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Abstract
Weobtain the solution corresponding to aKerr–Newman–anti de Sitter black holewith
quintessence and a spherically symmetric cloud of strings by using the Newman–Janis
algorithm slightly modified. We analyze the horizon structure and the ergoregions,
study the thermodynamics and the Hawking radiation as well. We discuss the role
played by the different sources, namely, the quintessence, cosmological constant and
cloud of strings on the horizons, ergoregions, thermodynamic quantities and in the
flux of scalar particles associated to the Hawking radiation.

Keywords Black holes · Cloud of strings · Quintessence · Thermodynamics ·
Hawking radiation

1 Introduction

The observational confirmation concerning the accelerated expansion of the universe
is one of the most important discoveries made recently connected with modern cos-
mology [1]. This fact leads us to conclude that, at the cosmological scale, there is
a gravitationally repulsive energy component corresponding to a negative pressure
responsible for this accelerated expansion. Thus, it is natural to ask about the possi-
ble origins of this negative pressure. One of the possible answers is to assume that
this expansion is produced by a fluid that permeates all the universe, which is termed
quintessence dark energy [2–4]. It is worth calling attention to the fact that, also in the
astrophysical scenario, quintessence should be important when surrounding a black
hole.
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Another possibility for this energy responsible for the accelerated cosmic expansion
is the cosmological constant which is associated with the vacuum energy, assuming
the same value in all space and being homogeneous. It seems that this constant has an
important role also in some astrophysical scenarios [5].

Motivated by the fact that nature can be represented more appropriately by a col-
lection of extended objects, like one-dimensional strings instead of point particles,
Letelier [6] developed a formalism to consider these extended structures and obtained
a solution corresponding to the Schwarzschild black hole surrounded by a spherically
symmetric cloud of strings, whose presence alters the horizon of this black hole as
compare with the Schwarzschild one.

Thus, all these possibilities concerning different sources, as the quintessential fluid,
the cosmological constant or the cloud of strings have some profound astrophysical
consequences and, therefore, it seems to be important to obtain solutions of Einstein
equations for black holes surrounded by quintessence and cloud of strings, and, addi-
tionally, taking into account the cosmological constant.

The analysis of the black holes as thermodynamic systems with physical temper-
ature, entropy, heat capacity and so on is one of the most interesting studies realized
since the early 1970s with the aim to establish a statistical explanation for their ther-
modynamical properties. On the other hand, black holes can radiate with a black body
spectrum and it constitutes one of the most important consequences of the existence
of quantum fields in gravitational fields. Therefore, we can conclude that the study of
thermodynamics aswell as of theHawking radiation in general scenariowith a charged
rotating black hole with cosmological constant and surrounded by quintessence and
a cloud of strings seems to be important in order to know the role played by each
component of the source and form this reason we decided to do this in this paper.

There is a method developed by Newman and Janis [7] which permits to obtain
solutions of the Einstein equations corresponding to stationary spacetimes from their
static counterpart, as, for example, in the computation of Kerr–Newman black hole
solution taking the Reissner–Nordström one as a seed [8]. From that time up to now,
this method became a powerful tool to obtain rotating black hole solutions. However,
this method contains an ambiguity in which concerns the complexification of the
radial coordinate, a question that was overcomed by dropping the complexification
of this coordinate [9]. Following the Newman–Janis algorithm with the modification
introduced by Azreg-Aïnou [9] a series of rotating solutions were obtained [9–14].

In this paper, we adopt the Newman–Janis algorithm [7] with the modification
introduced by Azreg-Aïnou to construct a solution that corresponds to a charged rotat-
ing black hole with quintessence, cosmological constant and a spherically symmetric
cloud of strings. We show that the obtained metric is a solution of Einstein’s field
equations for these sources, generalizing a solution already obtained in the literature
[11]. Then, we study and discuss some characteristics and consequences of this black
hole spacetime, namely, the existence and nature of the horizons, the ergoregions, the
thermodynamic quantities such as energy, Hawking temperature and heat capacity, as
well as the flux of scalar particles emitted by the black hole under consideration.

Themotivation to include the quintessence and the cloud of strings is connectedwith
the fact that it is important to investigate the role of each source on the properties of the
black hole. Otherwise, to include a cloud of strings is equivalent to have a solid deficit
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angle, as the global monopole has [15]. Thus, we can see this solution as a KNAdS
black hole with a topological defect surrounded by quintessence. In this paper, wewill,
then, study how the quintessence affects the geometrical and topological properties of
the KNAdS spacetime with a solid deficit angle.

This paper is organized as follows. In Sect. 2, we obtain the solution and study the
black hole horizons and ergoregions. In Sect. 3, we investigate different aspects of its
thermodynamics. In Sect. 4, the Hawking radiation of scalar particles is investigated.
Finally, in Sect. 5, we present our conclusions.

2 Black holes surrounded by a cloud strings and quintessence

In recent years, Kiselev has obtained the solution corresponding to a static and spher-
ically symmetric black hole surrounded by quintessence, whose metric is given by
[16]

ds2 = −
(
1 − 2M

r
− α

r3ωq+1

)
dt2

+
(
1 − 2M

r
− α

r3ωq+1

)−1

dr2 + r2dΩ2, (1)

where M is the black hole mass, α is the quintessence parameter, ωq is the quintessen-
tial state parameter and we are adopting the metric signature (−,+,+,+).

The pressure and the density associated with the quintes-sence, respectively, pq
and ρq , obey the equation of state pq = ωqρq , and where

ρq = −α

2

3ωq

r3(ωq+1)
. (2)

In a scenario where the accelerated expansion is present, we have that ωq should
satisfy the inequality −1 < ωq < −1/3. The parameter α assumes positive values
and measures how intense is the quintessence field.

The stress-energy tensor related to the quintessence is given by [16]

T t
t = T r

r = ρq (3)

T θ
θ = T φ

φ = −1

2
ρq(3ωq + 1), (4)

Another extra source was considered by Letelier which corresponds to a gauge-
invariant and spherically symmetric cloud of strings surrounding the black hole, whose
stress-energy tensor is given by [6]

T t
t = T r

r = ρc = b

r2
, (5)

T θ
θ = T φ

φ = 0, (6)
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where ρc is the energy density associated with the cloud of strings and b is a constant
which takes care of the presence of the cloud of strings, as well as measures its
intensity. Considering this mass-energy distribution, Letelier [6] solved Einstein’s
equations determining the spacetime metric concerning a black hole surrounded by a
cloud of strings, which can be written as

ds2 = −
(
1 − b − 2M

r

)
dt2

+
(
1 − b − 2M

r

)−1

dr2 + r2dΩ2 (7)

Now, let us assume a static and spherically symmetric black hole surrounded by both
extra sources of energy, namely, the quintessence and the cloud of strings. Assuming
that the total stress-energy tensor is a superposition of the one associated with the
quintessence as well as to the one that describes the cloud of strings, we can write

T t
t = T r

r = ρc + ρq = b

r2
− α

2

3ωq

r3(ωq+1)
, (8)

T θ
θ = T φ

φ = −1

2
ρq(3ωq + 1), (9)

In this case, the corresponding metric is given by [17]

ds2 = −
(
1 − b − 2M

r
− α

r3ωq+1

)
dt2

+
(
1 − b − 2M

r
− α

r3ωq+1

)−1

dr2 + r2dΩ2. (10)

Additionally, we can consider an extra source corresponding to an electromagnetic
field due to an electrical charge Q in the black hole [18]. Thus, the resulting metric is
given by

ds2 = −
(
1 − b − 2M

r
+ Q2

r2
− α

r3ωq+1

)
dt2

+
(
1 − b − 2M

r
+ Q2

r2
− α

r3ωq+1

)−1

dr2 + r2dΩ2. (11)

Now, let us perform the following transformation in the metric given by Eq. (11)

t = (1 − b)−1/2T ,

r = (1 − b)1/2R,

M = (1 − b)−1/2M,

α = (1 − b)3(ωq+1)/2ᾱ. (12)
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Thus, Eq. (11) can be written as

ds2 = −
(
1 − 2m

R
+ Q2

R2 − ᾱ

R3ωq+1

)
dT 2

+
(
1 − 2m

R
+ Q2

R2 − ᾱ

R3ωq+1

)−1

dR2

+ (1 − a)R2dΩ2. (13)

We can note that the effect of a cloud of strings is equivalent to the one produced
by a solid deficit angle [15].

Using the Newman–Janis algorithm [7] with a modification about this method
performed by Azreg-Aïnou [9], we can obtain the solution corresponding to a rotating
black hole surrounded by quintessence and a cloud of strings. Firstly, let we write the
metric given by Eq. (11) in the following form

ds2 = − f (r)dt2 + 1

g(r)
dr2 + h2dΩ2, (14)

where f (r) = g(r) =
(
1 − b − 2M

r − α

r3ωq+1

)
. Thus, performing the transformation

du = dt − dr√
f g

, (15)

we can write Eq. (14) in the Eddington–Finkelstein (EF) coordinates as [10]

ds2 = − f du2 −
√

f

g
dudr + h2dΩ2. (16)

Now, if we adopt the null tetrad basis given by

lμ = δ
μ
1 , (17a)

nμ =
√

g

f
δ
μ
0 − f

2
δ
μ
1 , (17b)

mμ = 1√
2h

(
δ
μ
2 + i

sinθ
δ
μ
3

)
, (17c)

m̄μ = 1√
2h

(
δ
μ
2 − i

sinθ
δ
μ
3

)
, (17d)

from which we can obtain the relations lμlν=mμmμ=nνnν=0, lμmμ=nμmμ=0
and lμnμ = −mμm̄μ = 0. Thus, it is possible to write Eq. (16) as

gμν = −lμnν − lνnμ + mμm̄ν + mνm̄μ. (18)
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At this stage, we can make a complex transformation in the (u, r) plane such as
u → u−ia cos θ and r → r−ia cos θ .We also adopt the changes f (r) → F(r , a, θ),
g(r) → G(r , a, θ) and h → Σ(r , a, θ) [9]. Thus, the null tetrades will assume the
form [10]

lμ = δ
μ
1 , (19a)

nμ =
√
G

f
δ
μ
0 − F

2
δ
μ
1 , (19b)

mμ = 1√
2Σ

[
δ
μ
2 + iasinθ(δ

μ
0 − δ

μ
1 ) + i

sinθ
δ
μ
3

]
, (19c)

m̄μ = 1√
2Σ

[
δ
μ
2 − iasinθ(δ

μ
0 − δ

μ
1 ) − i

sinθ
δ
μ
3

]
. (19d)

Then, the new metric components in the Eddington–Finkelstein coordinates are

g00 = −F,

g01 = g10 = −
√
G

F
,

g22 = Σ2,

g33 = sin2θ

[
Σ2 + a2

(
2

√
F

G
− F

)
sin2 θ

]
,

g03 = g30 = a

(
F −

√
F

G

)
sin2 θ,

g13 = g31 = a sin2 θ

√
F

G
. (20)

Finally, we write the metric back in the Boyer–Lindquist coordinates by using the
transformation [9]

du → dt + λ(r)dr , dφ → dφ + χ(r)dr , (21)

with

λ(r) = − k(r) + a2

g(r)h(r) + a2
, (22)

χ(r) = − a

g(r)h(r) + a2
, (23)

k(r) =
√

g(r)

f (r)
h(r). (24)

The functions given by Eqs. (22)–(24) were chosen such that all the non-diagonal
components of the metric tensor are null, with exception for g03 and g30. Additionally,
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we can write

F(r , θ) = (gh + a2 cos2 θ)Σ

(k + a2 cos2 θ)2
,

G(r , θ) = gh + a2 cos2 θ

Σ
. (25)

In the case under consideration, f (r) = g(r) and h(r) = r2. Thus, k(r) = h(r)
and

Σ = r2 + a2 cos2 θ. (26)

Finally, using Eq. (21) we find the metric corresponding to a charged rotating black
hole surrounded by quintessence and a cloud of strings, which is given by

ds2 = −Δ − a2sin2θ

Σ
dt2 + Σ

Δ
dr2

02asin2θ

(
1 − Δ − a2sin2θ

Σ

)
dtdφ + Σdθ2

+ sin2θ

[
Σ + a2sin2θ

(
2 − Δ − a2sin2θ

Σ

)]
dφ2, (27)

where a can be understood as the black hole angular momentum per unit mass and

Δ = (1 − b)r2 + a2 + Q2 − 2Mr − αr−3ωq+1. (28)

The Einstein tensor, Gμν , associated with the solution given by Eq. (27) can be
determined by using the package RGTC of the software Mathematica and its compo-
nents can be written as

Gtt = 2
(
r4 − 2r3ρ + a2r2 − a4 sin2 θ cos2 θ

)
ρ′

Σ3

− a2r sin2 θ

Σ2 , (29a)

Gtφ = 2a sin2 θ
[
(r2 + a2)(a2 cos2 θ − r2) + 2r2ρ

]
ρ′

Σ3

+ a2r sin2 θ(r2 + a2)ρ′′

Σ2 , (29b)

Grr = −2r2ρ′

ΣΔ
, (29c)

Gθθ = −2a2 cos2 θρ

Σ
− rρ′′ (29d)

Gφφ = −a sin2 θ
[
(r2 + a2)(a2 + (2r2 + a2) cos 2θ) + 2r2ρ

]
ρ′

Σ3

− 2a2r3 sin4 θρρ′

Σ3 − r sin2 θ(r2 + a2)2ρ′′

Σ2 , (29e)
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where 2ρ = 2M + br + αr−3ωq − Q2

r . Using the standard tetrade basis

eμ
t = 1√

ΣΔ
(r2 + a2, 0, 0, a),

eμ
r =

√
Δ

Σ
(0, 1, 0, 0),

eμ
θ = 1√

Σ
(0, 0, 1, 0) ,

eμ
φ = − 1√

Σ sin2 θ
(a2 sin2 θ, 0, 0, 1), (30)

we can write the stress-tensor Tμν in the form Tμν = (
ε, pr , pθ , pφ

)
[10], where

ε = − 1

8π
eμ
t e

ν
t Gμν = 2ρ′r2

8πΣ2 ,

pr = 1

8π
eμ
r e

ν
r Gμν = − 2ρ′r2

8πΣ2 ,

pθ = 1

8π
eμ
θ e

ν
θGμν = pr − ρ′′r + 2ρ′

8πΣ
,

pφ = 1

8π
eμ
φ e

ν
φGμν = pr − ρ′′r + 2ρ′

8πΣ
. (31)

Thus, we can conclude that the proposed solution is physically valid, as long as
it obeys Einstein’s field equations with a stress-energy tensor with the quintessential
fluid and a cloud of strings around the rotating black hole whose form is known in the
literature [10].

Furthermore, we can note that the stress tensor with components given by Eq. (31)
satisfies the weak energy condition (WEC), depending on the values of the parameters
associated with the quintessence and the cloud of strings. Indeed, if uμ is a timelike
unity vector, Tμνuμuν ≥ 0, for any value of the coordinates, for the correct values of
b, α and ωq .

The next step is to add the cosmological constant, following the procedure adopted
in [11]. Doing this, we get

ds2 = Σ

Δr
dr2 + Σ

Δθ

dθ2 + Δθ sin2θ

Σ

[
a
dt

Ξ
−

(
r2 + a2

) dφ

Ξ

]2

− Δr

Σ

(
dt

Ξ
− asin2θ

dφ

Ξ

)2

, (32)

where

Δr = (1 − b)r2 + a2 + Q2 − 2Mr − Λ

3
r2

(
r2 + a2

)

−αr1−3ωq , (33)
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Δθ = 1 + Λ

3
a2cos2θ, (34)

Ξ = 1 + Λ

3
a2, (35)

and the electromagnetic potential generated by the charge in the black hole is given
by

Aμ = −Qr

Σ

(
δtμ − asin2θ

Ξ
δφ
μ

)
. (36)

With the metric given by Eq. (32), we can calculate the components of Einstein’s
tensor Gμν using once again, the RGTC package of Mathematica and obtain

Gtt = 2
(
r4 − 2r3ρ + a2r2 − a4 sin2 θ cos2 θ

)
ρ′

Σ3

− a2r sin2 θ

Σ2 + Λ
a2 sin2 θ

Σ2 , (37a)

Gtφ = 2a sin2 θ
[
(r2 + a2)(a2 cos2 θ − r2) + 2r2ρ

]
ρ′

Σ3

+ a2r sin2 θ(r2 + a2)ρ′′

Σ2

+Λ2a sin2 θ
r2 + a2 − Δ

Σ
, (37b)

Grr = −2r2ρ′

ΣΔ
+ Λ

Σ2

Δr
, (37c)

Gθθ = −2a2 cos2 θρ

Σ
− rρ′′

Gφφ = −a sin2 θ
[
(r2 + a2)(a2 + (2r2 + a2) cos 2θ)

]
ρ′

Σ3

− a sin2 θ2r2ρρ′

Σ3

− 2a2r3 sin4 θρρ′

Σ3 − r sin2 θ(r2 + a2)2ρ′′

Σ2

+Λ
sin2θ [(r2 + a2)2 − a2Δr ]

Σ2 . (37d)

This result permit us to conclude that the metric (32) is a solution for the Einstein
equation with cosmological constant, namely

Gμν = Rμν − 1

2
Rgμν + Λgμν = 8πTμν. (38)
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In order to give to the coordinate t the unit of time, we can use the substitution
t → t ′/Ξ . Thus, we obtain the following form of the metric

ds2 = Σ

Δr
dr2 − Σ

Δθ

dθ2 − Δθ sin2θ

Σ

[
adt −

(
r2 + a2

) dφ

Ξ

]2

+ Δr

Σ

(
dt − asin2θ

dφ

Ξ

)2

, (39)

which is more appropriate to do the analysis which follows. This metric generalizes
the ones obtained in the literature [11] with respect to the addition of an extra source
corresponding to a spherically symmetric cloud of strings.

2.1 Black hole horizons

The black hole horizons are determined by the condition

Δr = (1 − b)r2 + a2 + Q2 − 2Mr

− Λ

3
r2

(
r2 + a2

)
− αr1−3ωq = 0. (40)

which can be factorized as

(r − r+)(r − r−)(r − rq)(r − rc) = 0, (41)

where rq is the cosmological horizon related to the quintes-sence, rc is a cosmological
horizon due to the cosmological constant, r+ is the black hole event horizon and r−
is the internal (Cauchy) horizon.

In Fig. 1, we represent the function Δr = Δr (r) for different values of the cloud
of string parameter b. In the graphs, we have fixed the values of the quintessence
parameter as well as of the quintessential state parameter and varied the parameter
which codifies the presence of the cloud of strings. The figures show the role played
by these quantities with emphasis on the effect associated with the cloud of strings.
Due to the small value of the cosmological constant, the cosmological horizon rc will
be negative and, thus, there can be only three positive horizons, as can be seen in the
figure.

2.2 Ergorregions

The static surfaces of the black hole are determined by the equation gtt = 0. Thus, we
obtain

Δr = a2 sin2 θΔθ . (42)

The region located between the static surfaces and the black hole horizons are
called ergoregions and no reference frame can be at rest in it. In Figs. 2 and 3, we
represent the black hole ergoregions for different values of the string cloud parameter
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Fig. 1 Δr for different values of the parameter b and for fixed values of α and ωq

b. Note that the case b = 0 is shown and this permits us to compare with the cases for
b �= 0, and conclude what is the role played by the cloud of strings with respect to the
boundaries of the ergoregions.

3 Black hole thermodynamics

As a function of the black hole horizon, the energy of the system can be defined as
[19]

E = M

Ξ

= (1 − b)r2h + a2 + Q2 − Λ
3 r

2
h (r

2
h + a2) − αr

1−3ωq
h

2Ξrh
(43)

The Hawking temperature [20–22] of the black hole is given by

T = κh

2π
= 1

4π

Δ′
r (rh)

r2h + a2

= (1 − b)r2h − a2 − Q2 − Λ
3 r

2
h

(
3r2h + a2

) + 3ωqr
1−3ωq
h

4πrh
(
r2h + a2

) , (44)
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0.5, 0.9,

Fig. 2 The black hole ergoregions for different values of the string cloud parameter b. The dashed lines
correspond to the black hole horizons, while the solid lines represent the static surfaces

with κh = 1
2

1
r2h+a2

dΔ
dr

∣∣
r=rh

being the gravitational acceleration nearby the black hole

horizon. The area of the horizon is given by

Ah =
∫ ∫ √−gdθdφ

∣∣∣
r=rh

= 4π

Ξ

(
r2h + a2

)
, (45)

and, through the area law [23,24], the entropy of the black hole is calculated according
to

S = AH

4
= π

(
r2h + a2

)
Ξ

. (46)
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0.5, 0.9,

Fig. 3 The black hole ergoregions for different values of the string cloud parameter b. The dashed lines
correspond to the black hole horizons, while the solid lines represent the static surfaces

Thus, as a function of the entropy, S, we can write the energy, E , as

E = (1 − b)
(
SΞ/π − a2

) + a2 + Q2

2Ξ
√
SΞ/π − a2

−
Λ
3

(
SΞ/π − a2

)
SΞ/π + α

(
SΞ/π − a2

)(1−3ωq )/2

2Ξ
√
SΞ/π − a2

, (47)

whose behavior is represented in Fig. 4 for fixed values of ωq and different values of
α and b with emphasis to the role played by the cloud of strings.
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0.5 0.9 0.5 0.9

Fig. 4 The energy, E , as a function of the entropy, S, for diffenrent values of b and α and fixed value of ωq

0.5 0.9 0.5 0.9

α α

Fig. 5 The Hawking temperature, T , as a function of the entropy, S, for diffenrent values of b and α and
fixed value of ωq

Similarly, we can write the Hawking temperature as a function of the entropy, as
follows

T = (1 − b)
(
SΞ/π − a2

) − a2 − Q2

4
√
SΞ/π − a2SΞ

−
Λ
3

(
SΞ/π − a2

) (
3SΞ/π − 2a2

)
4
√
SΞ/π − a2SΞ

+ 3ωqα
(
SΞ/π − a2

)(1−3ωq )/2

4
√
SΞ/π − a2SΞ

. (48)

The behavior of T as a function of S is represented in Fig. 5. Note the quantitative and
qualitative behaviors of the Hawking temperature in terms of the entropy.

We can observe in Fig. 5 that the Hawking temperature of the black hole can be
negative depending on the values of the parameter related to the quintessence and the
cloud of strings. In fact, it was already discussed in the literature the possibility of
negativeHawking temperatures of black holeswith some addedmatter-energy content,
like quintessence, higher dimensional spacetimes and modified gravity theories [25].
The Hawking temperature, which is associated with the quantum fields in thermal
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0.5 0.9 0.5 0.9

α α

Fig. 6 The heat capacity as a function of the entropy, S

equilibrium with the black holes, being negative means that the black hole mass can
increase with the decrease of the entropy of the system. This fact is associated with
the existence of the quintessence and the cloud of strings surrounding the black hole.

The angular velocity of the black hole horizon is given by

Ωh = −g03
g33

∣∣∣∣
r=rh

= aΞ

r2h + a2
. (49)

Thus, we can write the first law of black hole thermodynamics as

dE = TdS + Ωhd J + φhdq, (50)

for which

J = Ma

Ξ2 , (51a)

q = Q

Ξ
, (51b)

φh = Qrh
r2h + a2

, (51c)

with φh being the electric potential.
Finally, the heat capacity is calculated through the relation

CJ ,q = T
∂S

∂T

∣∣∣∣
J ,q

= ∂E

∂T

∣∣∣∣
J ,q

, (52)

whose behavior is represented in Fig. 6. From the graphs of this figure, we can verify
that there are values of the parameters for which the system is thermodynamically
stable (C > 0), as well as there are values for which the black hole is thermodynami-
cally unstable (C < 0). It is worth calling attention to the fact that these behaviors are
strongly related to the presence of the cloud of strings.
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4 Hawking radiation

In this section, we will study the emission of scalar particles near the black hole
horizons. To do this, we start by writing the covariant Klein–Gordon equation in the
background spacetime under consideration.

4.1 Klein–Gordon equation

For a charged scalar particle, in a curved spacetime, the covariant Klein–Gordon
equation can be written as

1√−g

[(
∂

∂xμ
− ieAμ

)√−ggμν

(
∂

∂xν
− ieAν

)]
Ψ − μ2

0Ψ = 0, (53)

where e is the electric charge and μ0 its mass. Thus, for the metric corresponding
to a Kerr–Newman–anti-de Sitter black hole with quintessence and a cloud of strings
given by Eq. (39), the Klein–Gordon equation is written as

1

ΔrΔθ

[
Δθ

(
r2 + a2

)2 − Δr a
2 sin2 θ

]
∂2Ψ

∂t2

+ 2i
eQr

Δr

[
aΞ

∂

∂φ
+

(
r2 + a2

) ∂

∂t

]
Ψ

− Ξ2

ΔrΔθ sin2θ

(
Δr − Δθa

2sin2θ
) ∂2Ψ

∂φ2

+ 2Ξa

ΔrΔθ

[
Δθ

(
r2 + a2

)2 − Δr

]
∂2Ψ

∂t∂φ
− ∂

∂r
Δr

∂Ψ

∂r

− 1

sinθ

∂

∂θ
(sinθΔθ)

∂Ψ

∂θ
=

(
−μ2

0Σ + e2Q2r2
1

Δr

)
Ψ . (54)

Considering the symmetry of the problem, we can write the solution Ψ (t, r , θ, φ)

as
Ψ (t, r , θ, φ) = e−iωt eimφψ(r , θ), (55)

and, thus, we get

−ω2 Ξ2

ΔrΔθ

[
Δθ

(
r2 + a2

)2 − Δa2sin2θ

]
ψ

+ 2
eQr

Δr
Ξ

[(
r2 + a2

)
ω − am

]
ψ

+m2 Ξ2

ΔrΔθ sin2θ

(
Δr − Δθa

2sin2θ
)

ψ

+mω
2Ξ2a

ΔrΔθ

[
Δθ

(
r2 + a2

)2 − Δr

]
ψ − ∂

∂r
Δ

∂ψ

∂r

− 1

sinθ

∂

∂θ
(sinθΔθ)

∂ψ

∂θ
=

(
−μ2

0Σ + e2Q2r2
1

Δr

)
ψ. (56)
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Now, let us suppose thatψ(r , θ) = R(r)χ(θ). Thus,wefind the following equations
for the angular and radial variables

1

sinθ

d

dθ

[
sinθΔθ

dχ(θ)

dθ

]

=
[

1

Δθ

(
ωasinθ − m

sinθ

)2 + μ2
0a

2cos2θ − λ

]
χ(θ), (57)

d

dr
Δr

d R(r)

dr
=

{
λ + μ2

0r
2

− 1

Δr

[
ω

(
r2 + a2

)
− amΞ − eQr

]2}
R(r), (58)

with λ being a separation constant and ω the particle energy. The Eq. (58) can be
written in the tortoise coordinates, r∗, which are defined by

dr∗ = 1

Δr

(
r2 + a2

)
dr , (59a)

d

dr
=

(
r2 + a2

)
Δr

d

dr∗
. (59b)

Defining K = ω
(
r2 + a2

) − amΞ − eQr , we get

(
r2 + a2

)2 d2R
dr2∗

+ 2rΔr
d R

dr∗
=

[
Δr

(
λ + μ2

0r
2
)

− K 2
]
R. (60)

This is a more appropriate form of the equation for the radial function, R(r), to
investigate the radiation of scalar particles emitted by the black hole.

4.2 Black hole radiation and analytic continuation

In the black hole horizon, we get Δr (r+) = 0. In this region, Eq. (60) turns into

d2R

dr2
+ (ω − ω0)

2 R = 0, (61)

where
ω0 = mΩ+ + eφ+. (62)

Thus, the radial solution of the Klein–Gordon equation near the black hole horizon
will be written in the form

R ∼ e±i(ω−ω0)r∗ , (63)

and, therefore, we can write

Ψ ∼ e−iωt±i(ω−ω0)r∗ . (64)
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0.5

Fig. 7 The rate, Γ , as a function of the entropy, S, for diffenrent values of b

In the exterior region of the event horizon, the ingoing and outgoing solutions will
be given by [19]

Ψin = e−iωt−i(ω−ω0)t = e−iω(t+r̂) = e−iων, (65)

Ψout (r > r+) = e−iωt+i(ω−ω0)t = e−iωνe2iωr̂

= e−iων(r − r+)e
i

κ+ (ω−ω0), (66)

where
r̂ = ω − ω0

ω
r∗, ν = t + r̂ (67)

are theEddington–Finkelstein coordinates.Wecanverify that, in the blackhole horizon
region, we can write [19]

ln(r − r+) = 1

r2+ + a2
dΔ

dr

∣∣∣∣
r=r+

r∗ = 2κ+r∗. (68)

By analytic continuation, we can determine a real damped part for the solution
Ψout , which is not analytic at the horizon, namely, r = r+. Using the Damour-Ruffini
method [26], and performing a −π rotation, we get

(r − r+) → |r − r+|e−iπ = (r+ − r)e−iπ . (69)

Thus, we obtain the wave function in the interior of the horizon, which is given by

Ψout (r < r+) = e−iων(r+ − r)
i

κ+ (ω−ω0)e
π
κ+ (ω−ω0). (70)

Therefore, the emission rate of particles by the black hole horizon will, so, be
written as

Γ+ =
∣∣∣∣Ψout (r > r+)

Ψout (r < r+)

∣∣∣∣
2

= e
− 2π

κ+ (ω−ω0), (71)

which represents the probability of creation of particles/antiparticles out the horizon
and is represented in Fig. 7.
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4.3 Black body spectrum and Hawking flux

Assuming that the black hole horizon irradiates particles with energyω, electric charge
e and angular momentum m, there will be a reduction in the thermodynamical param-
eters of the black hole, in such a way that M/Ξ → M/Ξ − ω, Q → Q − e and
J → J − m, which should be reflected in the spacetime metric. Assuming that the
energy, electric charge and angular momentum of the universe are conserved, we must
impose that

− ω = ΔE, (72a)

−e = ΔQ, (72b)

−m = ΔJ , (72c)

withΔE ,ΔQ andΔJ being, respectively, variations in the energy, charge and angular
momentum in the black hole horizon due to the emission of radiation. Substituting
these quantities into Eq. (71), and using the first law of black hole thermodynamics,
we get

Γ+ = e
− 2π

κ+ (−ΔE−mΩ+−eφ+) = e
− 2π

κ+ (−T+ΔS+) = eΔS+ , (73)

where ΔS+ represents the change of the entropy near the black hole horizon due to
the particle emission. Similarly, near the cosmological horizon, we can write

Γc = eΔSc . (74)

The average number of particles emitted in a given mode, N̄ω, is related to the
probability of emission, Γ+, through [19,27]

N̄ω = Γ+
1 − Γ+

= 1

e
�(ω−ω0)

kB T+ − 1
(75)

Note that, in Eq. (75), we reinserted the Planck and Boltzmann constants. Perform-
ing the integration of N̄ω in the range of all spectrum of emission, we get the Hawking
flux, Φ, corresponding to emitted particles, which will be given by

Φ = 1

2π

∫ ∞

0
N̄ωωdω = 1

2π

∫ ∞

0

ω

e
2π
κ+ (ω−ω0) − 1

dω

= 1

2π

( κ+
2π

)2 {
π2

6
+ log(e

2π
κ+ ω0)

− log(e
2π
κ+ ω0)log[−log(e

2π
κ+ ω0)]

+
∞∑
j=2

log j (e
2pi
κ+ ω0)ζ( j − 2)

j !

⎫⎬
⎭ , (76)
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where ζ is the Riemann zeta function. Note that there are dependencies on the
quintessence as well as on the cloud of strings. If we consider the Schwarzschild
black hole, ω0 = 0, we obtain the known result Φ = κ+

48π .

5 Concluding remarks

Firstly, we obtained the Kerr–Newman black hole with quintessence and a cloud of
strings by using the Newman–Janis algorithm [7] with a modification introduced by
Azreg-Aïnou [9] and, then, the cosmological constant term was added appropriately,
following the procedure adopted by Xu and Wang [11]. In the analysis of the horizon
structure, we showed in Fig. 1, how the parameter that codifies the cloud of strings
determines the number and nature of the horizons, as well as how the intensity of
the quintessence does this. The ergoregions are affected also by the presence of the
quintessence and cloud of strings as shown in Figs. 2 and 3,where the effects associated
with the intensity of these sources are shown.

The thermodynamics quantities, namely, the energy (see Fig. 4), the Hawking tem-
perature (see Fig. 5) and the heat capacity (see Fig. 6) are affected by the cloud of
strings, as well as by the presence of the quintessence. In particular, for fixed values of
the intensity of quintessence, the energy as a function of entropy decreases when the
parameter that codifies the presence of the cloud of strings increases. With respect to
the intensity of quintessence, when it decreases, the energy has a behavior slightly dif-
ferent. The Hawking temperature increases when the intensity of the cloud of strings
decreases, for fixed values of the intensity of the quintessence parameter. As to the
heat capacity, its graphs showed in Fig. 6 indicate the existence of phase transitions
for different values of the quintessence state parameter. These phase transitions also
depend on the intensity of the cloud of strings. Thus, the thermodynamic stability of
the system is affected by the presence of the cloud of strings as well.

The Hawking radiation is strongly correlated with the presence of both sources, the
quintessence and the cloud of strings. The rate of particle production increases when
the parameter associated with the cloud of strings increases, for fixed values of α and
ωq .

In summary, the number and the structure of the horizons, the ergoregions, the
forms of the ergoregions, as well as the thermodynamical quantities analyzed, namely,
energy, Hawking temperature and heat capacity, and the flux of scalar particles emitted
depend on the intensity of the quintessential dark energy and of the cloud of strings.

Acknowledgements V. B. Bezerra is partially supported by Conselho Nacional de Desenvolvimento Cien-
tífico e Tecnológico (CNPq) through the research Project No. 305835/2016-5.

References

1. Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R.A., Nugent, P., Castro, P.G., Deustua, S., Fabbro,
S., Goobar, A., Groom, D.E., et al.: Astron. J. 517, 565 (1999)

2. Steinhardt, P.J., Wang, L., Zlatev, I.: Phys. Rev. D 59, 123504 (1999)
3. Wang, L., Caldwell, R., Ostriker, J., Steinhardt, P.J.: Astron. J. 530, 17 (2000)

123



Kerr–Newman–AdS black hole with quintessence and cloud… Page 21 of 21 34

4. Tsujikawa, S.: Class. Quantum Gravity 30, 214003 (2013)
5. Stuchlík, Z.: Modern Phys. Lett. A 20, 561 (2005)
6. Letelier, P.S.: Phys. Rev. D 20, 1294 (1979)
7. Newman, E.T., Janis, A.: J. Math. Phys. 6, 915 (1965)
8. Newman, E.T., Couch, E., Chinnapared, K., Exton, A., Prakash, A., Torrence, R.: J. Math. Phys. 6,

918 (1965)
9. Azreg-Aïnou, M.: Phys. Rev. D 90, 064041 (2014)

10. Toshmatov, B., Stuchlík, Z., Ahmedov, B.: Eur. Phys. J. Plus 132, 98 (2017)
11. Xu, Z., Wang, J.: Phys. Rev. D 95, 064015 (2017)
12. Haroon, S., Jamil, M., Lin, K., Pavlovic, P., Sossich, M., Wang, A.: Eur. Phys. J. C 78, 519 (2018)
13. Toshmatov, B., Stuchlík, Z., Ahmedov, B.: Phys. Rev. D 95, 084037 (2017)
14. Xu, Z., Hou, X., Wang, J.: Class. Quantum Gravity 35, 115003 (2018)
15. Barriola, M., Vilenkin, A.: Phys. Rev. Lett. 63, 341 (1989)
16. Kiselev, V.V.: Class. Quantum Gravity 20, 1187 (2003)
17. Dias e Costa, M.M., Toledo, J.M., Bezerra, V.B.: Int. J. Mod. Phys. D 28, 1950074 (2018)
18. Toledo, J.M., Bezerra, V.B.: Int. J. Mod. Phys. D, 1950023-1 (2018)
19. Huaifan, L., Shengli, Z., Yueqin, W., Lichun, Z., Ren, Z.: Eur. Phys. J. C 63, 133 (2009)
20. Hawking, S.W.: Nature 248, 30 (1974)
21. Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975)
22. Hawking, S.W.: Phys. Rev. D 13, 191 (1976)
23. Bekenstein, J.D.: Lettere al Nuovo Cimento (1971–1985) 4, 737 (1972)
24. Bekenstein, J.D.: Phys. Rev. D 7, 2333 (1973)
25. Park, M.I.: Phys. Lett. B 663, 259 (2008)
26. Damour, T., Ruffni, R.: Phys. Rev. D 14, 332 (1976)
27. Sannan, S.: Gen. Relativ. Gravit. 20, 239 (1988)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Kerr–Newman–AdS black hole with quintessence and cloud of strings
	Abstract
	1 Introduction
	2 Black holes surrounded by a cloud strings and quintessence
	2.1 Black hole horizons
	2.2 Ergorregions

	3 Black hole thermodynamics
	4 Hawking radiation
	4.1 Klein–Gordon equation
	4.2 Black hole radiation and analytic continuation
	4.3 Black body spectrum and Hawking flux

	5 Concluding remarks
	Acknowledgements
	References




