order of h ≈ 10−23 and implies that the NIF laser system would need to deliver
1014 MJ more energy per pulse to produce an “observable effect” [12]. The Hercules
laser system produces a similar order of magnitude in the metric perturbation but on
a timescale of 30 fs [10]. Another way to get a feel for the gravitational influence of a
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laser beam is by its mass-equivalence. The mass-equivalence of light pulses from the
NIF laser is about ∼ 10−5 mg and that of the Hercules laser is about ∼ 10−10 mg.
As a comparison, the mass of a grain of sand is about 10 mg. One advantage of light,
however, is that its “mass density” can be readily increased through focusing. Focusing
pulses of light from the NIF and Hercules lasers to about a micron achieves a “mass
density” of ∼ 0.6mg/cm3 and about ∼ 6mg/cm3 respectively. As a comparison, the
least dense material produced by scientists is graphene aerogel which has a density of
∼ 0.2mg/cm3 [16]. From this analysis, it can be concluded that current laser light is
“light”.

Despite these estimates, various experimental schemes have been theoretically
investigated that favor longer interaction times and interference phenomena. In 1979,
Scully considered an experimental scheme consisting of a weak probe beam co-
propagating with an intense subluminal beam [17]. A general relativistic treatment
of this thought experiment showed that the probe beam would be deflected by the
intense beam while undergoing a phase shift. Estimates of an interaction length of
106 km showed that the probe beam experienced a deflection of 10−2λ and a phase
shift of 10−20 m−1. In a more recent publication, Mallett et al. suggested using a
neutron interferometer in the weak gravitational field of a ring laser. In this proposed
experimental setup, the authors calculated a total phase shift of 10−32 rad, which is
beyond the sensitivity of current neutron interferometric techniques of 10−13 rad [6].

In this paper, an extension of previous work on frame-dragging from optical vor-
tices is made [8]. Optical vortices are beams of electromagnetic radiation having a
characteristic helicoidal phase front surrounding a point of undetermined phase anal-
ogous to a spiral staircase with the phase singularity at the point of the newel [18–23].
These beams are solutions to the paraxial wave equation (PWE) and possess a quan-
tized amount of orbital angular momentum per photon equal to OAM � ��. Currently,
much research in singular optics has revolved around the production of OAM contain-
ing beams and the transfer of this physical quantity in its interaction with matter [24].
In the perturbative regime of quantum optics, one of the first experimental realizations
of the transfer of OAM in a nonlinear process was in the second harmonic generation
of optical vortices embedded in femtosecond radiation [25]. In this experiment, the
transfer of OAM to second-harmonic radiation was observed to follow the addition
rule ��2ND � 2�� analogous to that found for frequency conversion. A series of
recent experiments demonstrated a more complex transfer of OAM in the generation
of Raman sideband [26–28]. This process was found to follow a now well-established
OAM-algebra for Stokes and anti-Stokes orders and was definitively verified through
phase measurements in a simultaneous Young double-slit experiment. More recently,
the transfer of OAM in the highly nonlinear process of high harmonic generation
(HHG) was verified through several experiments by various groups [29–31].

This paper is organized as follows. Section 2 provides a mathematical description
of circularly polarized Laguerre–Gaussian (LG) beams and their energy–momentum
tensor. Section 3 gives a brief description of Einstein’s field equations in the weak field
approximation, and the mathematical machinery needed for calculating the metric
perturbation of these exotic beams of light. In Sect. 4, the metric perturbation for LG
beams are calculated, and in Sects. 4 and 5 the acceleration of massive particles, and
the velocities of test-rays in this spacetime are investigated.
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2 Optical vortices

Optical vortices belong to a family of solutions of the paraxial wave equation (PWE)
known more generally as Laguerre–Gaussian beams [13]. The mathematical form
representing LG beams is given by,

ψ�
ρ � Nρ,�

(√
2r

w

)|�|
L�

ρ

(
2r2

w2

)
exp

[
−
(

1

w2 − i
k

2R

)
r2
]
ei�θei(ρ+|�|+1) arctan(z/z0),

(1)

Here ρ is the radial mode number (or hyperbolic momentum charge), � is the
orbital angular momentum mode number, N 2 � 2ρ! /

(
πw2Γ (ρ + � + 1)

)
is the nor-

malization constant, w0 is the waist of the beam, w � w0

√
1 + z2/z20 is the beam

spot size, z0 � kw2
0/2 is the Rayleigh range (characteristic length in the z-direction),

R � z + z20/z is the wavefront radius of curvature, L
�
ρ are the Laguerre polynomials,

exp(i�θ ) is the phase factor giving rise to the helicoidal wavefront, and ΨG � (ρ +
|�| + 1) arctan(z/z0) is the Gouy phase. The paraxial wave equation is a scalar equa-
tion, and therefore Eq. 1 is a scalar solution. The associated electric and magnetic
fields can be found from the vector potential �A � αψ�

ρ î + βψ�
ρ ĵ , and Maxwell’s

equations under the Lorentz gauge condition [13]. These field quantities are given in
“Appendix 1”. Here α and β are polarization parameters such that the spin helicity
is given by σz � i(α∗β − αβ∗). From the electric and magnetic fields, the Poynting
vector associated with the solutions of Eq. 1 has the well-known form [32]
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The first term on the right is the radial flux density due to the diffraction of the
beam. The second term is the angular component which depends on the angular mode
number, the radial mode number, and the spin helicity parameter. The third term is the
commonly encountered longitudinal flux density associatedwith planewaves. Integral
curves of the vector field in Eq. 2 demonstrate a spiraling of the Poynting vector about
the optical axis and are linked to the orbital angular momentum of these beams.

As shown in “Appendix 1”, the energy–momentum tensor associatedwith circularly
polarized LG beams can be written as a sum of three energy–momentum tensors,

Tμν � ρL

{
τ P
μν + τ SO

μν

[
� − σz

(
|�| − 2r2

w2 − 4r2

w2

L�+1
ρ−1

L�
ρ

)]
1

kr
+ τ D

μν

r

R

}∣∣∣ψ�
ρ

∣∣∣2. (3)

The first term in Eq. 3 corresponds to a diffraction-free plane electromagnetic wave

with a non-uniform intensity profile
∣∣ψ�

ρ

∣∣2. The second terms contain elements that
depend on the OAM and spin content of the beam, and the third term corresponds to
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the radial expansion of the beam due to diffraction. The tensors τμν showed in Eq. 3
are given by

τ P
μν �

⎡
⎢⎢⎣

1 0 0 −1
0 0 0 0
0 0 0 0

−1 0 0 1

⎤
⎥⎥⎦, (4.1)

τ SO
μν �

⎡
⎢⎢⎣

0 sin(θ) − cos(θ) 0
sin(θ) 0 0 − sin(θ)

− cos(θ) 0 0 cos(θ)

0 − sin(θ) cos(θ) 0

⎤
⎥⎥⎦, (4.2)

τ D
μν �

⎡
⎢⎢⎣

0 cos(θ) sin(θ) 0
cos(θ) 0 0 − cos(θ)

sin(θ) 0 0 − sin(θ)

0 − cos(θ) − sin(θ) 0

⎤
⎥⎥⎦. (4.3)

Equation 4.1 has been previously investigated by other groups and corresponds to
the energy–momentum of a plane electromagnetic wave. Equation 4.2 was used in the
work of Ref [8] to investigate the gravitational influence of orbital angular momentum
on spinning test particle.

3 Einstein’s equation andmetric perturbation

Einstein’s field equations describe the geometry of spacetime in the presence of an
energy–momentum distribution [3–6, 8, 17, 33]. We will not derive the weak-field
equations since they can be found in most elementary texts on the topic. In brief, the
geometry of spacetime is determined by the metric tensor gμν and in flat spacetime is
equal to theMinkowski metric ημν � diag(+,−,−,−). In the weak-field approxima-
tion, the metric is taken as a flat background spacetime ημν with a small perturbation
hμν embedded in it gμν � ημν + hμν . Using the Hilbert gauge and the metric in the
weak-field approximation, Einstein’s field equations are found to reduce to,

∂λ∂
λhμν � −κ

(
Tμν − 1

2
ημνT

)
(5)

In Eq. 5, Tμν is the energy–momentum tensor given in Eq. 3, and T � Tμ
μ is its

trace found by contraction with the Minkowski metric ημν . By inspection of Eqs. 4,
it can easily be seen that T � 0 in Eq. 5.

The energy–momentum tensor investigated in this work is due to a steady beam
of light and for this reason the metric perturbation in Eq. 5 is time-independent. The
solution of Eq. 5 can, therefore, be found from the integral,

hμν(x) � −κ

∫
G(�x, �x ′)Tμν(r

′, θ ′, z′)r ′dr ′dθ ′dz′. (6)
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Here κ � 8πG/c4, and G(�x, �x ′) is the modified cylindrical Green’s functions. A
compact form of the Green’s function in cylindrical coordinates was given previous by
[34], and it explicitly separates the angular coordinate from the radial and longitudinal
coordinates,

G(x, x ′) � 1

π

√
1

r ′r

∞∑
m�0

εm cos
[
m
(
θ − θ ′)]Qm−1/2(χ ). (7)

Here εm is Neuman’s factor which has the values ε0 � 1 and εm≥1 � 2. The last
factor in Eq. 7 is the associated Legendre function of the second kind, and it has as its
argument 2r ′rχ � r2 + r

′2 + (z − z′)2. These functions are given by,
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4
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1
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)
. (8)

In Eq. 8, 2F1 is the confluent hypergeometric functions and equal to,
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4
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4
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1
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(
1

χ

)2n

.

(9)

Combining Eqs. 8 and 9 yields the form of the Legendre function that will be used
in this work,

Qm−1/2(χ ) � 1

2m

√
π

2

∞∑
n�0

Γ (2n + m + 1/2)

n! 22nΓ (m + 1 + n)

(
1

χ

)2n+m+1/2

. (10)

To facilitate the presentation of further expressions that use Eq. 10, I will simplify it
to read as Qm−1/2 �∑∞

n�0 C
(m)
n (1/χ)2n+m+1/2 with two special cases C (0)

0 � π/
√
2

and C (1)
0 (χ ) � π

√
2/8.

4 Angular, radial and longitudinal integration

The task of the next two sections will partly focus on solving Eq. 6 for the metric
perturbation of a circularly polarized LG beam. The integrals in Eq. 6 can be facilitated
by performing the angular integral separately. This is possible because the angular
dependence in the Green’s function appears as a multiplicative factor cos

[
m(θ − θ ′)

]
,

and the energy–momentum tensor Tμν has its angular parts in τ P
μν and τ SO

μν as separate
multiplicative factors. The relevant integrals for all values of m are,∫ 2π

0
cos
[
m(θ − θ ′)

]
τ P
μνdθ ′ � τ P

μν

{
2π m � 0
0 other

, (11.1)

∫ 2π

0
cos
[
m(θ − θ ′)

]
τ SO
μν (θ ′)dθ ′ � τ SO

μν (θ )

{
π m � 1
0 other

. (11.2)
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Radial integration in Eq. 6 will be evaluated by two methods. The first method
involves modification of the thin shell approximation used in Ref [8] to obtain ana-
lytical results, and the second method is numerical integration for comparison with
analytical results. For calculations involving thin-shells, two types of delta functions
will be employed. For single-ringed beams, the radial “center-of-mass” will be used
and for multi-ringed beams a sum of delta functions corresponding to each peak will
be used. The Dirac delta function must be modified since it leads to infinities along
the optical axis, and it accidentally removes an intrinsic spin term from the metric
perturbation. Thin-shell integration is accomplished by replacing the intensity profile
of the beam with a delta function such that all radial integration variables r ′ will be
set to the radius of the shell upon integration [8].

∣∣∣ψ�
ρ

∣∣∣2 ≈ δ(r ′ − rρ�)

2πrρ�

, (12)

In Eq. 12, rρ,� is the radius corresponding to a single the cylindrical shell. Calcu-
lations of the radial “center of mass” leads to a quite complicated expression for the
radius of the cylindrical shell,

rρ� � w√
2

ρ!Γ (1/2)Γ (� + 1)

Γ (� + 1/2)Γ (ρ + 1/2)3F2(−ρ, � + 1/2, 1/2;−ρ + 1/2, � + 1; 1)
(13)

Upon setting the hyperbolic momentum charge in Eq. 13 to zero ρ � 0, the shell
radius simplifies to r0,� � w2−1/2Γ (� + 1)/Γ (� + 1/2) and for � > 0 is near the peak
of the doughnut-shaped intensity profile. For a Gaussian beam � � 0, and the shell
radius is equal r0,0 � w/

√
2π which corresponds to 73% of the maximum. Notice

that if we had used the well-known formula for the radial position rpeak � w
√

�/2
corresponding to the exact peak in the intensity profile of an LG�

ρ�0 beam, then the
radial position of the peak for � � 0 would have been rpeak � 0. This leads to the
metric perturbation blowing up at the origin and as will be shown shortly, numerical
integration demonstrates that the metric perturbation is, in fact, finite at the origin.
Using the radial “center of mass” avoids this problem and allows some use of it when
dealingwith beams having a non-zero hyperbolicmomentum charge ρ �� 0. Formulti-
ringed beams, a sum of cylindrical shells are more suited and in this approximation
shows agreement with numerical results.

Integration over the z-direction will be implied using a top-hat function Π2z0 (z
′)

extending from z � −L to z � L so that the extent of the beam along the longitudinal
direction is 2L . The Green’s function in Eq. 6 depends on z′ through χ , and the
energy–momentum tensor through the beam parameters w(z′), and R(z′); however,
in this work, the beams will be non-diffracting so that their beam parameters are
those at z � 0. This non-diffracting approximation sets the beam size to a constant
w(z � 0) � w0 and sets the third term in Eq. 3 for the energy momentum-tensor to
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zero since R(z � 0) → ∞. The remaining z integration variable resides in the Green’s
function and integration over the z-coordinate in Eq. 10 yields,

(14)

∫ (
1

χ

)2n+m+1/2

dz′

� (z′ − z)

(
2r ′r

r2 + r ′2

)2n+m+1/2

2F
(n,m)
1

(
1

2
, 2n + m +

1

2
;
3

2
;− (z′ − z)2

r2 + r ′2

)
.

The confluent hypergeometric function in Eq. 14 has two special cases that will be
of use later,

2F
(0,1)
1 �

√
r2 + r ′2

r2 + r ′2 + (z − z′)2
, (15.1)

2F
(0,0)
1 �

√
r2 + r ′2

(z′ − z)
ln

∣∣∣∣ 1√
r2 + r ′2

(√
r2 + r ′2 + (z′ − z)2 + z′ − z

)∣∣∣∣. (15.2)

In Sects. 2–4 we have developed the mathematical machinery needed to calculate
the metric perturbations of LG beams including spin, orbital angular momenta, and
intrinsic hyperbolic momentum. In the next two sections, calculations of the metric
perturbation will be performed.

5 Planewave term

Linear polarized electromagnetic beams having a delta function intensity profile cen-
tered on the optical axis of the beam have been investigated by several authors when
calculating the metric perturbation [3, 4, 17]. However, when including both OAM
and hyperbolic momentum terms, a modification like that of Eqs. 12 and 13 must be
made. The metric perturbation calculated in this section is for the first term of the
energy–momentum tensor of Eq. 3. Substituting Eq. 3, and the modified Dirac delta
function of Eq. 12 into the Green’s function Eq. 6 yields,

hP
μν � −κρLτ P

μν

1

π

∞∑
m�0

εm

∫ √
1

r ′r

∣∣∣ψ�
ρ

∣∣∣2Qm−1/2 cos
[
m
(
θ − θ ′)]r ′dr ′dθ ′dz′ (16)

Unless where needed for clarification, functional arguments will be suppressed.
Angular integration of Eq. 16 can be readily carried out using the results of Eq. 11.1
which sets m � 0 in the process. With this integration, Eq. 16 reduces to,

hP
μν � −2κρLτ P

μν

∫ √
r ′
r

∣∣∣ψ�
ρ

∣∣∣2Q−1/2dr
′dz′. (17)
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Integration over the z-direction is achieved by using the associated Legendre func-
tion given in Eq. 10, and the integral given in Eq. 14,

hP
μν � −2κρLτ P

μν(z
′ − z)

∞∑
n�0

C (0)
n

∫ √
r ′
r

∣∣∣ψ�
ρ

∣∣∣2( 2r ′r
r2 + r ′2

)2n+1/2

2F
(n,0)
1 dr ′. (18)

For space considerations, the bounds of integration along the z-direction in Eq. 18
have not yet been evaluated. Analysis of the expansion coefficients shows that the
dominant term is the leading order term. Taking the n � 0 term in the expansion and
evaluating the integral bounds yields,

hP
μν � −κρLτ P

μν2π
∫ ∣∣∣ψ�

ρ

∣∣∣2 ln
∣∣∣∣∣
√
r2 + r ′2 + (L − z)2 + (L − z)√
r2 + r ′2 + (L + z)2 − (L + z)

∣∣∣∣∣r ′dr ′. (19)

The integral in Eq. 19 is the first main result of this section, and it will be numerical
integrated along the radial coordinate and compared to analytical results. An analytical
solution of Eq. 18 can be found by Integrating over the thin cylindrical shell in Eq. 12,

hP
μν � −κρLτ P

μν

(z′ − z)

πrρ�

∞∑
n�0

C (0)
n

√
rρ�

r

(
2rρ�r

r2 + r2ρ�

)2n+1/2

2F
(n,0)
1 (20)

To lowest order in the expansion of Eq. 20, and evaluating over the integral bound
gives the second main result of this section,

hP
μν � −κρLτ P

μν ln

∣∣∣∣∣∣
√
r2 + r2ρ� + (L − z)2 + (L − z)√
r2 + r2ρ� + (L + z)2 − (L + z)

∣∣∣∣∣∣ (21)

Equation 21 is comparable to solutions found by other authors with the exception
that it is finite for all values of the radial coordinate r due to the presence of rρ� which
is always greater than zero.

It will be convenient for plotting purposes to separate the tensorial part of the metric
perturbation from the functional part as such hP

μν � τμνhP (r , z) with hP � hP
00.

For comparison, the scaled-metric perturbation hP/κρ given in Eqs. 19 and 21 are
plotted in Fig. 1 as a function of the radial coordinate r/w0 for angular mode numbers
� � 0, 5, 10, 15, 20 and radial mode number ρ � 0 (top row) [ρ � 3 (bottom row)].
Analytical solutions of Eq. 21 are plotted in panels (b) and (e), and numerical solutions
are plotted in panels (a) and (d). Panels (c) and (f) are plots of the modulus squared of
the scalar amplitude function given in Eq. 1 as a function of the radial coordinate. In all
calculations, the beam length parameter was taken to be L � 5w, and the longitudinal
observation point was evaluated at z � 0. The dotted curves shown in columns 1 and 2
are calculated assuming a cylinder shell radius of rpeak � w

√
�/2 [8]. In this situation,

the radius of the shell is zero when � � 0, and the beam reduces to an infinitesimally
thin pencil of light. This thin pencil of light results in the metric perturbation diverging
to infinity as one approached a transverse observation distance of r � 0. Numerical
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Fig. 1 aNumerically calculated scaledmetric perturbation hP/κρL as a function of the radial distance r/w0
from the optical axis and at z � 0 for mode numbers � � 0, 5, 10, 15, 20 and ρ � 0. b Same as in a except
the curves were calculated from the analytical solution of Eq. 21. c Modulus squared of the corresponding

Laguerre Gaussian beams
∣∣∣ψ�

ρ

∣∣∣2 used for the curves in panels a and b. d–f Same as a–c but with ρ � 3.

Dotting lines are the metric perturbation calculated for a thin pencil of light. This metric goes to negative
infinity as r goes to zero

simulations demonstrate that the associated metric perturbation is, in fact, finite along
the optical axis of a Gaussian beam and, therefore, using the radial “center of mass”
in Eq. 13 removes this divergence. Analytical solutions show good agreement with
numerical results for all mode numbers �, and ρ. The various curves can be identified
by noting that the absolute values of the curve’s amplitude decrease with an increase in
�. For large observation points r 
 rρ�, the metric perturbation falls off as h ∼ −1/r
as expected for the gravitational potential. This result is consistent with the gravitation
potential around a massive cylindrical shell.

6 SAM and OAM terms

Ametric perturbation endowedwith orbital angular momentum near the optical axis of
a beamhas been previously investigated by Strohaber [8]. Thismetric perturbationwas
found to give rise to Lense-Thirring precession of a spinning neutral particle placed
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along the beam axis. The goal of this previous work was to investigate if OAM could
result in a frame-dragging effect analogous to that found by Mallett using a ring laser.
In this section, we extend upon the work of Strohaber by investigating the spacetime
at all radial positions from a circularly polarized LG. The energy–momentum tensor
including orbital angular momentum and spin can be written in shorthand notation as,

T SO
μν (r , θ ) � ρLτ SO

μν (θ ′)B�
ρ(r

′; σz)
1

kr ′
∣∣∣ψ�

ρ

∣∣∣2, (22)

where

B�
ρ(r

′; σz) � � − σz |�| + σz
2r

′2

w2 + σz
4r

′2

w2

L�+1
ρ−1

L�
ρ

. (23)

Individual terms in Eq. 23 will be referenced as B�
ρ(r ; σz) � B� + Bσ� + Bσ + Bσ�ρ

respectively. The first term on the right is the orbital angular momentum term, the
second term is the spin–orbit term, the third term is the spin term, and the last term is
the hyperbolic term [35, 36]. Substituting Eq. 7 for the Green’s function, and Eq. 22
for energy–momentum tensor T SO

μν into Eq. 6 yields the following integral,

hSOμν � −κρL
1

kπ

∞∑
m�0

εm

∫ √
1

r ′r
cos
[
m
(
θ − θ ′)]τ SO

μν Qm−1/2B
�
ρ

∣∣∣ψ�
ρ

∣∣∣2dr ′dθ ′dz′.

(24)

In contrast to Eq. 16, here both the Green’s function and the energy–momentum
tensor depend on the angular coordinate θ ′. The relevant integral is given in Eq. 11.2
and upon performing angular integration, the sum in Eq. 24 reduces to a single term
with m � 1,

hSOμν � −κρLτ SO
μν

2

k

∫ √
1

r ′r
Q1/2B

�
ρ

∣∣∣ψ�
ρ

∣∣∣2dr ′dz′. (25)

By making use of Eq. 10 for the associated Legendre function, Eq. 25 becomes

hSOμν � −κρLτ SO
μν

2

k

∞∑
n�0

C (1)
n

∫ √
1

r ′r

(
1

χ

)2n+3/2

B�
ρ

∣∣∣ψ�
ρ

∣∣∣2dr ′dz′. (26)

Integrate over the extent of the beam along the z-direction and using the integral of
Eq. 14 yields,

hSOμν � −κρLτ SO
μν (z′ − z)

2

k

∞∑
n�0

C (1)
n

∫ √
1

r ′r

(
2r ′r

r2 + r ′2

)2n+3/2

2F
(n,1)
1 B�

ρ

∣∣∣ψ�
ρ

∣∣∣2dr ′.

(27)
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As before, the evaluation of the integral bounds has been postponed. Taking the
lowest order term in the expansion n � 0, and using Eq. 15.2 for the confluent
hypergeometric function, Eq. 27 we find,

hSOμν � −κρLτ SO
μν

π

k

∫
r ′r

r2 + r ′2

[
L − z√

r2 + r ′2 + (z − L)2
+

L + z√
r2 + r ′2 + (z + L)2

]
B�

ρ

∣∣∣ψ�
ρ

∣∣∣2dr ′.

(28)

Equation 28 is the first main result of this section and will be numerically integrated
for comparison with analytical results. An analytical approximation to Eq. 27 can be
obtained by integrating over the thin cylindrical shell in Eq. 12,

hSOμν � −κρLτ SO
μν

(z′ − z)

kπrρ�

∞∑
n�0

C (1)
n

√
1

rρ�r

(
2rρ�r

r2 + r2ρ�

)2n+3/2

2F
(0,1)
1 (rρ�)B

�
ρ(rρ�).

(29)

To lowest order in the expansion and using Eq. 15.1 for 2F
(0,1)
1 , Eq. 29 takes the

final form,

(30)hSOμν �

−κρLτ SO
μν (θ )B�

ρ(rρ�)
r

r2 + r2ρ�

1

2k

⎡
⎣ L − z√

r2 + r2ρ� + (z − L)2
+

L + z√
r2 + r2ρ� + (z + L)2

⎤
⎦ .

Equation 30 is a more general version of the metric perturbation used in Ref [8].
By taking σz � 0 and for observation point close to the optical axis r � rρ�, Eq. 30,
gives themetric perturbation used in Ref [8] to investigate frame-dragging from orbital
angular momentum.

Analytical and numerical solutions of the metric perturbation hSOμν are plotted in
Fig. 2 for various values of σz , � and ρ. In the first two rows σz � −1, ρ � 0 and
� � 0, 2, 4, 6, 8, 10; and in the third and fourth rows σz � −1, ρ � 3 and � �
0, 2, 4, 6, 8, 10. The columns are labeled as B� � �, Bσ� � −σz |�|, Bσ � σz2r2/w2,
Bσ�ρ � σz4r2L�+1

ρ−1/(w
2L�

ρ), and B�
ρ for the sum of these terms. In rows 1 and 3 are

plotted the metric perturbations found from numerical integration of Eq. 28, and rows
2 and 4 are those from the analytical solutions of Eq. 30. In general, the amplitudes
of the curves increase with increasing angular mode number �. For � � 0 the curves
for B� � � and Bσ� � −σz |�| are always zero. An important case occurs when
Bσ � σz2r2/w2. If we had chosen the delta function to have a radius rpeak � w

√
�/2

corresponding to the peak of the beam, then for � � 0 the curve for Bσ � σz2r2� /w2

would have been zero as well; however, numerical simulations show that this is not
the case due to other portions of the beam have a non-zero contribution to the metric
perturbation. In rows 1 and 2, the curves for Bσ�ρ are zero since when ρ � 0 so is
L�+1

ρ−1 � 0. For the curves plotted in rows 3 and 4, the radial mode number is nonzero
ρ � 3. Here the analytical curves in row 4 for B�, Bσ� and Bσ reasonably reproduce
the numerical curves in row 3; however, the analytical curves for Bσ�ρ poorly agree
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Fig. 2 Graphs of the metric perturbation hSO plotted for various values of � and ρ. Data in the first and
second rows are plotted for ρ � 0, σz � −1 and � � 0, 2, 4, 6, 8, 10; and data in the third and fourth rows
are plotted for ρ � 3, σz � −1 and � � 0, 2, 4, 6, 8, 10. In general, the magnitude of the peaks of the curves
increases with increasing �. In the first two columns, the curves are zero hSO � 0 when � � 0 due to the
B� � � and Bσ� � −σz |�| terms. In column 3, the smallest amplitude curve is for � � 0. If r� � w

√
�/2

had been used in the delta function approximation this curve would have been equal to zero, but numerical
simulation shows that it is not. In column 3, rows 3 and 4, the radial mode number is ρ � 3 and unlike
the metric perturbation for the plane-wave part, the analytical solutions here show poor agreement with
numerical calculations. However, in row 5, a sum of delta functions was used for the multi-ringed beams
and show good agreement with numerical calculations

with numerical results. However, in row 5 calculations using a sum of delta function
shells for multi-ringed beams show excellent agreement.

7 Particle dynamics

Tolman has previously investigated the acceleration of stationary particles in the grav-
itational field of a pencil of light. Tolman’s calculations showed that when a particle
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was placed midway between the ends of a pencil of light, the test particle experienced
no acceleration along the beam axis. In this section, we calculate the general relativis-
tic acceleration of a test particle beyond the stationary condition. The acceleration of
a test particle in a spacetime can be found from the geodesic equation,

∂2xμ

∂t2
� −Γ μ

σρ

∂xσ

∂t

∂xρ

∂t
+ Γ 0

σρ

∂xσ

∂t

∂xρ

∂t

∂xμ

∂t
. (31)

Equation 31 has been written in coordinate time and gives a set of coupled differen-
tial equationswith terms linear, quadratic, and cubic in the velocity. In the slow-motion
approximation (v � c), terms quadratic and higher in velocity will be neglected. The
interested reader is directed to “Appendix 3” for a more in-depth analysis of all terms
in Eq. 31. The nonzero terms on the right in Eq. 31 that are less than order O(v2) are,

∂2xμ

∂t2
� −Γ

μ
00 − 2Γ μ

0i
∂xi

∂t
. (32)

Here 2Γ μ
σρ � ημν(hσν,ρ + hρν,σ − hσρ,ν) are the connection coefficients to lowest

order in the perturbation hμν and reduce to 2Γ μ
0ρ � −(h0μ,ρ − h0ρ,μ) due to the

time-independence of hμν . From this connection, the two properties Γ
μ
0i � −Γ i

0μ and

Γ
μ
0μ � 0 can be readily seen. Equation 32 can be written more explicitly in matrix

form,

⎛
⎝ax
ay
az

⎞
⎠ � −

⎛
⎝Γ x

00
Γ

y
00

Γ z
00

⎞
⎠ +

⎛
⎝ 0 −2Γ x

0y −2Γ x
0z

2Γ x
0y 0 −2Γ y

0z
2Γ x

0z 2Γ y
0z 0

⎞
⎠
⎛
⎝ vx

vy
vz

⎞
⎠. (33)

Using the connection coefficients, Eq. 33 can be written in terms of the metric
perturbation,

(34)

⎛
⎝ax
ay
az

⎞
⎠ � −1

2

⎛
⎝ h00,x
h00,y
h00,z

⎞
⎠

+

⎛
⎝ 0 (h0x,y − h0y,x ) (h0x,z − h0z,x )

−(h0x,y − h0y,x ) 0 (h0y,z − h0z,y)
−(h0x,z − h0z,x ) −(h0y,z − h0z,y) 0

⎞
⎠
⎛
⎝ vx

vy
vz

⎞
⎠ .

From these equations, the acceleration is seen to have the same mathematical form
as the Lorentz force found in electrodynamics. For this reason, the acceleration is
written as �a � �E + �v × �B, where �E � (−Γ x

00,−Γ
y
00,−Γ z

00) plays the role of the
“electric” field, �B � (−2Γ y

0z, 2Γ
x
0z,−2Γ x

0y) that of the “magnetic” field, and �A �
(−h0x ,−h0y,−h0z) and ϕ � h00/2 play the role of the vector and scalar potentials
respectively. With these analogies, it can be easily shown that �B � �∇ × �A and
�E � −�∇ϕ − ∂ �A/∂t.
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An analogy with the Lorentz force allows for easy interpretation of the influence of
the metric perturbation on particle dynamics. In polar coordinates, the accelerations
due to �E and �v × �B in Eqs. 33 and 34 are given by,

�E � 1

2

(
−∂hP

∂r
êr − ∂hP

∂z
êz

)
, (35.1)

�v × �B � ∂hP

∂r
vz êr +

(
2Γ x

0yvr − ∂hSO

∂z
vz

)
êθ − ∂hP

∂r
vr êz . (35.2)

Equation 35.1 is the acceleration of test-particles towards the center of the intense
beam due to its gravitational attraction. The physics of Eq. 35.2 is different from
that of Eq. 35.1 and represents a velocity-dependent acceleration. In Eq. 35.2,
2Γ x

0y � −∂hSO/∂r − hSO/r , and it can be seen from both equations that hP produce
accelerations along the radial êr and longitudinal êz directions, whereas in the angular
direction only the metric hSO produces an acceleration.

For a particlemoving only along the z-axiswith radial coordinate r � 0 and velocity
v � (0, 0, zz), the quantities hSO � 0, ∂hP

00/∂r � 0 and ∂hSO/∂z � 0 are zero and
Eqs. 35 reduce to only the “electric” part,

�E � −1

2

∂hP

∂z
êz (36)

Equation 36 shows that a particle placed along the optical-axis will experience an
accelerated along the optical axis and towards z � 0. This can be seen from plots of
the metric perturbations and its derivatives in Fig. A2 of “Appendix 2”. When there
is no SAM or OAM, (that is when σ � � � 0), and no restriction on the coordinate
position of the test particle, then Eqs. 35 reduce to,

�E � 1

2

(
−∂hP

∂r
êr − ∂hP

∂z
êz

)
, (37.1)

�v × �B � ∂hP

∂r

(
vz êr − vr êz

)
. (37.2)

In Eqs. 37 the angular acceleration term is absent. In this case, the �E vector accel-
erates particles towards the center of the beam in both the radial and longitudinal
directions. The vector �v × �B produces rotational motion in any r-z plane. For exam-
ple, assume an off-axis particle has an initial positive radial velocity vr . Then by the
second term of Eq. 37.2, the particle will experience an acceleration in the negative
z-direction and thereby acquiring a component of velocity in the negative z-direction.
The particle then (by the first term) experiences an acceleration in the negative radial
direction. This results in an acceleration in the positive z-direction which results in
a velocity in the positive z-direction producing an acceleration in the positive radial
direction and so on. These dynamics are independent of SAM or OAM, and to the best
of our knowledge has not been reported elsewhere.
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Close to the optical axis r � rρ� and in the plane z � 0, Eqs. 35 reduces to,

�v × �B � 2Γ x
0yvr êθ . (38)

Equation 38 shows that a particle having radial velocity will experience an angular
deflection due to both SAM and OAM terms which appear in the factor Γ x

0y . Thus far
it has been shown that Eqs. 35 produce rotational motion in different planes and with
different angular frequencies. Spectral analysis of the antisymmetric matrix in Eq. 34

shows that the eigenvalues are λ0 � 0 and λ± � ± i2
√
(Γ x

0y)
2 + (Γ x

0z)
2 + (Γ y

0z)
2.

These eigenvalues are related to the angular frequencies of rotations in the various
planes. For example, let the velocity-dependent part of Eq. 34 be written as �a � M · �v
and assuming a velocity vector �v � �v0eiωt and its acceleration �a � iω�v, the eigenvalue
equation is (M − iω)�v � 0. From this, the rotational frequencies are ω0 � 0 and

ω± � ±2
√
(Γ x

0y)
2 + (Γ x

0z)
2 + (Γ y

0z)
2. Therefore, solutions to Eq. 38 are sinusoidal

with an angular frequency of ω � 2Γ x
0y .

These rotationalmotions can be easily understood by viewing the test-particle in the
metric perturbation as if it were a positively charged particle in the electromagnetic
field surrounding a current-carrying wire with an additional magnetic field in the
direction of the current �B � (0, 0,−2Γ x

0y). In Fig. 3 are plotted the components of
these so-called “electric” and “magnetic” fields of the metric perturbation. In panel
(a), the x and y components of the “electric” field �E � (−Γ x

00,−Γ
y
00, 0) indicate a

radial acceleration towards the optical axis of the intense beam analogous to how a
positively charged particle accelerates in the direction of electric fields. In panel (b),
the z-component of the “electric” field �E � (−Γ x

00, 0,−Γ z
00) shows that test-particles

are accelerated along the z-direction towards z � 0 as previously noted by Tolman. In
panels (c) and (d), components of the “magnetic” field �B � (−2Γ y

0z, 2Γ
x
0z,−2Γ x

0y)
can be used to infer the motion of test-particles by using the right-hand rule. For
example, in Fig. 3c the “magnetic” field �B � (0, 0,−2Γ x

0y) is out of the page in the
positive z-direction. In this case, the fingers of the right-hand curl counterclockwise so
the motion of a test particles will be clockwise. This motion is due to OAM since the
plot is for σz � 0 and � � −1. In Fig. 3d, the x, y-components of the “magnetic” field
Bx � −2Γ y

0z andBy � 2Γ x
0z are plotted, and the right-hand rule indicates rotational

motion in radial planes. Rotations in the radial planes are independent of SAM and
OAM, and when combined with the dragging effect from OAM and SAM results in a
spiral motion around the optical axis.

8 Test rays

Several authors have investigated the light-induced weak gravitational influence on
test-rays [3, 17]. For example, Tolman found that test-rays traveling parallel and in
the same direction of an intense beam experienced no change in their velocities while
test-rays traveling in the opposite direction showed a variable speed. In this section, we
are interested in the gravitational effects due to OAM and SAM on test-rays traveling
in different directions relative to the intense beam. To allow for comparison with the
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Fig. 3 “electric” and “magnetic” fields of the geodesic equation. a x, y-components of the “electric” field
�E � (−Γ x

00, −Γ
y
00, 0) showing a radial gravitational acceleration towards the r � 0. b x, z-components of

the “electric” field �E � (−Γ x
00, 0,−Γ z

00) showing gravitational acceleration towards the center of the beam

r � z � 0. c x, y-components of the “magnetic” field �B � (−2Γ y
0z , 2Γ

x
0z , 0) showing, by the right-hand

rule, rotational acceleration �v × �B in radial planes where the acceleration is out of the page (+z) closer
to the optical axis of the intense beam. d z-components of the “magnetic” field �B � (0, 0, −2Γ x

0y ) out of
the page and by the right-hand rule show an acceleration in a counterclockwise direction. This acceleration
direction changes with a change in sign of angular momentum mode number �

work of Tolman, in this section, we have changed the signature of the Minkowski
metric to ημν � (−,+,+,+) and multiplied our metric perturbations by negative one
−1. In relativity, light travels along null trajectories given by the invariant distance
ds2 � (ημν +hμν)dxμdxν . Using themetric perturbation and setting ds to zero yields,(
1 − hP

00

)
− v2x − v2y − (1 + h p

00

)
v2z � 2hSO0x vx (1 − vz) + 2hSO0y vy(1 − vz) − 2hP

00vz

(39)

For velocities of test-rays traveling parallel to the intense beam, the perpendicular
velocities are set to zero vx � vy � 0 in Eq. 39, and after making use of the quadratic
formula, Eq. 39 simplifies to,

vz � h p
00 ± 1

1 + h p
00

. (40)
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Equation 40 is the same result as obtained byTolman. For test-rays traveling parallel
to the beam in either direction, there are no relativistic effects of SAM or OAM from
the intense beam. For test-rays traveling in the same direction (+), their velocity is
that of the speed of light vz � + 1 regardless of the value of h p

00. As pointed out by
Tolman, this is a satisfying result for the stability of a beam of light [3]. For test-rays
traveling in the opposite direction (−), their velocity is vz � − 1 when h p

00 � 0, and
vz � 0 when h p

00 � 1.
In other words, when the metric perturbation is zero there is no gravitational effect,

and test-rays travel in the negative z-direction at the speed of light; however, when the
metric perturbation is unity, the velocity of the speed of light is zero. As a reminder,
the value of h is extremely small 10−37 and the numbers given above have been used
only to demonstrate the behavior of the test-rays.

The velocities of test-rays traveling perpendicular to the beam (vx and vy) are found
from Eq. 39 by setting vz � 0 and vx � 0 (or vy � 0) and solving for the velocities
in the x and y directions separately,

vx � − hSO0x ±
√(

hSO0x
)2

+
(
1 − h p

00

)
vy � − hSO0y ±

√(
hSO0y

)2
+
(
1 − h p

00

). (41)

The results of Eq. 41 are different from those found by Tolman for the velocity of
test-rays traveling in a direction perpendicular to the intense beam. The gravitational
field due to intrinsic spin and external orbital angular momentum of the intense beam
influences the speedof test-rays throughhSO . These velocities canhavevalues between
positive and negative −1 ≤ v ≤ 1 and by setting vx � 0 and vy � 0 separately, the
following conditions hSO0x � ±h p

00/2 and hSO0y � ±h p
00/2 are found. As a reminder,

we are in the weak-field approximation with the metric perturbation being much less
than unity; however, for plotting purposes, we will set the maximum of h p

00 to unity. In
Fig. 4 is shown an illustration of the intense beams traveling in the positive z-direction,
and the yellow arrows indicate the direction of the Poynting vector. The velocity curves
of test-rays traveling parallel to the intense beam are shown in panel (a) as a function of
the longitudinal direction. Each curve represents a test-ray traveling in the z-direction
a distance r � [0, 4, 8, 12, 16, 20] from the optical axis. For the curve with impact
parameter of r � 0, the metric perturbation hP in Eq. 41 has been peak-normalized
at z � 0 results in vz � 0 at the origin. With increases impact parameter, the peak of
the velocity curves decreases.

For test-rays traveling perpendicular to the intense beam, their velocity curves
are plotted in panel (b) as a function of x . In the positive half of this plot is plot-

ted vx � −hSO0x +
√(

hSO0x
)2

+
(
1 − h p

00

)
and in the negative half vx � −hSO0x −√(

hSO0x
)2

+
(
1 − h p

00

)
. For all curves hP in the positive half-plane has been peak-

normalized to unity. For velocities curves in the positive half-plane, test-rays are
traveling in the positive x-direction against the Poynting vector, and in the negative
half of the plot, test rays are traveling in the negative x-direction with the Poynting
vector. The different velocity curves are calculated by peak normalizing hP to unity
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Fig. 4 For velocities in both panels a and b, the maximum value of hP has been taken to be unity for
demonstration purposes only. The beam parameters ρ � 0, σz � 0 and � � 1 were used in all calculations.
In the upper illustration, the red cylinder represents the intense beam and the yellow arrows show the
direction of the Poynting vector. a Plots of the longitudinal velocities of test-rays traveling parallel and in
the same direction vz � (h p00 + 1)/(1 + h p00) and in the opposite direction vz � (h p00 − 1)/(1 + h p00) of
the intense beam. In panel a when the test-ray is traveling in the same (positive) z-direction as the intense
beam, its velocity is that of the speed of light vz � +1, and test rays traveling in the opposition (negative)
z-direction slow down within the region of the finite intense beam. In panel a these velocities are plotted
for test-rays at various radial distances r � [0, 4, 8, 12, 16, 20] showing that the gravitational influence
decreases with increases distance. In panel b velocities of test rays traveling perpendicular to the intense
beams along the x-axis are plotted. Tests-rays raveling in the positive x-direction always slow down when
passing by the intense beam; however, test-rays traveling in the negative x-direction can traveling at the
speed of light when directly above the intense beam depending on the relative magnitudes of hSO and hP

with hSO peak normalized to [0.0, 0.125, 0.25, 0.375, 0.5]. When hSO is peak nor-
malized to 0.5, the velocity of test-rays traveling with the azimuthal component of
the Poynting (negative x-direction) as they pass directly above the intense beam is
equal to the speed of light in the negative direction (vx � −1). If the test-ray had
been traveling in the negative x-direction below the intense beam (or if the sign of �

is changed) then the velocity curves in the upper in lower halves of the plot would be
switched. This phenomenon is analogous to a gravitational Aharonov–Bohm (GAB)
effect where the metric perturbation plays the role of the electromagnetic potential.
Although the measurability of this effect is expected to be beyond current detection
limits, I will nevertheless briefly explore a design for a laboratory-scale experimental
scheme.

An order of magnitude estimate can be made for aGedanken experiment consisting
of a long optical fiber wrapped into a cylindrical coil around the optical path of a high-
powered laser beam in a cavity configuration. Two probe beams are sent in opposite
directions around the coil and upon exiting allowed to interfere. Under the conditions
hSO0x � ±h p

00/2, one probe beam will travel at the speed of light in one direction
around the coil while the other at less than the speed of light in the other direction
around the coil (Fig. 4) resulting in a phase difference upon exiting (where I have
neglected dispersion effects in the fiber). The optical path difference (OPD) between
two beams of light where one travels in a vacuum and the other in a medium with
refractive index n is given by �L/L ≈ n − 1 (where n � c/v). Substituting the
condition hSO0x � h p

00/2 into Eq. 41 and expanding the result in a Taylor series yields
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vx � −hSO0x +
√(

hSO0x
)2

+
(
1 − 2hSO0x

) ≈ 1 − 2hSO0x . (42)

Combining Eq. 42 with the OPD yields a simple result�L/L ≈ h p
00 � 2hSO0x . Here

hP ≈ κρL and so the OPD is equal to �L/L ≈ 10−37. A strain of �LLIGO/LLIGO ≈
10−23 is measurable by Advanced LIGO and by setting �L � �LLIGO a fiber length
of L f ≈ 1014LLIGO (LLIGO � 4km) is found for this thought experiment. The
dimensions of the coil can be estimated by taking the volume of the fiber V f � πr2f L f ,

and the volume of the coil Vc � πr2c Lc (taken as a cylinder) and setting them equal
to each other r2c Lc � r2f L f . Taking the fiber radius to be r f � 10µm, and the coil
length to be equal to ten times the radius of the coil Lc � 10rc, the coil radius and
length are found to be equal to rc � 100m and Lc � 1000m respectively.While these
dimensions are terrestrial, numerous technical issues may render such an experiment
unfeasible, and in all thought experiments of this type, themagnitude of κρL effectively
presents a fundamental limitation.

9 Conclusions

The metric perturbation of an intense Laguerre–Gaussian beam was calculated in the
weak field approximation of general relativity. By using the radial “center of mass” of
an LG beam, a modified Dirac delta function was used to avoid infinities at the origin
that are typically encountered in these types of calculations. The results from this
procedure agree well with results from numerical integration so that the extension of
the metric perturbation to all radial coordinates are reliable when extracting physical
information from the analytical results. Using these results, particle dynamics and
velocities of test-rays were investigating. Both SAM and OAM were found to result
in frame-dragging effects, and an unreported effect producing “gravitation eddies” in
radial planes was found to accompany the beam independent of the SAM and OAM.
Test-rays traveling parallel to the intense beam were found to be independent of SAM
and OAMwhile test rays traveling perpendicular to the intense beam showed variable
speeds that depended on SAM and OAM. This phenomenon was used to investigate
a gravitational orbital angular momentum Aharonov–Bohm effect (GOAM-AB).

Appendix 1: energy–momentum tensor

The energy–momentum for a beam of electromagnetic radiation can be calculated
from

Tμν �

⎡
⎢⎢⎣

1
2

(
E2 + B2

) −Sx −Sy −Sz
−Sx σxx σxy σxz
−Sy σyx σyy σyz

−Sz σzx σzy σzz

⎤
⎥⎥⎦, (A.1)
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where the Poynting vector and the Maxwell stress tensor are given respectively by,

�S � 1

μ0

�E × �B, (A.2)

σi j � ε0Ei E j +
1

μ0
Bi B j − 1

2

(
ε0E

2 +
1

μ0
B2
)

δi j . (A.3)

The electric and magnetic fields of a beam within the paraxial approximation can
be found from Maxwell’s equation as outlined in Ref [13] and are given by

�E � E0

[
αêx + β êy +

i

k

(
α

∂

∂x
+ β

∂

∂y

)
êz

]
|ψ |2, (A.4)

�B � B0

[
−β êx + αêy − i

k

(
β

∂

∂x
− α

∂

∂y

)
êz

]
|ψ |2. (A.5)

From Eqs. A.4 and A.5, it can be seen that By � Ex and Bx � −Ey . In calculating
the energy–momentum tensor in the paraxial approximation using Eqs. A.2 and A.3,
terms of second-order in wavelength are neglected (viz., E2

z , B
2
z ≈ 0). These relations

can be substituted into Eq. A.1 which reduces to,

Tμν �

⎡
⎢⎢⎣

Sz −Sx −Sy −Sz
−Sx 0 0 Sx
−Sy 0 0 Sy
−Sz Sx Sy Sz

⎤
⎥⎥⎦, (A.6)

wherein Cartesian coordinates the Poynting vector is given by

�S � |E0|2 1

cμ0

⎡
⎢⎢⎣

(
cos(θ )

r

R(z)
− sin(θ )

1

k

(
�

r
− σz

1

2

∂

∂r

))
êx

+

(
sin(θ )

r

R(z)
+ cos(θ )

1

k

(
�

r
− σz

1

2

∂

∂r

))
êy + êz

⎤
⎥⎥⎦|ψ |2. (A.7)

Appendix 2: derivatives of themetric perturbation

In this appendix, relevant derivatives of the metric perturbations hP
μν and hSOμν are

provided and plotted as a function of radial r/w0 and longitudinal z/w0 directions.
To begin with, a common factor that appears frequently can be written in shorthand
notation as

f−(r , z) �
√
r2 + r2ρ� + g2−

f+(r , z) �
√
r2 + r2ρ� + g2+

, (B.1)
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Fig. A2 a and b are curves of hP and their respective derivatives plotted as a function of a radial position
r and b longitudinal position z. c and d are the same as those for a and b except they are the curves for
the metric perturbation hSO and its derivatives. The dotted curves are for hP and hSO , and the solid blue
curves are for their derivatives dhP/dr , dhP/dz, dhSO/dr and dhSO/dz. In all plots, w0 � 1, z � 5w0,
� � 1 and ρ � 0. Curves in panels a and c have a constant longitudinal position z � 0 and those in b and
d have a constant radial position r � w0

where g± � L ± z, When z � 0 these equations reduce to g− � g+ and f− � f+.
With this handy notation, Eqs. 21 and 30 can be written as follows

hP
μν/κρL � −τ P

μν ln

∣∣∣∣ f− + g−
f+ − g+

∣∣∣∣, (B.2)

hSOμν /κρL � −τ SO
μν (θ )B�

ρ(rρ�)
1

2k

r

r2 + r2ρ�

(
g−
f−

+
g+
f+

)
. (B.3)

The radial and longitudinal derivatives of Eq. B.2 are (Fig. A2)

1

κρL

∂hP
μν

∂r
� −τ P

μνr

(
1

f−( f− + g−)
− 1

f+( f+ − g+)

)
, (B.4)

1

κρL

∂hP
μν

∂z
� −τ P

μν

(
1

f+
− 1

f−

)
, (B.5)

and those for Eq. B.3 are
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1

κρL

∂hSOμν

∂z
� −τ SO

μν (θ )B�
ρ(rρ�)

1

2k

r

r2 + r2ρ�

(
1

f+
− 1

f−
− g2+

f 3+
+
g2−
f 3−

)
, (B.6)

1

κρL

∂hSOμν

∂r

� −τ SO
μν (θ )B�

ρ(rρ�)
1

2k

1

r2 + r2ρ�

[(
1 − 2r2

r2 + r2ρ�

)(
g−
f−

+
g+
f+

)
− r2

(
g−
f 3−

+
g+
f 3+

)]
.

(B.7)

A few special cases should be noted. In the plane z � 0 the following quantities are
zero: ∂hP/∂r � ∂hP/∂z � 0 and ∂hSO/∂z � 0, and when r � 0 we have hSO � 0,
∂hP/∂r � 0 and ∂hSO/∂z � 0.

Appendix 3: analysis of the geodesic equation

In this appendix, a derivation of velocity squared terms and higher of the geodesic of
Eq. 31 equation are given. The geodesic equation in coordinate time is given by,

∂2xμ

∂t2
� −Γ

μ
00 − 2Γ μ

0i
∂xi

∂t
− Γ

μ
i j

∂xi

∂t

∂x j

∂t
+

(
Γ 0
00 + 2Γ 0

0i
∂xi

∂t
+ Γ 0

i j
∂xi

∂t

∂x j

∂t

)
∂xμ

∂t
,

(C.1)

where the connection coefficients have been separated into time and spatial compo-
nents. Using the connection coefficients 2Γ μ

σρ � ημν(hσν,ρ + hρν,σ − hσρ,ν), the first
term on the right can be written as,

Γ
μ
00 � ημν

(
∂h0ν
∂t

− 1

2

∂h00
∂xν

)
→ ∂ �A

∂t
+ �∇ϕ, (C.2)

where ϕ � h00/2 and �A � (−h0x ,−h0y,−h0z). The second term in Eq. C.1 is

2Γ μ
0i

∂xi

∂t
� ημν

[
∂hiν
∂t

+
(
h0ν,i − h0i,ν

)]∂xi

∂t
→ −�v · ∂ �h

∂t
− �v ×

( �∇ × �A
)
. (C.3)
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Here �B � �∇ × �A and �h a matrix equal to the spatial part of hμν . Exception for the
term �v · ∂ �h/∂t , Eqs. C.2 and C.3 are mathematically equivalent to the Lorentz force.
The third term in Eq. C.1 is somewhat more complex,

Γ
μ
j i

∂x j

∂t

∂xi

∂t
� −1

2

(
hiμ, j + h jμ,i

)∂x j

∂t

∂xi

∂t
+
1

2
hi j,μ

∂x j

∂t

∂xi

∂t

Γ
μ
ab

∂xa

∂t

∂xb

∂t
→ −1

2

[
2
(
�v · �∇h

)(�h · �v
)

− �∇h

(
�v · �h · �v

)] . (C.4)

The next two terms together are,

Γ 0
00 + 2Γ 0

0i
∂xi

∂t
� 1

2

∂h00
∂t

+
∂xi

∂t

∂h00
∂xi

� ∂ϕ

∂t
+ 2
(
�v · �∇

)
ϕ, (C.5)

and the last term is

Γ 0
i j

∂xi

∂t

∂x j

∂t
� ∂xi

∂t

∂x j

∂t

∂hi0
∂x j

− 1

2

∂xi

∂t

∂x j

∂t

∂hi j
∂t

Γ 0
i j

∂xi

∂t

∂x j

∂t
� −

(
�v · �∇A

)(
�v · �A

)
− 1

2
�v ·
(

∂ �h
∂t

· �v
)

(C.6)
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