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Abstract
Astrophysical black holes are often embedded into electromagnetic fields, that can
usually be treated as test fields not influencing the spacetime geometry. Here we anal-
yse the innermost stable circular orbit (ISCO) of charged particles moving around a
Schwarzschild black hole in the presence of a radial electric test field and an asymptot-
ically uniformmagnetic test field. We discuss the structure of the in general four ISCO
solutions for different magnitudes of the electric and the magnetic field’s strength. In
particular, we find that the nonexistence of stable circular orbits of particles with equal
sign of charge as the black hole for sufficiently strong electric fields can be canceled
by a sufficiently strong magnetic field. In this situation, we find that ISCOs made of
static particles will emerge.
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1 Introduction

According to the no-hair theorem [1], an isolated black hole is a rather simple object
that can be described by only three parameters1: mass, rotation, and electric charge.
In astrophysics, the electric charge is usually neglected: As the electromagnetic inter-
action is much stronger than the gravitational interaction, the charged black hole
will selectively accrete oppositely charged particles from its environment, and will
decrease its charge to mass ratio to tiny values2 Q̃ < 10−18M̃ on a short timescale
[2]. Even if the black hole is completely isolated and cannot accrete from its environ-
ment, due to pair production it will reduce its charge to mass ratio quickly to about
Q̃/M̃ < 10−5MBH/MSun [2].

The influence of the charge parameter on the curvature of spacetime can for instance
be estimated by considering the Kretschmann scalar K of a Reissner–Nordström black
hole [3],

K = Rμνρσ Rμνρσ = 48M̃2

r6
− 96M̃ Q̃2

r7
+ 56Q̃4

r8
. (1.1)

We see that on horizon scales the influence of Q̃ is comparable to the influence of M̃
if Q̃ ∼ M̃2. Therefore, we can safely neglect the influence of a tiny charge on the
curvature of spacetime. However, again as the electromagnetic interaction is much
stronger than the gravitational interaction, we should separately consider the effect
of the electric field of the black hole on charged particles. The equations of motion
of charged particles with specific charge3 q moving around a black hole with charge
Q̃ contains the product q Q̃/M̃ [4]. For a free electron (proton), q is very large, of
the order 1021 (1018) [5]. Therefore, the charge product q Q̃/M̃ will in general not be
small. This order of magnitude estimate suggests to take the charge of the black hole
into account as a test field, that does not influence the spacetime geometry.

Recently, charged black holes experienced a renewed interest in the astrophysical
literature. For instance, Nathanail et al. [6] studied the likely scenario of the collapse
of a rotating neutron star with a magnetosphere and an initial net electric charge, and
found that the newly formed black hole has a Kerr–Newman geometry, whose rather
large charge to mass ratio Q̃ ≈ 10−4M̃ will probably quickly reduce to tiny values
according to the processes discussed above. Zhang [7] discussed the possibility that
the merger of a highly charged (Q̃ ∼ 10−9M̃) black hole and a neutral black hole may
create a Fast Radio Burst [8,9]. Also in the context of Fast Radio Bursts, Punsley and
Bini [10] discussed the sudden discharging of a Kerr-Newman black hole, and Liu
et al. [11] the collapse of a magnetosphere of a charged black hole. Levin et al. [12]
argued that the binary merger of a charged black hole and a neutron star may create an

1 We could add the magnetic monopole charge as a fourth parameter.
2 We use geometrised units Q̃ = QSI

√
G√

4πε0c2
and M̃ = GM/c2, where QSI is the charge of the black hole,

M is the mass of the black hole, G is the gravitational constant, c is the speed of light, and ε0 is the electric
constant, all in SI units.
3 In geometrised units q = qSI√

4πε0Gm
, where m is the mass of the particle that is assumed to be much

smaller than the mass of the black hole.
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electromagnetic counterpart to the gravitational wave observation. Recently, Zajaček
et al. [13] estimated the electric charge of Sagittarius A*, the central supermassive
black hole of the Milky Way, from the observation of bremsstrahlung. They found
QSI � 3 × 108C or Q̃ � 4 × 10−19M̃ .

In addition to possessing a tiny electric charge, astrophysical black holes are usually
embedded into external electromagnetic fields. In particular, a surrounding accretion
disk can produce a magnetic field. Other possibilities are magnetic fields originating
from before the gravitational collapse, or completely external fields like the galactic
magnetic field or fields from a nearby neutron star/magnetar. Magnetic fields are
also believed to play a major role in the creation of jets [14]. Note that a rotating,
initially neutral blackholewill drag along themagnetic field, thereby enabling selective
accretion of charges, resulting in a black hole with a stable net electric charge, see for
instance [15–20]. The characteristic scales of magnetic fields near stellar mass and
supermassive black holes were estimated in [21–24], and found to be many orders of
magnitudes too small to have a noticeable effect on the spacetime geometry. However,
similar to the case of an electric charge discussed above, the large charge to mass
ration of free electrons and protons will compensate the small magnetic field strength
and lead to non-negligible Lorentz force effects [22].

Summarised, the effects due to electric and magnetic fields in the vicinity of a
black hole should not a priori be completely neglected, but carefully studied for their
influence on charged matter motion. In this paper, we consider a Schwarzschild black
hole endowed with an electric charge and embedded into an external magnetic field.
Both the electric and the magnetic field will be treated as test fields, meaning that we
neglect their effects onto the spacetime geometry. For the magnetic field we choose
a particularly simple model, that is, an asymptotically uniform field as discussed by
Wald [15]. This kind of magnetic field can be considered as an approximation to the
realistic fields discussed above, for instance if the accretion disk is much larger than
the black hole, or a rather far away magnetar. Note that for a vanishing electric field
this scenario reduces to the one discussed in [22].

A particularly interesting feature of particle motion is the innermost stable circular
orbit (ISCO), also called marginally stable orbit. It is a distinctive feature of General
Relativity without Newtonian analogue and marks the transition from a region where
stable circular orbits are possible to a region close to the black hole where particles
will eventually plunge into the central black hole. In the context of accretion disks, it
approximately marks the inner edge of the Shakura-Sunyaev geometrically thin disk
model [25,26] and the center of the “polish doughnut” geometrically thick accretion
disk model with constant angular momentum [26,27]. These are regularly used as
initial conditions for accretion disk simulations and are therefore also related to the
observations by the Event Horizon Telescope [28]. For the future gravitational wave
observations from extreme mass ratio inspirals with the LISA mission [29], the ISCO
marks the onset of the plunge region. In principle the ISCO can also be used to extract
information about the rotation and/or the charge of the black hole [13].

The structure of the paper is as follows. In the next section we introduce the space-
time and the electromagnetic fields in our setup and derive the equations of motion
for charged particles. The innermost stable circular orbit is introduced and analysed
in section three. There we first analyse some general features and discuss the limiting

123



22 Page 4 of 19 J. P. Hackstein, E. Hackmann

case of a vanishing magnetic field. Note that the other limit of a vanishing electric
charge was already covered in [22–24], and we reproduce the general characteristics
when considering a very small electric charge in Sect. 3.3. We then further split our
discussion into two parts, as q Q̃ = M̃ marks an important transition, discussed before
in the context of a Reissner–Nordström black hole in [30]. The paper closes with a
summary and discussion.

2 Metric and electromagnetic fields

The Schwarzschild metric is given by

g = −
(
1 − rs

r

)
c2dt2 + dr2

1 − rs
r

+ r2(dϑ2 + sin2(ϑ)dϕ2), (2.1)

where rs = 2GM
c2

is the Schwarzschild radius. Since the metric is static and spherically
symmetric, the two Killing vector fields are ξ(t) = ∂t and ξ(ϕ) = ∂ϕ.

A test particle with specific charge q moves according to the equation

u̇μ = (ẍμ + Γ μ
νρ ẋ

ν ẋρ) = qFμ
νu

ν, (2.2)

where the right hand side describes the electromagnetic force acting on the test particle,
given by the electromagnetic tensor Fμ

ν = (∂μAν − ∂ν Aμ) and the particle’s four
velocity uν with uνuν = −1. An overdot denotes the derivative d

dτ
with respect to the

particle’s proper time τ .
To describe the effect of an electromagnetic field on an orbiting test particle, the

following four potential was chosen [15]

Aμ = B

2
ξ

μ

(ϕ) − Q

2
ξ

μ
(t), (2.3)

corresponding to an asymptotically uniform magnetic test field with magnetic field
strength B parallel to the z-axis and a radial electric test field of charge Q with its
source located in the center of the considered black hole. Without loss of generality,
we choose B > 0 and Q > 0.

For the purpose of presenting all equations in a concise manner, it is convenient to
normalise all parameters with respect to an effective mass M̃ , resulting in dimension-
less quantities

M̃ = GM

c2
, Q2 = Q2

SIG

4πε0c4M̃2
, B2 = 4πε0GM̃2

c2
B2
SI, (2.4)

q2 = q2SI
4πε0Gm2 , r = rSI

M̃
, τ = c

M̃
τSI, t = c

M̃
tSI, (2.5)
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where parameters in geometric units are marked with a tilde, while dimensionless
parameters are left unaltered. The effective energy and effective angular momentum
are denoted by E = ESI

mc2
and L = LSI

mM̃c
, respectively.

To simplify the following calculations, the test particle’s movement was restricted
to the equatorial plane (ϑ = π

2 ). An equation of motion was consequently calculated
for the radial as well as the angular and the time coordinate with the Lagrangian
formalism,

ṙ2 =
(
1 − 2

r

)2

ṫ2 −
(
1 − 2

r

)
(1 + r2ϕ̇2)

=
(
E + Q

(
1 − 2

r

))2

−
(
1 − 2

r

)(
1 + (L − Br2)2

r2

)
=: U , (2.6)

ṫ = E

1 − 2
r

+ Q, ϕ̇ = L

r2
− B, (2.7)

where U denotes the effective potential, B = qB
2 the effective magnetic field strength

and Q = qQ
2 the effective charge. Since the particle’s electric charge q will be kept

constant in this paper, changing the electric or magnetic field is proportional to chang-
ingQ or B. The coupling of the particle’s energy E with the test field’s electric charge
Q is visible in Eqs. (2.6) and (2.7), whereas its angular momentum L couples with the
test field’s magnetic field strength B. Note that according to Eq. (2.7) the sign of E
is not necessarily identical to the sign of ṫ , and also the signs of ϕ̇ and L may in gen-
eral be different. The equation of motion (2.6) is invariant under the transformations
(L,B) → (−L,−B) as well as (E,Q) → (−E,−Q). We may therefore choose
w.l.o.g. B ≥ 0 and Q ≥ 0. In the limiting case of a vanishing electric charge, these
equations yield the results discussed in [22] for a magnetic test field.

3 The innermost stable circular orbit

The imposed conditions on the effective potential U for the existence of an ISCO are

U(r) = 0,
dU
dr

= 0,
d2U
dr2

= 0. (3.1)

General properties of circular orbits and especially the ISCO have been analyzed in
greater detail in [23,24] for static and [31] for rotating black holes immersed in a
uniform magnetic test field.

Substituting the equation of motion (2.6) into dU
dr = 0 and d2U

dr2 = 0, one can deter-
mine the following expressions for the particle’s angular momentum L and energy E ,
respectively

Lα,β = ± C

r − 6
, (3.2)
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Eα,β = B2(4r5 − 18r4 + 12r3) + (1 − 2Q2)r2 + D∓r − 12Q2

2r(r − 6)Q , (3.3)

with C = √−(r − 6)r(3B2r4 − 2B2r3 − 4Q2) and D∓ = (−6 ∓ 2CB + 12Q2).
Using the first condition of (3.1) to calculate the radial component r yields an ana-
lytical equation over multiple lines in length, which was for the sake of completeness
considered in greater detail in “Appendix A”.

To depict the electromagnetic field’s influence on the ISCO’s behaviour, the result-
ing equation was instead solved numerically on a fixed interval of the effective
magnetic field strength B with constant electric charge Q. To furthermore gain insight
on how the field’s electric charge changes the particle’s movement, different values
for Q were tested, resulting in different figures to be compared. As shown in [30]
in the context of a Reissner–Nordström spacetime, qQ = 1 or Q = 1

2 presents a
limiting case. Therefore, in this paper, the three cases Q � 1, Q < 1

2 and Q ≥ 1
2

were examined separately. The results were subsequently interpreted to determine the
electromagnetic field’s impact on the test particle.

3.1 General characterisation

Inserting either Lα and Eα or Lβ and Eβ into the first condition of (3.1) yields two
radii r , respectively. Thus one can determine four different solutions r1, r2, r3, r4 for
B 	= 0 and Q 	= 0, where r1,2 correspond to (Eα, Lα) and r3,4 to (Eβ, Lβ). An
explanation for the appearance of four solutions in the presence of an electromagnetic
field can be given when considering the influence of the electromagnetic force FEM

on the test particle.
Each ri (with i ∈ {1, . . . , 4}) corresponds to an angularmomentum Li and an energy

Ei given by Eqs. (3.2) and (3.3). Because of the magnetic field’s alignment with the
z-axis and the particle movement’s restriction to the equatorial plane perpendicular to
the z-axis, only the two possibilities Li ↑↑ B and Li ↑↓ B remain. Classically, this
determines the direction of the particle’s momentum pi , either resulting in an orbit
with dϕ/dt > 0, what we call here a direct orbit, or dϕ/dt < 0 (indirect orbit). The
inducedLorentz force FL consequently points radially outwards (repelling) or inwards
(attracting), classically entirely depending on the particle’s angular momentum. The
Coulomb force FC caused by the electromagnetic field additionally either attracts or
repels the test particle depending on the sign of its charge q.

The right hand side of Eq. (2.2) describes the relativistic electromagnetic force on
the particle compared to the classical case described above. It can be checked that only
the r−component becomes non-zero for conditions (3.1), resulting in a purely radial
Lorentz and Coulomb force. The right-hand side of Eq. (2.2) for μ = r reads

qF r
νu

ν =
(
1 − 2

r

) (Qṫ

r2
+ rBϕ̇

)
. (3.4)

Since the left bracket will be non-negative in the exterior Schwarzschild region, the
forces’ sign depends on the right bracket, where ṫ and ϕ̇ are given by Eq. (2.7). As
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we chose w.l.o.g. Q > 0 and B > 0, the sign of the Coulomb force is directly given
by the sign of ṫ , and the sign of the Lorentz force by the sign of ϕ̇. As we physically
of course move forward in time, we can interpret the mathematical result ṫ < 0 by
simultaneously switching the signs of E and Q, which leaves the equation of motion
(2.6) and the force equation (3.4) invariant. Therefore, ṫ < 0 corresponds physically
to a particle that has actually ṫ > 0 and Q < 0. Similarly, as we chose B > 0 in
the beginning, the motion of a negatively charged particle B < 0 is equivalent to the
motion of a positively charged particle B > 0 with opposite sign of ϕ̇. Summarised,
the four solutions ri , i ∈ {1, . . . , 4}, are physically related to the four combinations
Qṫ ≷ 0, Bϕ̇ ≷ 0.

3.2 Electromagnetic field withB = 0

As the impact of a purely magnetic test field in the Schwarzschild spacetime was
already examined in [22], we initially neglect B to investigate the behaviour of a test
particle in an electric field for later reference. This situation was visualized in Fig. 1
by choosing B = 0 and plotting the radii ri on a fixed interval Q = [0, 0.7].

As can be seen, two solutions rα,β exist in the region 0 < Q < 0.5. Since Eq. (2.6)
only depends on L2 for B = 0, solving one of the conditions (3.1) for L2 is possible,
meaning r does not depend on the angular momentum’s sign. In this illustration, rα
corresponds to a positively and rβ to a negatively charged particle. For Q = 0, both
solutions converge to r = 6, the ISCO of neutral particles in a Schwarzschild space-
time. For higher electric field strengths, the distance between rα and rβ increases until
rα diverges at Q = 0.5. The electromagnetic force given by Eq. (3.4) for the diverg-
ing radii was examined in this limit. Even though B = 0 already negates the Lorentz
force, the angular velocity ϕ̇ converges to zero, corresponding to a static particle at a
fixed coordinate angle ϕ. The Coulomb force additionally vanishes for diverging radii,
because ṫ is finite in this limit. This results in FEM

α = 0. The limit therefore represents
a static particle at radial infinity without an electromagnetic force acting on it. From
this, it seems reasonable that no solution exists for an ISCO of positively charged par-
ticles from this point onward in Fig. 1. An analogous behaviour was already studied
for a charged test particle in the gravitational field of a charged Reissner–Nordström
black hole [32]. For Q > 1

2 , only rβ corresponding to a negatively charged particle
exists.

3.3 Electromagnetic field withQ � 1

In this case the field’s effective electric charge Q was chosen in the magnitude of
10−3 for studying infinitesimal effects on the ISCO, while the effective magnetic field
strength was defined over the fixed interval B = [0, 0.6]. The results for the radial
parameter r are illustrated in Fig. 2,where the overall behaviour along the fixed interval
is shown on the left and B � 1 is considered on the right.

While a growing gap between r2 and r3 can be observed for increasing B, the
difference between solutions r1,2 as well as r3,4 are nearly indistinguishable regardless
of the magnetic field strength. All four solutions approach (approximately) r = 6, the

123
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Fig. 1 Radii rα,β of the ISCO
for charged test particles in an
electric field as a function of the
effective electric field strength
Q. Each radius corresponds to
orbits of either a positively (rα)
or negatively (rβ) charged
particle. The black, vertical line
emphasizes rα diverging at
Q = 1

2 . As a consequence, only
negatively charged particles
form an ISCO for a sufficiently
strong electric field strength

Fig. 2 Radius ri of the ISCO for a charged test particle in an electromagnetic field as a function of the
effective magnetic field strength B, where the constant effective electric field strength Q was chosen in
the magnitude of 10−3. The radii r1,3 correspond to orbits of negatively charged particles, r2,4 to orbits
of positively charged particles. Left plot: general behaviour in the test field. Right plot: behaviour in the
limiting case B → 0

ISCO of a neutral test particle, for B ≈ 0, agreeing with results from Fig. 1. For more
details about the case of small B see the next section.

Inserting all radii shown in Fig. 2 into the Eqs. (3.2) and (3.3) individually yields
each particle’s effective energy Ei and effective angular momentum Li . These in turn
can be used to calculate ṫ and ϕ̇, that are illustrated in Fig. 3.

The solutions ri do not change by simultaneously inverting the signs of (E,Q) or
(L,B), as the effective potential is invariant under these transformations. However, ṫ
and ϕ̇, respectively, change their signs. As we chose B > 0 and Q > 0 (remember
Q = qQ/2, B = qB/2), we simultaneously switch the signs ofQ and B if we switch
the sign of the charge q of the particle. Therefore, we can interpret the particle with
ISCO radius r1, that has ṫ < 0 and ϕ̇ < 0 in Fig. 3, as a negatively charged particle with
ṫ > 0 in a direct orbit ϕ̇ > 0. Both the Lorentz and the Coulomb force consequently
point radially inwards, compare also Eq. (3.4).

These two attracting forces have to be compensated when forming a stable orbit.
Considering Fig. 2, the ISCO radius monotonically decreases for increasing B. These
results agree with similar observations that have already been made in the case of
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Fig. 3 The angular velocity ϕ̇ (left plot) and derivative of coordinate time ṫ (right plot) of a charged test
particle orbiting along the ISCO as a function of the effective magnetic field strength B, where the constant
effective electric field strength Q was chosen in the magnitude of 10−3

a magnetic field only [22], even though a physical explanation for this behaviour is
not obvious. But r1 being the overall largest solutions can still be understood when
interpreting r2 to r4 in the same manner and comparing them to r1.

The solution r2, that has ṫ > 0, ϕ̇ < 0 in Fig. 3, corresponds to a positively charged
particle in an indirect orbit. Because of its positive charge, the Lorentz force still points
radially inwards. However in this case, the sign of the particle’s charge q coincides
with the field’s electric charge Q, yielding aCoulomb force pointing radially outwards.
These opposing forces now cancel each other out to some extent, leading to a lowering
of the total force on the particle. This results in a lowering of r2 relative to r1 which
is barely visible in Fig. 2. Since Q was chosen to be very small, the Lorentz force
was predominantly acting on the particle when compared to the Coulomb force. As a
consequence the observed difference between r1,2 is of order 10−3.

Analogously, r3 with ṫ < 0 and ϕ̇ > 0 in Fig. 3 can be assigned to a negatively
charged particle in an indirect orbit with ϕ̇ < 0. The Lorentz force points radially
outwards, while the Coulomb force attracts the test particle. Since the Lorentz force is
much stronger than the Coulomb force for the caseQ � 1 under discussion, the total
electromagnetic force given in (3.4)will be positive. Compared to r2, the force reverses
its orientation, resulting in the considerably larger lowering from r1 to r3 observed
in Fig. 2. The monotonically decreasing behaviour becomes comprehensible in this
case when examining the total electromagnetic force on the orbiting particle. The
electromagnetic force is mostly determined by the repelling Lorentz force, leading to
the particle being pushed outwards when regarding the ISCO. To create a stable orbit,
the radius r decreases, causing stronger gravitation to balance out the electromagnetic
force on the particle.
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Fig. 4 Radius ri of the ISCO for a charged test particle in an electromagnetic field as a function of the
effective magnetic field strength B with a constant effective electric field strength Q = 0.4. Each solution
rα,β yields two radii ri corresponding to orbits of either negatively (r1,3) or positively (r2,4) charged
particles. Left plot: general behaviour in the test field. Right plot: behaviour in the limiting case B → 0.
The black, vertical line emphasizes all radii intersecting at r = 6

The last possibility is covered by r4, describing a positively charged particle with
ṫ > 0 in a direct orbit ϕ̇ > 0. Both Lorentz and Coulomb force point outwards relative
to the ISCO, implying even further lowering of r4 compared to the other ri and thus
resulting in the overall smallest solution for r .

3.4 Electromagnetic field withQ < 1
2

Figure 4 depicts the ISCO radius r with increased electric field strength Q = 0.4,
while the B-interval remained unchanged. Differing from the prior subsection, two
intersections are now visible for B 	= 0. Due to the numerical approach of calculating
with a certain step size, the second intersection could not be located precisely, while
the first was easily found at r = 6 analytically, coinciding with the ISCO of a test
particle in the Schwarzschild metric without external fields.

As will be seen in the next subsection, increasing the electric field strength Q
shifts both intersections to higher magnetic field strengths B. While the second point
approaches the black hole horizon in the process, the first intersection remains at
constant radius.By inserting r = 6 into the conditions (3.1), the exactly sameanalytical
expression of the magnetic field strength B(Q) was derived for all ri , yielding

B =
√
6

72
Q at r = 6. (3.5)

Hence, one intersection is to be expected at r = 6 in the presence of an electromag-
netic field, independent of the electric field strength’s absolute value. This implies
an intersection at r = 6 to be present for Q � 1 in Fig. 2. Because Q was cho-
sen in the magnitude of 10−3, the corresponding B was even smaller and in turn not
distinguishable from B = 0 on the examined interval in Fig. 2.

The two regions r > 6 and r < 6 will be discussed by investigating the behaviour
of the electromagnetic force given by Eq. (3.4). The graphical representation of the
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Fig. 5 The effective energy Ei (left plot) and effective angular momentum Li (right plot) of a charged test
particle orbiting along the ISCO as a function of the effective magnetic field strength B with a constant
effective electric field strengthQ = 0.4. The solutions Eα,β and Lα,β together show continuous behaviour,
resulting in each line corresponding to a particle with a fixed charge and orbiting direction

obtained results was changed to allow for a more precise explanation of the actual
mathematical solutions and the introduced physical interpretation. The lines were
replaced with coloured dots, where each dot corresponds to a calculated value and the
colours describe the solutions belonging to rα(Lα, Eα) or rβ(Lβ, Eβ), respectively.
When examining the angular momenta Li and the energies Ei calculated from (3.2)
and (3.3) in Fig. 5, each dotted line corresponds to a particle with properties discussed
in Sect. 3.3.

As can be seen, the two solutions Lα,β as well as Eα,β yield four continuous lines,
respectively. Since it is reasonable to assume a particle’s characteristics to behave
steadily, each continuous line was assigned to a particle. This was represented by
labelling the dotted lines with a corresponding Ei or Li in Fig. 5, such that the order
of smallest to highest energy and angular momentum agrees with the results in Fig. 3.
Each line in Fig. 4 consequently illustrates the continuous radii ri (Ei , Li ) analogously
to the previous subsection.

To examine the changes in ri for an increasing electric field strength, the electro-
magnetic force FEM

i acting on each test particle is illustrated in Fig. 6 for Q = 0.2
and Q = 0.4. Both graphs show a behaviour that agrees with the previous subsec-
tion. Again, r1,4 denote Lorentz and Coulomb force both being attractive or repulsive,
respectively. This results in the overall smallest and largest solutions FEM

1,4 .
In comparison, r2 denotes a repulsive Coulomb and an attractive Lorentz force. The

Lorentz force vanishes for infinitesimal B, meaning the total force is predominantly
determined by the positive Coulomb force. For increasing B, the opposing Lorentz
force grows in absolute value until cancelling out the Coulomb force, effectively
reaching FEM

2 = 0 in Fig. 6. The attractive Lorentz force becomes larger than the
Coulomb force for even higher B, resulting in FEM

1 < FEM
2 < 0.

Analogously, r3 corresponds to an attractiveCoulomb and a repulsiveLorentz force,
where B → 0 yields FEM

3 < 0. Increasing the magnetic field strength results in the
Lorentz force cancelling out the Coulomb force before the total electromagnetic force
repels the particle, such that FEM

4 > FEM
3 > 0.
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Fig. 6 The electromagnetic force FEM
i on a charged test particle orbiting along the ISCO in an electro-

magnetic field as a function of the effective magnetic field strength B with constant effective electric field
strengthQ = 0.2 (left plot) andQ = 0.4 (right plot). The two points FEM

2,3 = 0 each denote an equilibrium
of forces between the opposing Lorentz and Coulomb force, which shift to higher B for growingQ

For this reason, the radial solutions in Fig. 4 resemble the results found in Fig. 2
(with Q � 1) for sufficiently large B, but the distance between r1,2 as well as r3,4
grows with growing Q.

The two values ofBwhere FEM
2 or FEM

3 cross zeromark a transition of the dominant
force on the respective particle from the Coulomb to the Lorentz force as explained
above. These transitions happen both in between the two intersection points of the
radial ISCO solutions shown in Fig. 4. As the order of the ISCO solutions ri is reversed
at the intersection points, we can interpret the whole region from approximately the
first intersection at r = 6 up to about the second intersection as a transitional region.

Concentrating on r > 6, or equivalently B <
√
6

72 Q, this results in r4 > r2 >

r3 > r1. Here r2,4 correspond to positively charged particles and r1,3 correspond to
negatively charged particles. Between the ISCOs of oppositely charged particles a
large radial distance can be observed due to the Coulomb force, whereas the radial
distance between the ISCOs of particles with identical sign of the charge is tiny. Note
that the r = 6 intersection corresponds to the change in colour of the continuous lines

in Fig. 6. For r < 6, or equivalently B >
√
6

72 Q, but before the second intersection of
ISCO radii, we find r1 > r3 > r2 > r4. Here we cannot clearly identify a dominating
Lorentz or Coulomb force. Finally, for large B, after the second intersection of ISCO
radii, the Lorentz force dominates, resulting in r1 > r2 > r3 > r4 similar to the case
of Q � 1 discussed in Sect. 3.3.

In the limiting case B = 0, the magnetic field and thus the Lorentz force on the
particle vanishes. This in turn reduces the number of solutions for the radius r from
four to two, which are caused by the Coulomb force alone and correspond to particles
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of opposite charge q. These two solutions are additionally identifiable in Fig. 1. While
the respective energies Ei behave accordingly by intersecting in pairs at B = 0, four
solutions for the angular momentum still exist. Since Eq. (2.6) only depends on L2 in
the case of B = 0, as expected we find |L1| = |L3| and |L2| = |L4|.

Finally, a minimum in r2(B) is visible when closely examining the results in Fig. 4.
From a numerical analysis, it seems that this minimum is always present, shifting for
smaller Q to larger B and approaching B → ∞ for Q → 0. This minimum becomes
more distinct for larger Q as described in the following subsection.

3.5 Electromagnetic field withQ ≥ 1
2

Further effects can be observed when increasing the electric field strength to Q ≥ 1
2 .

The results for the ISCO radius r with an arbitrarily chosen Q = 0.6 are illustrated
in Fig. 7. The four solutions ri show the expected behaviour in the region r ≤ 6,

or equivalently B ≥
√
6

72 Q. Equation (3.5) implies all ri intersecting at r = 6 for

B =
√
6

72 Q ≈ 0.02, which is slightly larger than for Q = 0.4 shown in Fig. 4. The
intersection of r2,3 also shifts to a larger value ofB, but additionally lowers in r , which
can be attributed to the radial shifting of r2 and r3 due to the electromagnetic force on
both particles. The intersections mark a region of balanced electromagnetic forces. An
increasedQ induces a greater Coulomb force on the test particle, requiring a stronger
Lorentz force to achieve FEM

2,3 = 0. This in turn shifts both intersections in positive
direction along the B−axis in Fig. 7.

Considering the case r > 6, all four ri behave analogously to the results from
Fig. 4 in the vicinity of r = 6. For a decreasing magnetic field strength, the distance
between the upper and lower ri pairs increases, while the Lorentz force causes only a
tiny difference between the ISCO radii of particles with the same sign of the charge.
For 0 < Q < 1

2 , the pairs r1,3 and r2,4 converged at B = 0 to the same radius. When

Fig. 7 Radius ri of the ISCO for a charged test particle in an electromagnetic field as a function of the
effective magnetic field strength B with a constant effective electric field strength Q = 0.6. Each solution
rα,β yields two radii ri corresponding to orbits of either negatively (r1,3) or positively (r2,4) charged
particles. Left plot: general behaviour in the test field. Right plot: behaviour in the limiting case B → 0,
where r2,4 reach a maximum and then disappear, resulting in a region without ISCOs of positively charged
particles. The black, vertical line emphasizes all radii intersecting at r = 6
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Fig. 8 Radius ri of the ISCO for a charged test particle in an electromagnetic field as a function of the
effective magnetic field strength B with a constant effective electric field strength Q = 0.5 (left plot) and
Q = 0.55 (right plot). Each solution rα,β yields two radii ri corresponding to orbits of either negatively
(r1,3) or positively (r2,4) charged particles. While r2,4 diverge for B → 0 on the left, they vanish after
reaching a maximum for B 	= 0 on the right. This maximum decreases for higher Q. The black, vertical
line emphasizes all radii intersecting at r = 6

the electric field strength reaches Q = 1
2 , the larger limit value vanishes according to

Sect. 3.2. This can be observed on the right of Fig. 7, where r2,4 first seem to merge to
a single radius before they disappear without diverging for sufficiently small B 	= 0.

As the example Q = 0.6 illustrates, it is possible to suppress the divergence of
the ISCO of positively charged particles for Q ≥ 0.5, discussed in Sect. 3.2, by a
sufficiently strong magnetic field strength. In the case Q = 0.6, the ISCOs with r2,4
do not approach from infinity, but rather start from a finite r−value that could not be
determined precisely. To further examine this behaviour,Q = 0.5 andQ = 0.55 were
chosen and the resulting ISCO radii illustrated in Fig. 8.

The electric field strength Q = 0.5 characterises the threshold of r2,4 vanishing.
Calculating the radii in the limiting case B = 0 indeed only yields ISCOs r1,3 for
negatively charged particles. For an infinitesimal B 	= 0 however, all four radii solve
the posed conditions. The left graph of Fig. 8 indicates this with r2,4 diverging when
approachingB = 0. In this case, an infinitesimal magnetic field and thus Lorentz force
suffices to allow for the existence of four orbits and results in diverging r2,4. Increasing
the electric field strength yields a greater Coulomb force, in turn requiring a stronger
Lorentz force to permit all four orbits. The right graph of Fig. 8 shows the resulting
finite region where only ISCOs of negatively charged particles exist. After crossing a
certain threshold in B, r2,4 appear and start to decrease from a maximum. For larger
Q the threshold in B increases and the maximum of r2,4 decreases. The threshold can
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Fig. 9 Angular velocity ϕ̇i of a charged test particle orbiting along the ISCO in an electromagnetic field as
a function of the effective magnetic field strength B with constant effective electric field strengthQ = 0.55
(left plot) and Q = 0.6 (right plot). In both plots, ϕ̇4 vanishes for a certain B, implying a static particle at
r4. The point ϕ̇4 = 0 shifts to higher B for increased Q

even expand beyond B =
√
6

72 Q for sufficiently largeQ, resulting in an intersection of
only r1,3 at r = 6.

Finally, a sign change can be observed in ϕ̇4, when plotting the angular velocity ϕ̇

for Q > 1
2 , reversing the particle orbit’s direction. This circumstance is illustrated in

Fig. 9 for Q = 0.55 and Q = 0.6, respectively.
As explained above, the ISCO radii r2,4 of positively charged particles only exist

for B larger than a certain threshold value. At this threshold, both positively charged
particle ISCOs are indirect orbits with ϕ̇ < 0 as shown in Fig. 9, but L2 < 0 and
L4 > 0.With growingB, ϕ̇2 monotonically decreases and ϕ̇4 monotonically increases.
For a certain finite B, the angular velocity ϕ̇4 vanishes, implying the existence of a
static particle at fixed angular and radial coordinates. The electromagnetic force in this
case is a pure Coulomb force, that is repelling and cancels the gravitational attraction.
Note that for slight variations in B or Q the particle ISCO will have a very small ϕ̇

and, therefore, is stable in this sense. Increasing the electric field strength Q leads to
a smaller ϕ̇ < 0 below the threshold, and ϕ̇4 = 0 additionally shifts to larger B.

Static charged particles have been discussed before in the literature, for instance
in a Kerr–Newman spacetime [33], and in a Reissner–Nordström spacetime, see
[32,34] and references therein. Here, we consider the test field approximation, mean-
ing that this phenomenon is not related to the influence of charge on the curvature
of spacetime. Pugliese et al. [32], considering (electrically) charged particles in a
Reissner–Nordström spacetime with electric charge only, find for black hole space-
times the same condition on the charge product as we do, namely Q > 1

2 . However,
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in the considered test field approximation, an additional magnetic field of sufficient
strength is needed for stable circular orbits of positively charged particles, and in
particular for the marginally stable static ISCO.

4 Summary and conclusion

In this paper we discussed the innermost stable circular orbit (ISCO) of charged par-
ticles in a Schwarzschild spacetime endowed with electromagnetic test fields that do
not influence the curvature of spacetime. For the electromagnetic fields we chose the
Wald solution of an asymptotically uniform magnetic field [15] and a radial electric
field centered at the black hole. As the particle motion will in general be chaotic,
we restricted our considerations to the equatorial plane, meaning orthogonal to the
magnetic field, to ensure integrability.

Due to the four combinations of equal/opposite charges of particle and black hole as
well as aligned/anti-aligned angular momentum and magnetic field strength in general
four different ISCOs will arise. To simplify the discussion and representation of our
results, we chose without loss of generality Q > 0 for the electric field and B > 0
for the magnetic field. All other cases can be reconstructed from this by symmetry
arguments. Moreover, we chose w.l.o.g. qQ/2 =: Q > 0 and qB/2 =: B > 0, where
q is the specific charge of the particle. As the equations of motion are invariant under
the transformations (L,B) → (−L,−B) as well as (E,Q) → (−E,−Q), where
E and L are the energy and angular momentum, all other cases can be reconstructed
from this.

As the limit of Q = 0 was already discussed in detail by Frolov and Shoom [22],
we started our analysis of the ISCO with the limit B = 0. Similar to earlier results in
more general setups, see for instance [5], we found that the ISCO radius of charged
particles always increases as compared to neutral particles regardless of the sign of
the charge. Moreover, for positively charged particles the ISCO diverges to infinity at
Q = 1

2 and vanishes completely for larger Q, compare e.g. [32]. We then proceeded
with the case of Q � 1. As expected we found four ISCO solutions for the four
different combinations discussed above. However, due to the smallness of the chosen
Q, two pairs can be identified that behave almost identical and very similar to the
results already discussed by Frolov and Shoom [22]. Here we also discussed in some
detail the physical interpretation of the mathematical results as a preparation for the
following more complicated setups.

As Q = 1
2 clearly presents an interesting limiting case, we split our discussion

accordingly, starting with Q < 1
2 . We found that all four ISCO solutions will always

cross at r = 6, the ISCO of neutral particles, for B =
√
6

72 Q. A second intersection of
only two of the four solutions can be identified at a larger B, compare Fig. 4, whose
exact value we could not determine analytically. At each intersection, the ISCO radii
reverse their order. In between these two intersections, we found that the electromag-
netic force will vanish for two of the four ISCOs, see Fig. 6. We therefore conclude
that this region of intersections is a transitional region, where neither Coulomb nor
Lorentz force clearly dominate. For smaller B the Coulomb force dominates, with
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results resembling the B = 0 limit, whereas for large B the Lorentz force dominates,
with results resembling the Q = 0 limit.

Finally, forQ > 1
2 , we found in addition to the characteristics already discussed for

theQ < 1
2 case two interesting new features. Firstly, due to the observed nonexistence

of an ISCO for positively charged particles in theB = 0 limit, we find a region close to
B = 0where only two ISCOs (for negatively charged particles) exist. Interestingly, the
ISCO for positively charged particles reappears at a finite radial position for sufficiently
strong magnetic fields. At exactlyQ = 1

2 , an infinitesimal magnetic field is sufficient
to allow for four ISCOs, but the ISCOs of positively charged particles diverge for
B → 0. Secondly, we found that both ISCOs for positively charged particles reappear
initially as indirect orbits with ϕ̇ < 0. However, for one of the particles ϕ̇ will increase
with increasing B and eventually cross ϕ̇ = 0, allowing for an ISCO given by a static
particle sitting at a fixed radial and angular coordinate.

The results of this paper show that the structure of stable circular orbits is very rich
once electromagnetic (test) fields and charged particles are relevant. As argued in the
introduction, electromagnetic test fields can astrophysically be relevant in particular
for the motion of free electrons and protons, that have a very high charge to mass
ratio. We therefore think that further research to understand the structure of ISCOs of
charged particles, and in particular the fact that the discussed electric test field always
increases, whereas the chosen magnetic field always decreases the ISCO radius, is
very worthwhile.
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EXC 2123 “Quantum Frontiers”.

A ISCO equation for the radial component r

Inserting the equation of motion (2.6) into the first condition of (3.1) and expressing
the particle’s angular momentum L as well as energy E by Eqs. (3.2) and (3.3) results
in the following equation for the radial component r , depending only on the magnetic
field strength B and the electric charge Q

0 = 1

4r2(r − 6)2Q2 (384B2r3Q2 + 408B4r8 − 352B4r7 + 96B4r6 − 48Q4

− 544B2r4Q2 + 16B4r10 − 144B4r9 + 32Q4r − 24B2r6Q2 + 192B2r5Q2

− 48CBr2Q2 + 48rCBQ2 + 8CBr3Q2 + 72B3r5C − 48r4CB3 + 24r2CB
− 16B3r6C − 4r3CB + 36r2 − 12r3 + r4 + 240B2r5 − 144B2r4 − 168r2Q2

+ 144rQ2 − 84B2r6 + 48r3Q2 + 8B2r7 − 4r4Q2), (A.1)

withC = √−(r − 6)r(3B2r4 − 2B2r3 − 4Q2) as before. The electromagnetic field’s
influence on the ISCO’s radial component r determined by B andQ can be calculated
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by solving Eq. (A.1) for r . Equations (3.2), (3.3) and (A.1) thus describe the charged
particle along its corresponding ISCO, depending exclusively on the electromagnetic
field’s properties B and Q.
Considering the limiting caseB = 0 from section 3.2 in turn yields the following three
expressions

0 = 1

4r2(r − 6)2Q2 (−48Q4 + 32Q4r + 36r2 − 12r3 + r4 − 168r2Q2 + 144rQ2

+48r3Q2 − 4r4Q2), (A.2)

L2 = 4rQ2

r − 6
, (A.3)

E = (1 − 2Q2)r2 + (−6 + 12Q2)r − 12Q2

2r(r − 6)Q . (A.4)

In this case, the angular momentum L is of quadratic order in Eq. (2.6). The solutions
Lα,β givenbyEq. (3.2) consequently coincide, resulting in one expression L2. The two
solutions for the energy Eα,β from Eq. (3.3) coincide as well, since the distinguishing
term with opposite signs ∓2CB in Eq. (3.3) vanishes for B = 0, resulting in one
expression for the energy E . The results presented in Fig. 1 can be obtained by solving
Eq. (A.2) for r, whereas Eqs. (A.3) and (A.4) yield the corresponding square of the
particle’s angular momentum and the particle’s energy, respectively.
In the limiting case Q = 0, Eq. (A.1) diverges because of a zero in the denominator
of the right-hand side. It stems from having inserted the particle’s energy E given by
Eq. (3.3), which diverges forQ = 0 as well. Equation (3.3) was calculated by solving
d2U
dr2 = 0 for E . When examining the special case Q = 0, U(r) defined by Eq. (2.6)

depends solely on the particle’s energy square E2. It drops out when differentiating

U(r) with respect to r . Solving d2U
dr2 = 0 for E is thus not possible, making Eqs. (A.1)

and (3.3) invalid in this limit.
Instead, U(r) = 0 can be solved for E2 in the case Q = 0 and the result inserted

into d2U
dr2 = 0 to yield an analytical expression, analogous to Eq. (A.2), from which

the radial component r can be calculated along an interval of B. Since the limit of a
vanishing electric charge was not the main subject of this paper and has already been
treated in [22], the resulting expression will be omitted here.
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