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Abstract
Newtonian gravity predicts the existence of white dwarfs with masses far exceeding
the Chandrasekhar limit when the equation of state of the degenerate electron gas
incorporates the effect of quantum spacetime fluctuations (via a modified dispersion
relation) even when the strength of the fluctuations is taken to be very small. In
this paper, we show that this Newtonian “super-stability” does not hold true when
the gravity is treated in the general relativistic framework. Employing dynamical
instability analysis, we find that the Chandrasekhar limit can be reassured even for a
range of high strengths of quantum spacetime fluctuations with the onset density for
gravitational collapse practically remaining unaffected.

Keywords Quantum spacetime fluctuations · Non-commutative geometry · Modified
dispersion relation · White dwarfs · Dynamical instability

1 Introduction

The Hawking-Wheeler foam [1,2] of quantum space-time fluctuations can be
accounted for by a non-commutative spacetime geometry. This modifies the disper-
sion relation between energy and momentum of any particle. Since a modification in
the dispersion relation leads to a modified equation of state (EoS), it is apparent that
the stellar structure of white dwarfs governed by its electron degenerate gas would
undergo a measurable change if the stiffness of the EoS changes sufficiently. In fact it
has been shown [3,4] that white dwarfs with modified EoS can support masses much
higher than the Chandrasekhar limit that become “super-stable” when the hydrostatic
equilibrium is governed by Newtonian gravity.
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However the possibility of the existence of excessively massive white dwarfs is
unlikely as it is inconsistent with an extensive amount of astronomical observations [5–
11]. Although there have been speculations about super-Chandrasekhar white dwarfs,
it has been argued [12,13] that they are in fact double degenerate merges of two sub-
Chandrasekhar white dwarfs. It is thus extremely important to investigate whether
the above-mentioned “super-stability” prevails in general relativity (GR). It may be
recalled that general relativity has a profound effect in determining the stability of
massive stars against gravitational collapse although it may have an insignificant effect
on their stellar structure.

We thus anticipate that a dynamical instability would set in at a critical value of
the central density as generally predicted for relativistic stars [14–19]. Following this
standard method, we calculate the eigenfrequencies of the normal mode of radial
oscillations with respect to various central densities of white dwarfs with the electron
degenerate gas treated in the framework of modified dispersion relation. The existence
of a vanishing eigenfrequency corresponds to the maximum central density in stable
configuration. We identify the onset density of dynamical instability with respect to a
parameter characterizing the strength of quantum spacetime fluctuations.

The quantum fluctuations of spacetime would indicate that the space and time
coordinates may be treated as operators obeying nontrivial commutation relations.
The notion of quantum spacetime was introduced by Snyder [20,21] by regarding
the space-time coordinates as Hermitian operators preserving Lorentz invariance and
incorporating a characteristic length scale. Heisenberg-like commutation relations
between position and momentum do not hold in this framework and they resemble
the generalized uncertainty relations explored from different points of view [22–31].
Moreover related viewpoints have emerged from various other considerations about
the quantum nature of spacetime [32–35].

Inmodern times, themathematical formulation for the quantum nature of spacetime
is build upon a non-commutative geometrywhich is usually taken to be the κ-deformed
Poincaré algebra, for example, [xi , t] = i xi/κ and [xi , x j ] = 0. The noncommutative
nature of spacetime leads to a deformation in the dispersion relation of a particle
moving in spacetime. Amelino-Camelia and Majid [36] constructed a corresponding
Fourier space and obtained the generators of Lorentz transformation leading to a
deformed dispersion relation of the form 2�

2κ2{cosh(E/�κ) − 1} − p2c2e−E/�κ =
m2c4. Amelino-Camelia [37] further proposed a modified dispersion relation of the
form E2− p2c2+ f (E, p,m, �P ) = m2c4 on the basis of a modified special relativity
where both the speed of light c and the Planck length �P are constrained to be invariant.
Magueijo and Smolin [38] constructed a similar modification of special relativity with
the condition that the standard theory of relativity is recovered at low energies or
large length scales. This required the construction of a modified Lorentz group that
acts nonlinearly in the momentum space and it led to the modified invariant ||p||2 =
ημν pμ pν

(1−�P p0)2
= m2, where m is the rest mass of the particle. This means that the ideal

dispersion relation E2 = p2+m2 is deformed in theirmodified relativity. Themodified
dispersion relations can be put into a general form E2 − p2c2 f (E, p,m, �P ) = m2c4

that has been utilised in different contexts. For example, Alexander and Magueijo
[39] addressed the horizon and flatness problems in a Friedmann cosmology with a
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modified dispersion relation of the form E2 − p2c2 f (E) = 0, with three different
choices: f (E) = (1+λE)2, f (E) = 4λ2E2/(1− e−2λE )2 and f (E) = (1+λE)2γ .
Bertolami and Zarro [3], considering the form f (E) = (1 + λE)2, employed the
deformed dispersion relation E2 = p2c2(1 + λE)2 + m2c4 for massive particles.
Taking the approximate form E = λp2c2 + √

p2c2 + m2c4 for low values of λ,
they found that the O(λ) correction to the electron degenerate pressure enhances
the stability of white dwarfs. The present authors [4] employed the unapproximated
dispersion relation and found thatwhite dwarfs of arbitrarily highmasses remain stable
if the gravitational pull is dictated by Newtonian gravity.

In this paper, we use the modified dispersion relation E2
p = p2c2(1+λEp)

2+m2c4

that leads to a modified equation of state of the degenerate electron gas. We analyze
the stability of white dwarfs by calculating the eigenfrequencies of normal modes of
small radial oscillations in the first order of perturbation.We find that general relativity
is capable of causing a gravitational collapse even for high strengths of quantum
spacetimefluctuations characterized by the parameterα = λmec2. However,when this
strength is very high (α > 3.7 × 10−3), the quantum space-time fluctuations become
strong enough to hold up against a gravitational collapse. A legitimate bound on such
parameters occurring in equivalent formulations of quantum spacetime fluctuations
indicate an upper bound for α much lower than 3.7× 10−3 for which we find that the
Chandrasekhar critical limit can be realized in the quantum gravitational regime.

The remainder of the paper is organized as follows. In Sect. 2, we present a brief
review of dynamical instability in general relativity. In Sect. 3, the dynamical insta-
bility is explored for white dwarfs with the equation of state governed by a modified
dispersion relation to account for the effect of quantum spacetime fluctuations on the
instability. Finally, we conclude the paper in Sect. 4.

2 Dynamical instability in GR: a brief review

In this section we review the dynamical instability of spherically symmetric fluid
masses with respect to radial oscillations with the gravity treated general relativisti-
cally. The stability of the equilibrium fluid configuration is examined by considering
radial perturbation in a spherically symmetric manner. Thus the metric interior to the
fluid mass undergoing radial perturbation, given by

ds2 = eν+δνdt2 − eμ+δμdr2 − r2(dθ2 + sin2 θ dφ2), (1)

where ν(r) and μ(r) refer to the equilibrium configuration, and δν(r , t) and δμ(r , t)
correspond to a small radial Lagrangian displacement ζ(r , t) about the equilibrium
configuration. Various quantities in the Einstein field equations, such as the pressure
and energy density, become dependent on the coordinate time t in addition to the the
radial coordinate r . Supposing all perturbations are sinusoidal in the coordinate time,
one can express the Lagrangian displacement as ζ(r , t) = r−2eν/2ψ(r)eiωt in the first
order of perturbation. The equation governing the radial pulsation was obtained by
Chandrasekhar [14] which can be expressed in the Sturm–Liouville form [17]

123



38 Page 4 of 14 A. Mathew, M. K. Nandy

d

dr

(
U
dψ

dr

)
+

(
V + ω2

c2
W

)
ψ = 0, (2)

where

U (r) = e(μ+3ν)/2 γ P

r2
, (3)

V (r) = −4
e(μ+3ν)/2

r3
dP

dr
− 8πG

c4
e3(μ+ν)/2

r2
P(P + ε) (4)

+e(μ+3ν)/2

r2
1

P + ε

(
dP

dr

)2

, (5)

W (r) = e(3μ+ν)/2

r2
(P + ε), (6)

with P(r) and ε(r) are the pressure and energy density of the fluid mass at equilibrium
given by the Tolman–Oppenheimer–Volkoff equation [40,41]

dP

dr
= − G

c2r
(ε + P)

(m + 4π Pr3/c2)

(r − 2Gm/c2)
(7)

with

dm

dr
= 4π

c2
εr2. (8)

The above hydrostatic equilibrium render the pressure and energy density to be
functions of the radial coordinate r . The equation of state connecting the pressure and
energy density lead to the the adiabatic index γ expressed as

γ = ε + P

P

(
dP

dε

)

s
, (9)

making the adiabatic index γ a function of the radial coordinate r .
The admissible radial motion requires the fluid element at the center to have a

vanishing displacement ζ (and dζ/dr be finite) leading to the condition

ψ = 0 at r = 0. (10)

Furthermore, the solution is also required to satisfy

δP = −eν/2 γ P

r2
dψ

dr
= 0 at r = R, (11)

at the surface, where δP represents the Lagrangian change in pressure and R is the
radius of the fluid sphere.
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Multiplying Eq. (2) from left by ψ and integrating from 0 to R and applying the
above boundary conditions, one can obtain the integral

J [ψ] =
∫ R

0

{
Uψ ′2 − Vψ2 − ω2

c2
Wψ2

}
dr . (12)

where ψ ′ = dψ/dr . Minimizing J [ψ] with respect to ψ yields the Sturm–Liouville
equation (2), thus providing a variational basis for determining the lowest characteristic
eigenfrequency given by

ω2
0

c2
= min

ψ(r)

∫ R
0

{
Uψ ′2 − Vψ2

}
dr

∫ R
0 Wψ2dr

, (13)

corresponding to the normal mode of oscillation. A sufficient condition for the dynam-
ical instability to set in is that the value ofω2

0 be negative. Thus a suitable trial function
ψ(r) satisfying the boundary conditions and making the right hand side vanish will
determine the onset of instability. It can be seen that a power series solution for the
above Sturm–Liouville equation (2) about r = 0 satisfying the boundary conditions
(10) and (11) has a leading order term ∝ r3. To determine the eigenfrequency of
the fundamental mode we assume a trial function ψ(r) ∝ r3 which corresponds to
a homologous vibration. It can be shown [42] that this trial function is a sufficiently
close approximation to the true eigenfunction of the fundamental mode.

3 Dynamical instability in white dwarfs withmodified dispersion
relation

It has been reported thatwhen quantum spacetimefluctuations are included in the equa-
tion of state of the electron gas, white dwarfs can exist in excessively large masses
beyond the Chandrasekhar limit when the gravity is treated in the Newtonian frame-
work although the strength of quantum spacetime fluctuations is taken to be very small
[43,44]. However, it is well-known that, in the conventional problem of stability of
white dwarfs, a dynamical instability sets in [15,16] when the gravity is treated in the
framework of general relativity. It is thus natural to speculate that a similar general rel-
ativistic instability may set in when the small effect of quantum spacetime fluctuations
is included in the equation of state of the electron gas.

3.1 Modified equation of state

The effect of quantum spacetime fluctuations can be modelled via a modified disper-
sion relation. We shall take modified dispersion relation [3]

E2
p = p2c2(1 + λEp)

2 + m2c4 (14)
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which imposes amomentumcutoff at pmax = (λc)−1 abovewhich the energy becomes
unphysical. For small values of momentum it coincides with the ideal dispersion
relation E2

p = p2c2 + m2c4, but it deviates strongly for high values of momentum,
becoming infinite at the cutoff pmax.

Since the electron gas in white dwarfs is completely degenerate, we evaluate the
pressure P , internal energy εint, and mass-density ρ0 at absolute zero from the grand
partition function. Thus we obtain [4] the modified equation of state

P = AP̃(ξ), ρ0c
2 = A

q
ξ3, ε = ρ0c

2 + εint = A

q
ε̃(ξ ) (15)

where

P̃(ξ) = ξ3 f (ξ) − 3g(ξ), ε̃ = (1 − q)ξ3 + 3qg(ξ), (16)

ξ = pF
mec

, A = 8πm4
ec

5

3h3
, q = me

μemu
= 2.74297 × 10−4, (17)

f (ξ) =
[
αξ2 +

√
(1 − α2)ξ2 + 1

] [
1 − α2ξ2

]−1

, (18)

and

g(ξ) = 1

α4

[
2 tanh−1 αξ + tanh−1 ξ(1 − α2)

α + √
1 + (1 − α2)ξ2

− (2 − α2)

2
√
1 − α2

sinh−1 ξ
√
1 − α2

]

− ξ

3α3

[
3 + α2ξ2 + 3α

2

√
1 + (1 − α2)ξ2

]
(19)

with α = λmec2.

Employing the relativistic expression γ = ε̃+q P̃
P̃

(
d P̃
d ε̃

)

s
for the adiabatic index γ ,

and using Eqs. (15-19), we obtain

γ = ε̃(ξ ) + q P̃(ξ)

P̃(ξ)

(
ξ

3

) (
1 − q + q

dg

dξ

)−1 (
d f

dξ

)
(20)

for the electron gas with the modified equation of state.

3.2 Stability analysis

The Einstein field equation for the static interior Schwarzschild metric can be solved
[40,41] to obtain the metric components

e−μ = 1 − 2q
m̃

η
(21)
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and

eν =
(

1 − 2q
M̃

ηR

)

× exp

⎧
⎨

⎩
−2q

∫ ξ

0

d P̃
dξ

(ε̃ + q P̃)
dξ

⎫
⎬

⎭
, (22)

where m̃ = m/m0 and η = r/r0 are dimensionless variables with

r0 = qc2√
4π AG

and m0 = q2c4√
4π A

1

G3/2 . (23)

The dimensionless quantities M̃ = M/m0 and ηR = R/r0 correspond to the mass M
and radius R of the fluid sphere. Using Eqs. (16-19), Eq. (22) can be simplified to

eν =
(

1 − 2q
M̃

ηR

) (
1

1 − q + q f (ξ)

)2

. (24)

The dependence of the above field quantities on the radial coordinate η correspond
to the Tolman–Oppenheimer–Volkoff equation [40,41] of hydrostatic equilibrium
expressed here as

d P̃

dη
=

(
d f

dξ

)
ξ3

dξ

dη
= −

(
ε̃ + q P̃

η

) (
m̃ + q P̃η3

η − 2qm̃

)

(25)

with the mass equation

dm̃

dη
= ε̃η2. (26)

The functionsU (η), V (η) andW (η) in the Sturm–Liouville equation (2) are readily
obtained from Eqs. (3-6) employing Eqs. (21), (24) and (25). In consequence, Eq. (13)
yields the eigenfrequency

ω2
0 =

(
qc2

r20

)
I + J
K , (27)

where

I =
∫ ηR

0
e(μ+3ν)/2 γ P̃

η2
ψ ′2
0 dη, (28)

J =
∫ ηR

0

e(μ+3ν)/2

η2

⎡

⎣4

η

d P̃

dη
+ 2qeμ P̃(ε̃ + q P̃) − q

ε̃ + q P̃

(
d P̃

dη

)2
⎤

⎦ψ2
0dη,

(29)
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Fig. 1 Eigenfrequency for normal modes against central density of relativistic white dwarfs for various
values of the parameter α that characterises the strength of quantum spacetime fluctuations. The scale of
this plot cannot accommodate the cases α = 10−2 and 10−3. It will be evident from Fig. 2 that the case
α = 10−3 gives a zero eigenfrequency solution whereas for the case α = 10−2, the curve reaches a terminal
point without giving a zero eigenfrequency solution

and

K =
∫ ηR

0
e(3μ+ν)/2 ε̃ + q P̃

η2
ψ2
0dη, (30)

with ψ0 the eigenfunction associated with the fundamental mode that minimizes the
right-hand side of Eq. (13).

As stated earlier, we make the choice ψ0 = η3 as a trial function and evaluate the
integrals I, J , and K given by Eqs. (28-30) for different values of the central Fermi
momentum ξc. The corresponding eigenfrequencies are obtained fromEq. (27). Figure
1 displays the eigenfrequency against the central density ρc [related to ξc through
ρ = (A/qc2){(1 − q)ξ3 + 3qg(ξ)}] for different strengths of quantum spacetime
fluctuations parametrized by α, namely, α = 10−2, 10−3, 10−4, and 10−5, including
the ideal case (α = 0).

We observe from Fig. 1 that for α = 10−5, the characteristic eigenfrequencies are
close to the ideal values. As the strength is increased to α = 10−4, the eigenfrequen-
cies depart from the ideal values but they follow a trend similar to the ideal case,
and gravitational instability can set in dictated by general relativity by virtue of the
existence of a vanishing eigenfrequency and a corresponding critical central density
ρ∗
c . This signifies the dominance of gravitational pull determined by general relativity

over the effect of quantum spacetime fluctuations on the equation of state.
However, for higher strengths of α, such as α = 10−3 and 10−2, the scale of

the ordinate in Fig. 1 is not adequate to analyze their behaviors. For an adequate
analysis of the situation, we show a log-log plot in Fig. 2. It is clear from Fig. 2
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that, for α > 3.7 × 10−3, the curves follow a trend completely different from the
ideal case because they reach terminal points at non-zero eigenfrequencies and thus
zero eigenfrequency solutions do not exist. This signifies the non-existence of any
gravitational instability or collapse and the white dwarfs remain “super-stable”. The
central densities at which the curves terminate are higher than Chandrasekhar’s value
of 2.3× 1010 g cm−3. From this super-stability, we conclude that quantum spacetime
fluctuations are sufficiently strong for α > 3.7 × 10−3 so that the gravitational pull
determined by general relativity is incapable of bringing about any instability.

On the other hand, for α ≤ 3.7 × 10−3, the trends of the eigenfrequencies are
similar to that of the ideal case and general relativistic instabilities can set in due to the
existence of vanishing eigenfrequencies of the normal mode. This obviously means
that, for α ≤ 3.7 × 10−3, the gravitational pull determined by general relativity is
strong enough to bring about an instability or collapse. Thus the value α = 3.7×10−3

marks a transition point for strength of quantum gravitational fluctuations competing
against gravity pull that leads to the general relativistic instability.

Since the general relativistic instability (corresponding to the zero eigenfrequency)
occurs at a critical central density ρ∗

c determined by the parameter α, it is worth
studying the behavior of the corresponding critical values of the central Fermimomenta
ξ∗
c with respect to the parameter α. We see from the right-hand part of Fig. 3 that as the
strength of α is increased from 10−5 to 10−4, the critical value ξ∗

c (or equivalently ρ∗
c )

remains approximately constant. In fact, our calculation shows that there is negligible
variation in the value of ξ∗

c in the range 0 < α < 10−5 (which is also evident fromFig. 1
from the near-coincidence of the two ρ∗

c values). Thus in the range 0 < α < 10−4, we
expect that general relativistic instability would yield nearly the same critical masses.
In this range, we find ρ∗

c = 2.3 − 2.9 × 1010 g cm−3 which is in the vicinity of
Chandrasekhar’s value of 2.3×1010 g cm−3 [16]. This indicates that Chandrasekhar’s
general relativistic critical mass of 1.42 M� is negligibly affected in this range of the
parameter α.

We thus see that the effect of general relativity is robust enough to cause an insta-
bility against the effect of quantum spacetime fluctuations even for strengths such as
α = 10−4. Experimental bounds on such parameters occurring in equivalent formula-
tions of quantum spacetime fluctuations is available in the literature. For example, Das
and Vagenas [45] discussed various experimental bounds on the generalised uncer-
tainty parameter β0. Taking the bound β0 ∼ 1034, which is a legitimate upper bound
coming from the electroweak theory, it translates to α ∼ 10−6 in our case. Thus
α = 10−4 is in fact a large value for the strength of quantum spacetime fluctuations. If
the strength of α is increased beyond 10−4, we see from Fig. 3 that the critical central
Fermi momentum ξ∗

c also increases. However, after reaching a maximum it eventually
falls off due to increased role of gravitating pressure in comparison to the gravitating
mass. Finally, the curve approaches the line ξ = α−1 = ξmax until it makes an inter-
section at α = 3.7×10−3, the maximum strength of α for the existence of a vanishing
eigenfrequency and hence a gravitational collapse. This intersection is shown in the
inset of Fig. 3 by an open circle where ξ∗

c = 2.7 × 102. It is obvious that the curve
cannot cross the line ξ = α−1, having reached the maximum value ξ∗

c = α−1.
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Fig. 2 Eigenfrequency for normal modes versus central density of relativistic white dwarfs for various
strengths of α higher than those in Fig. 1. For α ≤ 3.7 × 10−3, the curves indicate the existence of zero
eigenfrequency solutions leading to gravitational collapse. For α > 3.7 × 10−3, the curves reach terminal
points and zero eigenfrequency solutions do not exist excluding the possibility of gravitational collapse
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Fig. 3 Critical value of the central Fermi momentum for the onset of gravitational instability versus the
parameter α. The dashed straight line represents ξ = ξmax = α−1. The inset shows the intersection of the
two curves at α = 3.7 × 10−3

4 Conclusion

Themodified dispersion relation is one of the scenarios in which the effect of quantum
gravity is phenomenologically taken into account. We expect the effect of quantum
gravity to have some signature when the density of the matter is very high. In this
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context it is worthwhile to recall that the standard Chandrasekhar limit of 1.44 M� is
approachedwhen the density of the electron degenerate gas inwhite dwarfs approaches
infinity in the framework of Newtonian gravity. The problem thus calls for taking
account of the effect of quantum gravity at very high densities of the electron degen-
erate gas. When this notion is followed and the electron gas is treated via a modified
dispersion relationmaking the equation of statemore stiff than the ideal one, it is found
that white dwarfs become “super-stable” and highermasses beyond theChandrasekhar
limit are possible [4] when the gravity is treated in the Newtonian framework. How-
ever, as noted in the introduction and in more detail below, white dwarfs are most
likely to exist below the Chandrasekar limit. It is thus extremely important to resolve
this paradoxical situation.

It is known from Chandrasekhar’s study [14,16] that a dynamical instability sets in
when the gravity is treated general relativistically. Consequently it is natural to ask the
question whether general relativity would be capable of reassuring the Chandrasekar
limit when the effect of quantum space-time fluctuations is included in the equation
of state. Motivated by this query, we analyzed the problem of stability of white dwarfs
governed by general relativity and incorporating quantum space-time fluctuations in
the electron degenerate gas via a modified equation of state.

To analyze the stability, we followed the standard methodology of perturbations
generating radial pulsations in spherically symmetric white dwarfs and calculated the
corresponding eigenfrequencies of the radial oscillations. The corresponding eigen-
value equation is in the Sturm–Liouville form whose eigenfrequencies can be related
to a variational principle. With an appropriate trial function for the Lagrangian dis-
placement, we calculated the eigenfrequencies for various strengths of the quantum
space-time fluctuations parametrized by α.

We find that, for large values of α such that α > 3.7 × 10−3, white dwarfs remain
“super-stable” as they do not exhibit any zero eigenfrequency in the normal mode.
Such white dwarfs can support maximummasses determined by the maximum values
of the central density ρc where the curves terminate as shown in Fig. 2. These values
of ρc are higher than the critical density obtained by Chandrasekhar suggesting the
possibility of white dwarfs of masses higher than Chandrasekar’s general relativistic
value of 1.42 M�. However, these cases are unlikely because we do not expect that
the strength α of spacetime fluctuations to be as large as or higher than 0.0037, as
discussed earlier on the basis of bounds on similar parameters. It may however be
noted that there have been observations of some type Ia SNe events (SN 2003fg, SN
2006gz, SN 2007if, SN 2009dc) [12,13,46–48] which produced a high amount of 56Ni
ranging from 1.2 M� to 1.7 M�. This suggested that the progenitors of these SNe
events hadmasses in the super-Chandrasekhar range from2.2M� to 2.8M�. However
the unusually low and slowly declining Silicon velocity in SN 2006gz indicated that it
is a double degenerate (DD) merger of two sub-Chandrasekar white dwarfs as argued
byHicken et al. [12].Moreover, Silverman et al. [13] argued, basis on simulations, that
SN 2009dc was most likely due to the merger of two white dwarfs. Chen and Li [49]
considered a single-degenerate white dwarf with differential rotation and accreting
matter slowly from a normal companion. They predicted that white dwarf masses in
excess of 1.7 M� are very much unlikely. On the other hand, in the presence of a
strong magnetic field of the order of ∼ 1015 Gauss, Das and Mukhopadhyay [50]
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predicted that a white dwarf can support a mass of 2.3–2.6 M� due to the existence of
Landau levels. However, pointing to various disagreements among the existing SNe Ia
models, van Kerkwijk [51] argued that SNe Ia events generally take place due to the
merger of two carbon-oxygen white dwarfs. Thus, for normal white dwarfs (without
rotation or magnetic field), a super-Chandrasekhar mass seems to be unlikely.

For smaller strengths of quantum spacetime fluctuations, such that α ≤ 3.7×10−3,
we find that general relativity is capable of bringing about an instability at finite central
densities ρ∗

c because of the existence of a vanishing eigenfrequency in the normal
mode as shown in Fig. 2. This signifies that gravity governed by general relativity is
strong enough to cause a gravitational collapse against the effect of quantum spacetime
fluctuations on the equation of state. It is important to note that general relativity is
robust enough tobring about a gravitational collapse even for high strengths of quantum
spacetime fluctuations such as 10−3 or 10−4.

We have also seen from Figs. 1 and 3 that in the range 0 < α < 10−4,
general relativistic instability yields comparable critical central densities, namely,
ρ∗
c = 2.3 − 2.9 × 1010 g cm−3. This range is in the vicinity of Chandrasekhar’s

value of 2.3× 1010 g cm−3 [16]. This indicates that the stellar structure of relativistic
white dwarfs is hardly affected in this range of the parameter α where the critical mass
is about 1.42 M�.

We may recall that when the gravity is treated in the Newtonian framework, masses
far exceeding the Chandrasekhar limit are found to be “super-stable” even for very
low values of α. It is thus obvious that while Newtonian gravity is unable to dominate
over the stiffness of the equation of state generated by quantum spacetime fluctuations,
general relativity does possess the capacity to overcome the stiffness of the equation
of state that can lead to a gravitational collapse.

Thus even for a high value of α, such as 10−4 or 10−5, the onset density ρ∗
c for

gravitational collapse is practically unaffected (with respect to the ideal case) when the
gravity is treated general relativistically in spite of the effect of quantum spacetime
fluctuations opposing gravitational collapse. This is of direct relevance to the core
collapse supernovae where the degenerate core of the progenitors are found to have
a mass of about 1.4 M�. However it may be recalled that there may be no clear
distinction between the gravitational core collapse and fast β-capture that may occur
nearly simultaneously at the onset, effectively making no difference in the impending
supernova explosion [18]. Thus our study suggests that when the inevitable effect of
quantum spacetime fluctuations is included in the process, the situation practically
remains indistinguishable from the ideal core collapse scenario.
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