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Abstract
We obtain a new exact analytical solution to the Einstein–Maxwell field equations
with anisotropic matter. The solution describes the interior of anisotropic, electrically
charged strange quark stars with a non-linear equation-of-state. We show the behav-
ior of the solution graphically, and we determine the properties of the star (radius,
mass, electric charge and compactness) for specific numerical values of the param-
eters involved. Finally, we check that causality is not violated, and that the energy
conditions, the upper bound on the compactness of the stars, and constraints on the
mass of the objects coming from observed massive pulsars and direct detection of
gravitational waves are all fulfilled.

Keywords Relativistic stars · Internal composition of astronomical objects · Exact
analytical solutions.
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1 Introduction

Compact objects [1–3] are the final fate of stars, and since these stars have ultra-high
matter densities, the non-relativistic Newtonian description is not adequate. Dense,
compact objects are relativistic, and as such, the framework of Einstein’s General
Relativity (GR) [4] is the correct way to describe them. In particular, strange quark
stars, as of today hypothetical objects, have been postulated to exist as a new branch
of compact stars. Quark matter, by assumption, is absolutely stable, and it may be
the real ground state of hadronic matter [5,6]. Strange quark stars provide us with a
plausible explanation of the puzzling observation of some super-luminous supernovae
[7,8], which occur in about one out of every 1000 supernovae explosions, and are
more than 100 times brighter than ordinary supernovae. They are called “strange
quark stars” [9–14], and since they are a much more stable configuration compared to
neutron stars, they may explain the origin of the massive amount of energy released
in super-luminous supernovae.

Modelling astrophysical objects, and obtaining exact analytical solutions to Ein-
stein’s field equations which can describe realistic astrophysical configurations, is
always challenging, and it has kept researchers occupied for decades now. Several
techniques are employed to find solutions that describe non-rotating, spherically sym-
metric stars in the presence of a non-vanishing cosmological constant, electromagnetic
fields, anisotropic matter etc. Since realistic astronomical objects are expected to be
electrically neutral, or at least without a significant amount of electric charge, in studies
of compact relativistic astrophysical objects the authors usually focus on electrically
neutral stars made of isotropic matter, and the interior solution is matched to the
exterior Schwarzschild solution [15] on the surface of the object. However, there is
nowadays a considerable amount of articles in the literature investigating the proper-
ties of astrophysical objects with a net electric charge, see e.g. [16–24] and references
therein. Almost 100 years ago Rosseland considered for the first time the possibility
that stars could carry a non-vanishing electric charge [25]. Several decades after that,
other works gave birth to the interest in studying electrically charged astrophysical
objects, since it turns out that the presence of static electric fields may have certain
interesting features, such as avoiding the point singularity or preventing total gravita-
tional collapse of a spherically symmetric distribution of matter, see [26–29].

What is more, celestial bodies under certain conditions may become anisotropic.
Such a possibility was mentioned for the first time in [30], where the author observed
that relativistic particle interactions in a very dense nuclear matter medium could lead
to the formation of anisotropies. Indeed, anisotropies arise in many scenarios of a
dense matter medium, like phase transitions [31], pion condensation [32], or in the
presence of type 3A super-fluid [33]. Anisotropic electrically neutral stars have been
investigated in [34–39], while electrically charged objects with anisotropic matter
were considered in [40–45], out of which only two correspond to strange quark stars (
[43,45]), where a linear equation-of-state (EoS) “radiation plus constant” was adopted.

In the present work we obtain a new exact analytical solution to the Einstein–
Maxwell field equations for anisotropic matter. The solution describes the interior of
anisotropic electrically charged strange quark stars with a non-linear EoS assuming a
finite mass for the s quark. To the best of our knowledge, this analysis is performed
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here for the first time. Our work differs from [43,45] in two respects: First, the EoS
considered here is non-linear, and in addition to that to obtain a tractable exact ana-
lytical solution we assume a specific form for the metric component grr instead of a
particular form for the matter-energy density. Although both choices are equally good,
in practice we find it slightly more convenient to start with a given metric potential,
since in this case the mass function is known immediately, and then the energy density
may be computed differentiating (in the temporal Einstein’s field equation) the mass
function as well as the charge function with respect to the radial coordinate, see the
discussion below. In contrary, if we start assuming a given density profile the mass
function must be determined by integration.

We wish to emphasize at this point that in our work here we are only interested
in the effect of the electric charge on properties of strange quark stars, and not in
the precise mechanism that generates the net charge, although in the literature some
mechanisms have been indeed proposed [46] (see also [47] for an indirect relevance to
quarkmatter).Accretion is perhaps themostwell-known astrophysical process that can
induce a net electric charge into compact objects [48]. For accretion scenarios which
may create black holes and stars with a non-vanishing electric charge big enough to
have influence on the space-time geometry see e.g. [49–51].

The plan to present our work is the following: In the next section we discuss the
model and the structure equations that describe the hydrostatic equilibrium for the
interior of the stars. In Sect. 3 we obtain the exact analytical solution, and we discuss
its properties. Finally, we conclude our work in the Sect. 4. We work in geometrical
units where c = 1 = G, and we adopt the mostly positive metric signature (–,+,+,+).

2 Structure equations

The model is described by the action

S = SG + SM + SEM (1)

where the gravity part SG is given by the usual Einstein-Hilbert term, the electromag-
netic Lagrangian SEM corresponds to Maxwell’s theory, while the matter contribution
corresponds to an anisotropic fluidwith energy densityρ, radial pressure pr , transverse
pressure pt , and an equation-of-state to be discussed later on. Varying with respect to
the metric tensor we obtain Einstein’s field equations without a cosmological constant

Gμν ≡ Rμν − 1

2
Rgμν = 8πTμν (2)

where the Newton’s constant G is set equal to unity. The total stress-energy tensor has
two contributions

Tμν = Mμν + Eμν, (3)
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namely one from the fluid [34]

Mμ
ν = Diag(−ρ, pr , pt , pt ) (4)

and one from the electromagnetic field [22]

Eνμ = 1

4π

[
−1

4
Fgμν + Fνγ F

γ
μ

]
(5)

where F = FμνFμν is the Maxwell invariant, and Fμν is the electromagnetic field
strength. The electromagnetic energy-momentum tensor has the form

Eν
μ = Diag

(
− E2

8π
,− E2

8π
,
E2

8π
,
E2

8π

)
(6)

where E(r) is the electric field. For later use we define the anisotropic factor � ≡
pt − pr .

Furthermore, varying with respect to the Maxwell potential one obtains Maxwell’s
equations

∇νF
μν = 4π Jμ (7)

where Jμ is the current of the charged fluid.
For the exterior problem, r > R, with R being the radius of the star, where Mμν

vanishes, we seek static spherically symmetric solutions of the form

ds2 = − f (r)dt2 + g(r)dr2 + r2(dθ2 + sin2 θdφ2) (8)

for themetric tensor,while for the electromagnetic field the only non-vanishing compo-
nent is the one that corresponds to the electric field, Ftr = E(r) = Q/r2. The solution
to the exterior problem is of course the well-known Reissner-Nordström solution [52]

f (r) = g(r)−1 = 1 − 2M

r
+ Q2

r2
(9)

where M, Q are the mass and the electric charge, respectively, of the star. The electric
charge takes values in the range 0 ≤ Q ≤ M , where in the limit Q → 0 we recover
the Schwarzschild solution, while in the other limit the Reissner-Nordström solution
becomes extremal.

For the interior solutions, r < R, we have to solve the field equations in the presence
of both the perfect fluid and the electromagnetic field. As usual we make the ansatz

ds2 = −e2ν(r)dt2 + A(r)dr2 + r2(dθ2 + sin2 θdφ2) (10)
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and we set for convenience

A(r)−1 = 1 − 2m(r)

r
+ q(r)2

r2
(11)

similar to the exterior solution, wherem(r) is themass function, and q(r) is the electric
charge function.

The structure equations for the unknown quantities may be easily derived since
the corresponding equations for anisotropic objects are known, see e.g. [34]. In the
present work the components of the total energy-momentum tensor are found to be

ρe f f ≡ ρ + E2

8π
(12)

Pr ≡ pr − E2

8π
(13)

Pt ≡ pt + E2

8π
(14)

Therefore, one finally obtains the following system of coupled differential equations
[22,27]

q ′(r) = 4πρe(r)r
2
√
A(r) (15)

m′(r) = 4πρ(r)r2 + q(r)q ′(r)
r

(16)

p′
r (r) = − (pr (r) + ρ(r)) ν′(r) + 2

r
�

+ q(r)q ′(r)
4πr4

(17)

ν′(r) =4πr3 pr (r) + m(r) − q(r)2

r

r2(1 − 2m(r)
r + q(r)2

r2
)

(18)

where ρe(r) is the electric density, and the prime denotes differentiation with respect
to the radial coordinate r .1 For neutral and isotropic stars, q = 0 = �, we recover the
usual Tolman–Oppenheimer–Volkoff equations [53,54].

Finally, the differential equations are to be integrated imposing the initial conditions
at the center of the star

p(0) = pc (19)

m(0) = 0 (20)

q(0) = 0 (21)

1 Notice that eq. (20) of [43] is not compatible with eq. (17) of the same article. It is precisely the latter that
leads to the correct equation form′(r), and not the former, which would implym′(r) = 4πρr2 +q2/(2r2).
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with pc being the central pressure, while upon matching the solutions on the surface
of the star, the following conditions must be satisfied

pr (R) = 0 (22)

m(R) = M (23)

q(R) = Q (24)

e2ν(R) = 1 − 2M

R
+ Q2

R2 (25)

The first condition allows us to determine the radius of the star, the second and the
third allow us to compute both the mass and the charge of the object, while the last
condition is needed to fix the constant of integration when computing ν(r).

3 Interior solution of quark stars with a non-linear EoS

3.1 Exact analytical solution

Matter inside the star is modelled as a relativistic gas of de-confined quarks. Although
in principle an EoS may relate all three quantities (namely, energy density as well
as both radial and transverse pressure), in the following we shall assume that the
underlying physics that governs the EoS in isotropic stars still holds in the case of
anisotropic objects relating in the same way ρ to pr , while the anisotropic factor is
generated via one of themechanisms alreadymentioned in the introduction. Therefore,
in the present work we shall consider an extension of the simplest MIT bag model
[55,56] assuming a finite mass for the s quark

pr (ρ) = 1

3
(ρ − 4B) + 3αμ2

π2 (26)

where

μ2 = −α +
(

α2 + 4π2

9
(ρ − B)

)1/2

(27)

and α = −m2
s/6, with B being the bag constant, andms being the mass of the s quark.

In total there are four field equations, and seven unknown quantities, namely the two
metric potentials, the electric field, the pressures as well as the densities, both matter
density ρ and electric density ρe. In order to find a tractable reasonable solution,
following previous works [38,43] we shall assume certain functions for the electric
charge function q(r) and the second metric potential A(r) = e2λ(r). In particular we
shall assume power-laws of the form

123



Electrically charged strange quark stars... Page 7 of 14 47

2λ(r) = a(r/r0)
2 (28)

q(r) = Q0

(
r

r0

)3

(29)

where we have introduced three parameters, namely a dimensionless parameter a, a
length scale r0 and another parameter with dimensions of electric charge, Q0, not to
be confused with the total electric charge of the star, Q = q(R).

Then using the structure equations we can compute the rest of the quantities one
by one. So the mass functionm(r), the electric field E(r) = q(r)/r2 and the densities
ρe(r), ρ(r) are found to be

m(r) = r

2

(
1 + Q2

0r
4

r60
− e−a(r/r0)2

)
(30)

ρe(r) = 3Q0

4πr30
e−(ar2)/(2r20 ) (31)

ρ(r) = r60 − Q2
0r

4 + e−a(r/r0)2(2ar40r
2 − r60 )

8πr60r
2

(32)

E(r) = Q0r

r30
(33)

To be more precise, the electric density is computed using Maxwell’s equation, while
the energy density is computed using the temporal Einstein’s field equation. Next pr is
computed using the EoS, while the anisotropic factor is computed using the continuity
equation for the fluid, and finally pt = � + pr . Although it is a straightforward and
elementary calculation, we shall omit here the expressions for the pressures as well as
for the anisotropic factor since they are too long. In the next subsection, however, we
show graphically the quantities versus normalized radial coordinate r/R for specific
numerical values of the parameters involved.

The radial and transverse speed of sounds by definition are given by

c2r = dpr
dρ

(34)

c2t = dpt
dρ

(35)

Finally, the first metric component ν may be computed using the rr Einstein’s field
equation

ν(r) = ν(R) + I (36)
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performing the integral

I =
∫ r

R
dx

4πx3 pr (x) + m(x) − q(x)2

x

x2(1 − 2m(x)
x + q(x)2

x2
)

(37)

and where ν(R) is the value of ν(r) evaluated at the surface of the star given by

ν(R) = 1

2
ln

(
1 − 2M

R
+ Q2

R2

)
(38)

Given the expressions for all quantities above, it is straightforward to verify that all
field equations are satisfied.

3.2 Behavior and tests of the solution

The solution is fully determined once the numerical values of the parameters have
been specified. In the figures below we show the interior solution for a = 10, r0 =
35.2 km, Q0 = 25M�,ms = 150 MeV, B = 80 MeVfm−3 = (0.157 GeV)4.
This solution corresponds to a compact object with radius, mass, electric charge, and
compactness C ≡ M/R as follows

R = 10.40 km (39)

M = 2.06 M� (40)

Q = 0.31 M (41)

C = 0.30 (42)

It is easy to verify that the compactness respects the upper bound for electrically
charged objects [57]

M

R
≤ 1

9R2 (3Q2 + 2R2 + 2R
√
R2 + 3Q2) (43)

which generalizes the Buchdahl bound [58] for neutral objects C ≤ 4/9 � 0.44.
Figures 1 and 2 show the metric components A(r), e2ν(r), the densities ρ, ρe, the

pressures pr , pt , the anisotropic factor � = pr − pt , the mass function m(r) and
the electric charge function q(r) versus the normalized radial coordinate r/R for
the numerical values of the parameters mentioned before. The anisotropic factor starts
from zero at the center and increases towards the surface of the star. Although the radial
pressure vanishes at the surface, neither the transverse pressure nor the anisotropic
factor has to vanish there. The behavior of the solution found here is qualitatively
similar to the one of the solutions obtained elsewhere, see e.g. [36,43].
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Fig. 1 Top: Metric components versus r/R. Bottom: Mass function m(r) and electric charge function q(r)
(both in solar masses) versus r/R. The horizontal line represents the 2 solar mass constraint from observed
massive pulsars

Finally, the obtained solution should be able to describe realistic astrophysical
configurations. Therefore, as a final check, we investigate if the energy conditions are
fulfilled or not as well as the stability criterion [59]

� >
4

3
(44)

where the adiabatic index � is defined by

� ≡ c2r

[
1 + ρ

pr

]
(45)

Regarding the energy conditions first, we require that [35–38]

ρ ≥ 0 (46)

ρ − pr ,t ≥ 0 (47)
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Fig. 2 Upper panel: Normalized radial and transverse pressures versus r/R, with B being the bag constant.
Middle panel: Normalized anisotropic factor �/B versus r/R. Lower panel: Normalized densities versus
r/R
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Fig. 4 Mass-to-radius relationships for i) a = 1.15 and Q0 = 10 M� (red curve) and ii) a = 2.1 and
Q0 = 25 M� (cyan curve). The horizontal straight lines represent the 2 solar mass constraint as well as
the upper bound on the maximum mass of 2.17 M�. The curve corresponding to the isotropic, electrically
neutral object is shown as well (black curve) for comparison reasons

E ≡ ρ − pr − 2pt ≥ 0 (48)

It is sufficient to show that the last condition is fulfilled, since then the rest of the
conditions will be fulfilled as well.

Figure 3 shows the radial and tangential speed of sounds, c2r , c
2
t , the adiabatic index

aswell as E/B versus radial coordinate r/R for the sameparametersmentionedbefore.
First, both sound speeds take values between zero and unity throughout the star, and
therefore causality is not violated. What is more, clearly E is positive throughout the
star, and the condition � > 4/3 is satisfied as well. We thus conclude that the solution
obtained in the present work is a realistic solutionwithin GR, and therefore it describes
in a satisfactory way realistic astrophysical configurations.

Finally, the mass-to-radius relationships for two concrete sets of parameters
a, Q0, r0 are shown in Fig 4. The observed massive pulsars PSR J1614-2230 and
PSR J0348-0432 with a mass at 2 solar masses [60–62] have put a stringent constrain
on the EoS. In addition to that, the event GW170817 [63] has imposed a new constraint
to the upper limit of the maximum mass, 2.17 M� [64]. For the two sets chosen here
those requirements aremet. Notice, however, that the limit R > 10.4 km, set by the the
event GW170817, is not fulfilled. Nevertheless, it is possible to meet that requirement
as well for a different choice of the parameters, see for instance the particular solution
discussed in the beginning of Sect. 3.

In Fig. 4 the curve corresponding to the isotropic, electrically neutral object is
shown as well (in black) for comparison reasons. In this case clearly the highest mass
is lower than the 2 solar mass bound, and therefore this EoS must be ruled out, at least
for electrically neutral objects. Both the electric charge and the anisotropic factor lead
to more massive stars. For a given electric charge, the right amount of anisotropy is
required to increase the mass of the object, but not to make it too heavy. This is to
be contrasted to the mass-to-radius relationship obtained in [43] and shown in Fig. 6
there, where the highest mass is too large.
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4 Conclusions

In summary, in this work, we have obtained an exact analytical solution to Einstein–
Maxwell field equations with anisotropic matter. The solution describes the interior
of electrically charged, anisotropic strange quark stars with a non-linear equation-
of-state corresponding to a finite mass of the s quark. The energy conditions are
fulfilled, the speed of sounds (both radial and transverse) take values between zero and
unity throughout the star, and the stability criterion for the adiabatic index, � > 4/3,
holds. Therefore the obtained solution describes realistic astrophysical configurations.
Furthermore, constraints on the mass of the objects coming from observed massive
pulsars and direct detection of gravitational waves are satisfied, and the upper bound
on the compactness is respected.
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