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Abstract
The analytical solutions for the quasi-Keplerian motion under the generally param-
eterized post-Newtonian force are derived in the Brumberg–Damour–Deruelle rep-
resentation. The solutions are formulated in terms of the orbital energy and angular
momentum. The achieved results can be applied to not only the motion of a test parti-
cle but also the relative motion of a binary system in a broad spectrum of gravitation
theories.
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1 Introduction

Newton theory cannot be applied to the cases of the strong gravitational fields, and we
need consider other gravitation theories. For the first post-Newtonian (PN) approxima-
tion, the general model for the dynamics of a test particle in the spherically symmetric
gravitational field can be described by the force [1–4]

F = −mx
r3

+ mx
r3

[
2σ

m

r
− 2εv2 + 3α

(v · x)2

r2

]
+ 2μ

m(v · x)

r3
v , (1)

where we use the natural units in which the gravitational constant and the speed in
the vacuum are set as 1. m is the gravitational source’s mass. x and v denote the
position and velocity vectors of the test particle. r ≡ |x| is the distance between
the test particle and the source which is located at the origin of the coordinates. The
combinations of the parameters σ, ε, α and μ can characterize the force in various
gravitation theories. In fact, this force can also cover the two-body problems in the
parameterized post-Newtonian (PPN) frame [3,4]. The relations between these four
parameters and the PPN parameters have been given in Ref. [4], and the constraints
on the latter can be found in Ref. [5]. The comprehensive discussions on the motion
in the PN Schwarzschild field can also be found in Ref. [6].

Table 1 gives the values of these parameters for general relativity (GR) and the
Brans–Dicke (B–D) theory in the harmonic coordinates [7], as well as GR being
applied for a binary system [4]. ω is the constant of the B–D theory. For a binary
system with masses M1 and M2, m ≡ M1+M2 is the total mass of the system, and
ν ≡ M1M2

m2 is called as the dimensionless reduced mass [5].
Brumberg first obtains the quasi-Keplerian solution for this force in terms of the

osculating elements [1]. Later, Klioner and Kopeikin present the formulations of the
analytical solution in the Damour–Deruelle representation [8], the Epstein-Haugan
representation [9,10], as well as the Brumberg representation [2], and explicitly give
the relations of the PN semi-major axis and eccentricity in these representations to the
constants of the Brumberg’s osculating-element solution [4].

In this work, we follow the approaches given by Brumberg [2] and Soffel et al. [11],
to derive the solution for the quasi-Keplerian motion under the generally PN force in
Brumberg–Damour–Deruelle representation. The analytical solution is formulated in
terms of the orbital energy and angular momentum, being different from those in
Ref. [4].

The rest of paper is organized as follows. In Sect. 2 we calculate the Lagragian,
energy and angular momentum of a test particle under the generally parameterized

Table 1 The values of
σ, ε, α, μ of GR and the B–D
theory with constant ω in the
harmonic coordinates as well as
GR being applied to a binary
system with the dimensionless
reduced mass ν

Theory σ ε α μ

GR 2 1
2 0 2

the B–D theory 4ω+5
2ω+4

2ω+3
4ω+8

1
2ω+4

4ω+5
2ω+4

GR for a binary system 2+ν 1
2 + 3ν

2
ν
2 2−ν
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force. In Sect. 3 we present two slightly different formulations of the quasi-Keplerian
solution, as well as the detailed derivations. Section 4 gives some applications. Sum-
mary is given in Sect. 5.

2 The Lagrangian, energy, angular momentum under the generally
parameterized force

With the force Eq. (1), following the Euler-Lagrange equation

d

dt

∂L

∂v
= ∂L

∂x
, (2)

we can obtain the corresponding Lagrangian of the test particle

L= v2

2
+m

r
−

(ε

4
− α

4
− μ

8

)
v4+

(
ε−α+ μ

2

)m
r
v2−

(
σ −ε− μ

2

)m2

r2
+α

m(v ·x)2

r3
.

(3)

Based on this Lagrangian, we can calculate the energy E and the angularmomentum
J of the post-Newtonian motion as follows

E ≡ v · ∂L

∂v
− L

= v2

2
−m

r
− 3

4

(
ε−α− μ

2

)
v4+

(
ε−α+ μ

2

)m
r
v2+

(
σ −ε− μ

2

)m2

r2
+α

m(v ·x)2

r3
,

(4)

J ≡
∣∣∣x × ∂L

∂v

∣∣∣ = |x×v|
[
1−

(
ε−α− μ

2

)
v2+(2ε−2α+μ)

m

r

]
. (5)

Since the force has a spherical symmetry, without loss of generality, we take the plane
in which the test particle moves as the equatorial plane, and express the particle’s
trajectory as

x = r(cosφ ex + sin φ ey) , (6)

where φ is the azimuthal angle. ex and ey are the unit vectors of the x-axis and y-axis.

3 Quasi-Keplerianmotion under the generally parameterized
post-Newtonian force

In order to deliver the formulations more clearly, we will first give the analytical
solution directly, and then present the detailed derivations.
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49 Page 4 of 13 B. Yang, W. Lin

3.1 Results

The first formulation for the quasi-Keplerian motion can be expressed as

x = r(cosφ ex + sin φ ey) , (7)

v = 2πar er sin u

Tu(1−et cos u)
(cosφ ex+ sin φ ey)

− arΦ(1−e2r )
1
2

Tu(1−et cos u)

(
1+N

cos u−er
1−er cos u

)
(sin φ ex− cosφ ey) , (8)

r = ar (1 − er cos u) , (9)

φ
(2π

Φ

)
= f + N sin f , (10)

f = 2 arctan
(√

1 + er
1 − er

tan
u

2

)
, (11)

t
(2π
Tu

)
= u − et sin u , (12)

and the second formulation can be expressed as

x = r(cosφ ex + sin φ ey) , (13)

v = 2πar er sin u

Tu(1−et cos u)
(cosφ ex+ sin φ ey)

− arΦ(1 − e2φ)
1
2

Tu(1−et cos u)

1−er cos u

1−eφ cos u
(sin φ ex− cosφ ey) , (14)

r = ar (1 − er cos u) , (15)

φ
(2π

Φ

)
= υ , (16)

υ = 2 arctan
(√

1 + eφ

1 − eφ

tan
u

2

)
, (17)

t
(2π
Tu

)
= u − et sin u , (18)

where

ar = m

−2E
[
1+

(
ε−α+ 3

2
μ

)
E
]

, (19)

e2r = 1+ 2EJ 2

m2 + E
[
4(σ −2ε+α−2μ)−(2ε−2α+7μ)

EJ 2

m2

]
, (20)

et = er
[
1+2(α+2μ)E

]
, (21)

eφ = er
(
1− 2α E

)
, (22)
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Φ = 2π
[
1+(2ε+2μ−σ)

m2

J 2

]
, (23)

N = α
m2

J 2

(
1+ 2EJ 2

m2

)1
2

, (24)

Tu = 2πm

(−2E)
3
2

[
1−

(1
2
ε+ 3

2
α+ 7

4
μ

)
E
]
. (25)

In the formulations, ar , er , f and u and can be regarded as the semi-major axis, the
eccentricity, the true anomaly and the eccentric anomaly of the quasi-Keplerian orbit
in the post-Newtonian approximation, respectively. υ is another definition of the true
anomaly [11]. Tu denotes the orbital period.

It is worth emphasizing that these two formulations of the quasi-Keplerian solution
are equivalent in the 1PN approximation.

3.2 Derivations

We follow the same procedure given by Soffel et al. [11] to derive the analytical
solution for the post-Newtonian motion.

The expressions for the orbital energy and angular momentum in Eqs. (4)–(5) can
be written as:

E = 1

2
(ṙ2+r2φ̇2)−m

r
−

(3
4
ε− 3

4
α− 3

8
μ

)
(ṙ2+r2φ̇2)2

+ m

2r

[
(2ε+μ)ṙ2+(2ε−2α+μ)r2φ̇2+(2σ −2ε−μ)

m

r

]
, (26)

J = r2φ̇
[
1−

(
ε−α− μ

2

)
(ṙ2+r2φ̇2)+(2ε−2α+μ)

m

r

]
, (27)

where the dot denotes the derivative with respect to the time. These formulas lead to
the first-order equations of motion

r2φ̇ = J
[
1+(2ε−2α−μ)E−2μ

m

r

]
, (28)

and

ṙ2 = A + B

r
+ C

r2
+ D

r3
, (29)

with

A = 2E
[
1+

(
3ε−3α− 3

2
μ

)
E
]

,

B = 2m
[
1+2(2ε−3α−2μ)E

]
,

C = −J 2
[
1+2(2ε−2α−μ)E+2(σ −2ε+3α+2μ)

m2

J 2

]
,

D = 2(α+2μ)mJ 2.
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49 Page 6 of 13 B. Yang, W. Lin

Making use of the relation

ṙ2 ≡
[d(1/r)

dφ

]2
(r4φ̇2) , (30)

and plugging Eqs. (28)–(29) into (30), we can write the radial equation in the form

[d(1/r)

dφ

]2 = A′ + B ′

r
+ C ′

r2
+ D′

r3
, (31)

with

A′ = 2E
J 2

[
1−

(
ε−α− μ

2

)
E
]

,

B ′ = 2m

J 2

[
1−2(α−μ)E

]
,

C ′ = −1−2(σ −2ε+3α−2μ)
m2

J 2 ,

D′ = 2αm.

Since the right hand side of Eq. (31) is a third-order polynomial in r−1, we can further
re-write it as

[d(1/r)

dφ

]2 =
[1
r

− 1

ar (1 + er )

][ 1

ar (1 − er )
− 1

r

](
C1 + C2

r

)
. (32)

Comparing the coefficients between Eq. (31) and Eq. (32), we have

ar = m

−2E
[
1+

(
ε−α+ 3

2
μ

)
E
]

, (33)

e2r = 1+ 2EJ 2

m2 + E
[
4(σ −2ε+α−2μ)−(2ε−2α+7μ)

EJ 2

m2

]
, (34)

C1 = 1+2(σ −2ε+α−2μ)
m2

J 2 , (35)

C2 = −2αm. (36)

It can be seen from Eq. (32) that r± = ar (1 ± er ) represent the maximal and min-
imal values for r . Hence, ar and er can be regarded as the semi-major axis and the
eccentricity of the quasi-Keplerian orbit.

The solution of Eq. (32) can be written as:

r = ar (1 − e2r )

1 + er cos f
, (37)
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with f being the true anomaly for the quasi-Keplerian orbit and obeying

(d f
dφ

)2 = C1 + C2

r
. (38)

Substituting Eqs. (35)–(37) into Eq. (38), we have

d f

dφ
=

[
1+(σ −2ε−2μ)

m2

J 2

](
1−α

m2

J 2 er cos f
)

, (39)

and then integrate this equation, we obtain

φ
(2π

Φ

)
= f + α

m2

J 2 er sin f , (40)

with

Φ = 2π
[
1−(σ −2ε−2μ)

m2

J 2

]
. (41)

Finally, we derive the time dependence of the quasi-Keplerian motion. Combining
Eqs. (28) and (39), we have

r2 ḟ = J
[
1+(2ε−2α−μ)E−2μ

m

r
+(σ −2ε−2μ)

m2

J 2 − α
m2

J 2 er cos f
]
. (42)

Introducing the post-Newtonian eccentric anomaly u by the relations

sin f = (1−e2r )
1
2 sin u

1−ercos u
; cos f = cos u−er

1−er cos u
; f =2 arctan

(√1+er
1−er

tan
u

2

)
, (43)

we have
d f

dt
= (1 − e2r )

1/2

1 − er cos u

du

dt
, (44)

and we can formulate the orbit given in Eq. (37) in terms of u as

r = ar (1 − er cos u). (45)

Integrating Eq. (42) and making use of Eqs. (43)–(45), we can achieve the quasi-
Keplerian equation

t
(2π
Tu

)
= u − et sin u , (46)

with Tu being the period for the eccentric anomaly u of the quasi-Keplerian motion

Tu = 2πm

(−2E)
3
2

[
1−

(1
2
ε+ 3

2
α+ 7

4
μ

)
E
]

, (47)
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and et being the time eccentricity

et = er
[
1+2(α+2μ)E

]
. (48)

In the literatures, one usually uses the “true anomaly” υ to replace the true anomaly
f in the formula of the quasi-Keplerian equation, requiring that the sin υ contribution
in φ( 2π

Φ
) vanish at each PN order [12–14]. Following the same method given in

Ref [14], we set

υ = 2 arctan
(√

1 + eφ

1 − eφ

tan
u

2

)
, (49)

with
eφ = er (1 + c1) , (50)

being different from the radial eccentricity er by the 1PN correction c1. Notice that
here we only need consider the 1PN case.

Eliminating u in Eq. (43) with the help of Eq. (49) and inserting the result into
Eq. (40), we have [14]

f = υ + c1
er

e2r − 1
sin υ. (51)

Requiring the sin υ term to vanish in φ( 2π
Φ

) yields

c1 = −2αE ,

i.e.,
eφ = er

(
1− 2αE

)
. (52)

Substituting Eq. (51) into Eq. (40), we can obtain

φ
(2π

Φ

)
= υ. (53)

To the 1PN accuracy, the time dependance of the quasi-Keplerian motion, depicted
by Eqs. (46)–(48), does not need change when the “true anomaly” υ is used in the
formulation.

The derivations for the velocity v of the post-Keplerian motion will be given in the
next section.

4 Some applications

Here we discuss some potential applications of the achieved solutions.
The orbital period Tu and perihelion precession Δφ of the celestial bodies are two

important quantities in the astronomical observations. The perihelion precession can
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Fig. 1 The perihelion precession varies with ω in the B–D theory

be obtained from Eq. (23), which reads

Δφ ≡ Φ − 2π = 2π(2ε + 2μ − σ)
m2

J 2 . (54)

It can be seen that it is independent on the parameter α. The orbital period is given
in Eq. (25), from which we can see that it is independent on the parameter σ . The

corrections to the Keplerian period TK≡2πm/(−2E)
3
2 can be written as

ΔT

TK
≡ Tu − TK

TK
= −

(1
2
ε+ 3

2
α+ 7

4
μ

)
E . (55)

Figures 1 and 2 present the perihelion precession and the corrections to the orbital
period predicted by the B–D theory with different constant ω. Notice that the B–D
theory reduces to GR in the limit of ω→∞, and the relations between the parameters
in the general force and ω are given in Table 1.

Next, we consider the effects of the dimensionless reduced mass ν of the binary
systems on the perihelion precession and the orbital period. The relations between the
parameters in the general force and ν are given in Table 1. Figure 3 and 4 show the
dependence of the perihelion precession and the corrections to the orbital period on
the dimensionless reduced mass in the GR frame.

Finally, with the orbital solutions, we can further derive the celestial body’s velocity
v, which is needed in calculating the waveform of gravitational-wave radiation.
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Fig. 2 The corrections to the orbital period varies with ω in the B–D theory
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Fig. 3 The perihelion precession predicted by GR varies with the dimensionless reduced mass of the binary
systems
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Fig. 4 The GR corrections to the orbital period varies with the dimensionless reduced mass of the binary
systems

For the first formulation, from Eqs. (9), (10) and (12), we have

dr

dt
= ar er sin u

du

dt
, (56)

dφ

d f
= Φ

2π
(1 + N cos f ) , (57)

du

dt
= 2π

Tu(1 − et cos u)
. (58)

Taking the time derivation of Eq. (7), and making use of Eqs. (9), (43), (44), (56), (57)
and (58), we can obtain the velocity for the quasi-Keplerian motion under the first
formulation as follow

v = 2πar er sin u

Tu(1−et cos u)
(cosφ ex+ sin φ ey)

− arΦ(1−e2r )
1
2

Tu(1−et cos u)

(
1+N

cos u−er
1−er cos u

)
(sin φ ex− cosφ ey) , (59)

For the second formulation, from Eq. (16), we have

dφ

dυ
= Φ

2π
. (60)
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In addition, following Eq. (17), we can obtain

sin υ = (1−e2φ)
1
2 sin u

1−eφ cos u
; cos υ = cos u−eφ

1−eφ cos u
; dυ

dt
= (1 − e2φ)

1
2

1 − eφ cos u

du

dt
. (61)

Taking the time derivation of Eq. (13), and making use of Eqs. (15), (56), (58) and
(61), we can obtain the velocity for the quasi-Keplerian motion under the second
formulation as follow

v = 2πar er sin u

Tu(1−et cos u)
(cosφ ex+ sin φ ey)

− arΦ(1 − e2φ)
1
2

Tu(1−et cos u)

1−er cos u

1−eφ cos u
(sin φ ex− cosφ ey). (62)

5 Summary

Wederive two slightly different but equivalent 1PN formulations of the solution for the
particle’s motion under the generally parameterized force, through an iterative method
and a function-fittingmethod. The formulas are expressed in terms of the orbital energy
and angular momentum, which have direct physical meaning. The achieved solutions
can be used in fitting the motion of the test particle as well as the relative motion of
the binary systems under various gravitation theories. Moreover, since the generally
parameterized force can characterize the dynamic equations for these kinds of systems
under various gravitation theories in the harmonic coordinates, the analytical orbit and
velocity can also be directly used to calculate the waveform of gravitational wave, and
thus are useful in building the theoretical templates of the gravitational-wave radiation
for the binary systems including the extreme-mass-ratio inspirals.
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