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Abstract
The quasi-spherical Szekeres dust solutions are a generalization of the spherically
symmetric Lemaitre–Tolman–Bondi dust models where the spherical shells of con-
stant mass are non-concentric. The quasi-spherical Szekeres dust solutions can be
considered as cosmological models and are potentially models for the formation of
primordial black holes in the early universe. Any collapsing quasi-spherical Szekeres
dust solution where an apparent horizon covers all shell-crossings that will occur can
be considered as a model for the formation of a black hole. In this paper we will show
that the apparent horizon can be detected by a Cartan invariant. We will show that
particular Cartan invariants characterize properties of these solutions which have a
physical interpretation such as: the expansion or contraction of spacetime itself, the
relative movement of matter shells, shell-crossings and the appearance of necks and
bellies.

1 Introduction

The Szekeres solutions belong to a larger class of solutions known in the literature as
silent universes, due to the matter source being a perfect fluid without pressure, (i.e.,
dust) and the vanishing of the magnetic Weyl tensor. The latter condition implies that
there cannot be gravitational waves propagating through space [1]. Each point in a
silent universe evolves on its own without being affected by other regions. This can
be seen more explicitly by noting that the non-linear partial differential equations of
general relativity (GR) can be decoupled into a system of ordinary differential equa-
tions dictating the evolution of the physical quantities describing the system (i.e., such
as the expansion rate, the shear tensor, the electric Weyl tensor and the energy den-
sity) [2]; the lack of spatial derivatives in these equations ensure that different regions
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of space will not affect each other and simplifies the analysis of the silent universes
with regards to structure formation in inhomogeneous and anisotropic cosmological
models [3].

In cosmology it is believed that structure formation arises from the growth and
development of small perturbations that potentially begin at the time of inflation.
Many inflationary models give rise to a spectrum of fluctuations on scales that are
larger than the cosmological horizon, and eventually these fluctuations will begin
to move back into the horizon in the radiation dominated era. At this point in the
Universe’s development, in extreme cases, primordial black holes (PBHs) are able to
form. Themasses of such black holes will be very small, ranging from the Planckmass
up to the horizon mass at the time of equivalence between radiation and pressureless
matter [4].

A defining characteristic of black hole formation is the event horizon, which is the
boundary of the non-empty complement of the causal past of future null infinity; i.e.,
the region for which signals sent from the interior will never escape. For dynamical
black holes, such as PBHs, we must know the global behaviour of the spacetime in
order to determine the event horizon locally [5]. As an alternative, Penrose proposed
the concept of closed trapped surfaces without border, which are compact spacelike
surfaces such that the expansions of the future-pointing null normal vectors are nega-
tive [6]. The apparent horizon is defined as the locus of the vanishing expansion, θ(�) of
a null geodesic congruence, �a emanating from trapped surfaces with spherical topol-
ogy [7]. The apparent horizon is quasi-local and it is intrinsically foliation-dependent.

Apparent horizons are employed in simulations of high precision waveforms of
gravitational waves arising from the merger of compact-object binary systems or in
stellar collapse to form black holes in numerical relativity. The observations by the
LIGO collaboration of gravitational waves from black hole mergers relied upon such
numerical simulations based on apparent horizons [8]. However, due to the foliation
dependence of the apparent horizon, it is observer dependent, and this can lead to
ambiguities if care is not taken to relate the differing observers’ reference frames
[7]. For this reason it is important to determine an alternative surface that is defined
invariantly, such as the geometric horizon which is a hypersurface defined by the
vanishing of particular curvature invariants [9–11].

It is of interest to determine the existence of geometric horizons for solutions
describing PBH formation. The first models of PBH formation were studied in the
context of spherical symmetry [4], and these dynamical black hole solutions must
admit geometric horizons [10]. Non-spherically symmetric PBH solutions have been
considered [12] and it has been argued that the quasi-spherical (QS) Szekeres dust
models have a more natural interpretation than the spherically symmetric solutions
as a model for the formation of PBHs [13]. However, if a QS Szekeres solution is
to describe the formation of a PBH then shell-crossings cannot form outside of the
apparent horizon, as this can be interpreted as the start of processes not described by
the QS Szekeres dust solution models.

The appearance of shell-crossings arises from the choice of the metric functions
[14,15]. It is possible to put restrictions on themetric functions [14,16], or equivalently
restrictions on the initial conditions [17], in order to avoid or delay shell-crossings
occurring in general [18]. As a black hole solution, the QS Szekeres dust models
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require extensive fine-tuning of the black hole’s mass and collapse time in order to
avoid shell-crossings forming outside of the apparent horizon. If the black hole mass
is within a small enough range then the time duration of collapse is ensured to be
consistent with PBH formation. This suggests that a subset of the QS Szekeres dust
solutions can describe the formation of PBHs in the early universe.

The QS Szekeres dust models are known to admit an apparent horizon [16,19]. We
will show that this hypersurface is, in fact, a geometric horizon [9,10]. To do so we
will employ a frame approach to compute the appropriate Cartan invariants arising
from the Cartan–Karlhede algorithm [20–22] in order to determine the existence of
the geometric horizon. Previously, these models have been investigated using the
orthonormal 1+3 frame approach developed in [23]. This has lead to several invariant
characterizations of the Szekeres dust solutions [24–26]. The null frame approach of
the Newman–Penrose (NP) formalism has been used to invariantly characterize the
Szekeres solutions [27] and the Szekeres–Szafron solutions [24,25].

From the invariant characterization of the QS Szekeres solutions, observer based
measurements of the physical properties can be described using scalar curvature invari-
ants. Similarly, the thermodynamics of the perfect fluids of a family of the β ′ �= 0
Szekeres–Szafron solutions have been considered in [28] in terms of scalar invariants.
While these invariants have been helpful to describe the QS Szekeres dust solutions
from the perspective of inhomogeneous dust solutions, they are not well adapted to the
interpretation of PBH formation. A new set of Cartan invariants will be presented that
invariantly characterize the properties of the QS Szekeres spacetimes with a physical
interpretation relating to PBH formation.

The outline of the paper is as follows. In Sect. 2 we review the QS Szekeres solution
and discuss the spin-coefficients and curvature scalars in the NP formalism. In Sect.
3 the Cartan–Karlhede algorithm is applied to generate the minimal set of extended
Cartan invariants. In Sect. 3.4 we will compare the Cartan invariants with two well-
known sets of scalars used to characterize the Szekeres solutions: the kinematic scalars
[2] and the q-scalars [17] to motivate the use of Cartan invariants. In Sect. 4 new
extended Cartan invariants will be constructed that describe physical properties of the
QS Szekeres solution and show that the apparent horizon is detected by the vanishing
of a Cartan invariant. We will also construct invariants to detect shell-crossings, as
their appearance outside of the apparent horizon will indicate that a given QS Szekeres
solution is not a valid model for PBH formation. In Sect. 5 we will examine the zero
sets of the invariants that will detect the apparent horizon and the potential appearance
of shell-crossings in two examples. In Sect. 6 we review our results and discuss future
work.

2 The quasi-spherical Szekeres dust models

Wewill review the metric for the β ′ �= 0 quasi-spherical (QS) Szekeres solutions with
vanishing cosmological constant using the parametrization introduced byHellaby [29]
and used in [16,17]. We can write the metric in a simple form:
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ds2 = −dt2 + E2Y ′2

1 + 2E
dz2 + Y 2[dx2 + dy2], (1)

where Y = Y (t, x, y, z) and E = E(x, y, z) are defined as:

Y = R

E , E = S

2

[
1 +

(
x − P

S

)2

+
(
y − Q

S

)2
]

, (2)

with R = R(t, z) and S(z), P(z), Q(z) arbitrary functions with S ≥ 0. Imposing the
Einstein field equations with a dust source, we have the following equations:

Ẏ 2 = 2M̃

Y
+ Ẽ, (3)

2M̃ ′ = κρ̃Y 2Y ′, (4)

where prime and dot denotes differentiation with respect to z and t , respectively, ρ̃ is
the energy density, and

Ẽ = 2E

E2 , M̃ = M

E3 .

Here, the functions M(z) and E(z) are called the mass and energy functions respec-
tively [13]. Expanding the first equation (3) gives a differential equation for R:

R2
,t = 2E(z) + 2M(z)

R
. (5)

The positive and negative roots determines whether the spacetime is in the expanding
or collapsing phase [7].

We will impose the following additional conditions:

R ≥ 0, and M ≥ 0. (6)

The first is due to the interpretation of R as the areal radius and hence must be positive;
when R = 0 this is either an origin, bang or crunch singularity. M must be positive
so that the vacuum exterior has positive Schwarzschild mass.

In general, this solution will have no symmetry, although there are solutions which
will admit rotational symmetries [30,31] and coordinates can be chosen so that P and
Q are constant. With S = 1 and P = Q = 0, this solution reduces to the Lemaitre-
Tolman-Bondi (LTB) solution, while if R = z S̃(t), E = E0z2 with S̃ an arbitrary
function, E0 = constant, P = Q = 0, and S = 1, the Robertson–Walker limit is
recovered. The quasi-spherical Szekeres dustmodel can be regarded as a generalization
of the LTB model in which the spheres of constant mass are non-concentric, with the
functions P, Q and S determining how the center of a sphere changes its position in a
space of t = constant when the radius of the sphere is increased or decreased. It has
been argued that these metric functions also give rise to a shell-rotation effect [32].We
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will assume that the metric functions are not of the form discussed in this paragraph,
unless explicitly indicated.

Assuming the metric functions do not take the form of the functions discussed in
the previous paragraph, we note that the sign of E(z) determines the type of evolution:

• If E(z0) < 0, a matter shell at z = z0 expands away from the initial singularity
and then recollapses to a final singularity.

• If E(z0) > 0, the shell is ever-expanding or ever-collapsing, depending on the
initial conditions.

• If E(z0) = 0, this is an intermediate case for which the shells are ever-expanding
with asymptotically zero expansion, or its time-reverse.

All three evolution types can exist in different regions of the same Szekeres solution.
We will consider regions where the matter is recollapsing (E < 0). The solution of
(5) is then [16]:

R = − M

2E
(1 − cos η), η − sin η = (−2E)

3
2

M
(t − tB(z)), (7)

where tB(z) is an arbitrary function and η(t, z) is a parameter.

2.1 Spin-coefficients and curvature scalars

We will work with a complex null tetrad, {la, na,mam̄a}, such that the only non-zero
inner products are−lana = mam̄a = 1 and where a bar denotes a complex conjugate.
In terms of the complex null tetrad the metric is then

g = −2�(anb) + 2m(am̄b), (8)

where round parentheses denote symmetrization of indices and the tetrad is defined
as

�a = 1√
2

(
dt + EY ′

√
1 + 2E

dz

)
, na = 1√

2

(
dt − EY ′

√
1 + 2E

dz

)
,

ma = Y√
2
(dx − idy), m̄a = Y√

2
(dx + idy).

(9)

We will also introduce the frame derivatives for this coframe:

D = 1√
2

(
∂

∂t
−

√
1 + 2E

EY ′
∂

∂z

)
,	 = 1√

2

(
∂

∂t
+

√
1 + 2E

EY ′
∂

∂z

)
,

δ = 1√
2

(
1

Y

∂

∂x
− i

Y

∂

∂ y

)
, δ̄ = 1√

2

(
1

Y

∂

∂x
+ i

Y

∂

∂ y

)
.

(10)
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The dust condition gives the following coordinate independent relations between
the Ricci scalars:

R = 4�00,�22 = �00 and �11 = 1

2
�00, (11)

and the algebraically independent NP curvature scalars are:

�00 = ρ̃

κ
= 2M̃,z

Y 2Y,z
, �2 = − M̃

2Y 3 + κ

12
ρ̃, κ = 8πG

c4
= 8π. (12)

That is, the Weyl tensor is of algebraic type D, and the Ricci tensor is of algebraic
type I relative to the alignment classification [33–35]. The divergence of the Einstein
field equations gives a constraint on the energy density ρ̃:

Dρ̃ + 	ρ̃ + (2ε + 2ε̄ + μ + μ̄ − ρ − ρ̄)ρ̃ = 0, (13)

where ε, ρ, μ, κ̃ and π̃ and their complex conjugates belong to the set of non-zero
spin-coefficients:

ρ = 1√
2

(
Y,tE − √

1 + 2E

EY

)
,

μ = − 1√
2

(
Y,tE + √

1 + 2E

EY

)
,

γ = −ε = 1

2
√
2

Y,z,t

Y,z
,

τ = ν̄ = −κ̃ = − ¯̃π = − i

2
√
2

(
(EY,z),y − i(EY,z),x

EYY,z

)
.

(14)

3 The Cartan–Karlhede algorithm

We will employ the Cartan–Karlhede algorithm to generate the required set of Cartan
invariants for the QS Szekeres spacetime [20–22]. At each iteration, q ≥ 0, of the
algorithm, we will compute the q-th covariant derivative of the curvature tensor and
determine two discrete invariants: the number of functionally independent Cartan
invariants at the q-th iteration, tq , which are the components of the q-th covariant
derivative of the curvature tensor, and the dimension of the linear isotropy group,
dim(Hq), which consists of the Lorentz frame transformations that leave the curvature
tensor and up to its q-th covariant derivative unchanged.

Choosing a basis of functionally independent Cartan invariants, the remaining
functionally independent Cartan invariants are classifying functions. Any classifying
function can be expressed in terms of the functionally independent Cartan invariants,
and this expression will be unchanged under coordinate transformations. Thus, if two
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QS Szekeres solutions have identical classifying functions, when expressed in terms
of their respective functionally independent Cartan invariants, then the two QS Szek-
eres dust models are isometric and are related by a coordinate transformation. If any
classifying function differs between the two solutions, they are distinct and there is no
coordinate transformation between the two Szekeres spacetimes.

3.1 Zeroth order Cartan invariants

Using the null frame (9), the zeroth order Cartan–Karlhede algorithm can be applied
readily to the Ricci and Weyl tensors. The isotropy group at zeroth order consists of
spins, m′ = eiθm [36], and so dim(H0) = 1. In general, there are two functionally
independent zeroth order Cartan invariants since the double wedge product of the
exterior derivatives of �00 and �2 is non-zero,

d�00 ∧ d�2 �= 0,

implying that the two scalars must be functionally independent.

3.2 First order Cartan invariants

At first order, the covariant derivative of the Weyl tensor yields the following alge-
braically independent quantities:

D�2, 	�2, δ�2, δ̄�2, ρ, μ, κ, τ. (15)

While from the covariant derivative of the Ricci tensor we find additional quantities:

D�22 + 4ε�22,	�22 − 4ε�22, δ�22, δ̄�22. (16)

The first order isotropy group at trivial, as spins affect the form of the spin-coefficients
κ, τ , and ε along with any quantity differentiated by δ or its complex conjugate.

Choosing the frame where ε is real-valued using an appropriate spin, this is now
an invariant coframe and any frame derivative of a Cartan invariant is also a Cartan
invariant. We are now able to separate the components in equations (15) and (16)
and work with the frame derivatives of �22 and �2 and the spin-coefficients directly.
Assuming that the spacetime has no isometries1 and choosing ε and π̃ as the remain-
ing two functionally independent invariants then the non-vanishing quadruple wedge
product,

d�22 ∧ d�2 ∧ dε ∧ dπ̃ �= 0,

shows that the four Cartan invariants involved in the wedge product are functionally
independent, and so t1 = 4.

1 If a Szekeres dust-model admits a symmetry, there will only be three functionally independent invariants
[31], since ε �= 0 in these solutions.
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3.3 Second order Cartan invariants

The Cartan–Karlhede algorithm must continue to second order where it terminates
since dim(H2) = dim(H1) = 0 and t2 = t1 = 4.2 The second order Cartan invariants
are needed to fully characterize a given QS Szekeres dust model.

3.4 Kinematic quantities and q-scalars

Choosing the timelike direction,
√
2u = (� + n), the dust is co-moving, uμ = δ

μ
0

and u̇μ = uν∇νuμ = 0. The kinematic quantities along the timelike direction are: the
energy density, ρ̃, the expansion scalar, �, the Ricci curvature of the spatial 3-space,
3R, the shear scalar,�, and the algebraically independent component of electric Weyl
tensor,W . These quantities completely characterize a QS Szekeres solution [17], and
are related to the Cartan invariants:

ρ̃ = κ

2
�22, (17)

3R = 18�22, (18)

W = 2�2, (19)

� = −
√
2

2
(2ε − ρ + μ), (20)

� =
√
2

6
(4ε + ρ − μ). (21)

Expansion-normalized variables can be constructed from these scalars that give
dimensionless evolution equations dictating the dynamics of the Szekeres spacetime as
a set of scalar evolution equations, a ‘Hamiltonian’ constraint and spacelike constraints
[2,37]. Since � + n = √

2∂t , the equation arising from the divergence of the Einstein
field equations (13) can be rewritten in terms of these quantities:

ρ̃,t + �ρ̃ = 0, (22)

which agrees with the first scalar evolution equation in equation (17) of [17]. The
Raychaudhuri equation and the remaining evolution equations are then:

�,t = −�2

3
− κ

2
ρ̃ − 6�2, (23)

�,t = −2

3
�� − �2 + W, (24)

W,t = −�W − κ

2
ρ̃� + 3�W. (25)

2 If there is a symmetry, then dim(H2) = dim(H1) = 0 and t2 = t1 = 3, and so the algorithm still stops.
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The “Hamiltonian” constraint and spacelike constraints are, respectively3:

�2

9
= κρ̃

3
−

3R
6

+ �2, (26)

∇̃bσ
b
a − 2

3
hba�,b = 0, ∇̃bW

b
a − κ

3
hba ρ̃,b = 0. (27)

Relative to the invariant frame determined by the Cartan–Karlhede algorithm, the
above equations can be expressed in terms of zeroth and first order Cartan invariants
[22].

There is another set of coordinate independent scalar variableswhich are quasi-local
and are defined in terms of appropriate integral distributions of the local kinematic
variables, {ρ̃, 3R,W,�,�}, giving the set of q-scalars:

{
ρq ,Hq ,Kq , �q

}
.

The q-scalars can be interpreted as weighted averages of the local scalars when treated
as functionals. The local kinematic scalars can then be treated as fluctuations of the
q-scalars:

{
	(ρ),	(H),	(K),	(�)

}
.

Due to the relationship between the original kinematic scalars and the q-scalars, the
evolution equations for the q-scalars can be rewritten in terms of the original quantities
ρ̃, �,�,W and 3R (17)–(21). For example, considering the evolution equations [17]:

ρ̇q = −3ρqHq , (28)

Ḣq = −H2
q − κ

6
ρq , (29)

	̇(ρ) = −3(1 + 	(ρ))Hq	
(H), (30)

	̇(H) = −(1 + 3	(H))Hq	
(H) + κρq

6Hq
(	(H) − 	(ρ)), (31)

then the first two equations expressed in terms of ρ̃ and � agree with (13)–(25) and
the Hamiltonian and spatial constraints become:

H2
q = κ

3
ρq − Kq , (32)

2	(H) = �q	
(ρ) + (1 − �q)	

(K), (33)

3 Since ua = dt , the projection operator hab = gab + uaub = gab + 2(�a + na)(�b + nb) was used to
compute the Ricci scalar, 3R, of the hypersurfaces t = const . To recover the form in [17] we notice that
Ẏ = 0 and so M̃ = 1

2 K̃ Y .
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where �q is a q-scalar analogue of the FLRWOmega factor � = �q(1+	(�)), with
its corresponding fluctuation:

�q = κρq

3H2
q
, �q − 1 = Kq

H2
q
, (34)

	(�) = 	(ρ) − 2	(H) = (1 − �q)(	
(ρ) − 	(K)). (35)

We note that the q-scalars ρq ,Hq ,Kq and �q , and their fluctuations as determined
in [17], can be expressed in terms of the Cartan invariants through the expressions
(17)–(21) and the identities given in Appendix B of [17]. For example,

ρq = 6�2 + κρ̃

κ
, 	(ρ) = 6�2/(−κρ̃)

1 − 6�2/(−κρ̃)
(36)

Hq = 3� + �, 	(H) = − �/(3�)

1 + �/(3�)
. (37)

In a similar manner, the q-scalars Kq and �q , and their fluctuations which are
derived by applying the constraints the Eqs. (32), (33) and (34), (35) to (36) and (37),
respectively, will also be extended Cartan invariants.

4 Invariant characterization of physical properties

The QS Szekeres solutions can describe an inhomogeneous cosmological model [27],
a wormhole solution [14] or the formation of a primordial black hole [13,18]. The
interpretation of a QS Szekeres solution is dependent on the behaviour of particular
properties associated with the geometry, which can be considered as physical charac-
teristics. For example, the appearance of shell-crossings before the apparent horizon
forms or outside of the apparent horizon are geometric properties that immediately
exclude a QS Szekeres solution as a model for PBH formation.

Even within the class of QS Szekeres solutions which describe the formation of
PBHs, the behaviour of these physical properties will be important. For example,
the conditions for the formation of future and past apparent horizons in Szekeres–
Szafron spacetimes depend on the expansion or contraction of spacetime, the location
of shell-crossings and the relative movement between matter shells [38]. When the
apparent horizon exists, we will show that it is a geometric horizon. While we are
not primarily concerned with the properties of apparent horizons, we believe that
the invariant characterization of these properties will give insight into the physical
interpretation of the geometric horizon.

4.1 Detection of the horizon

The QS Szekeres dust models admit an apparent horizon, defined by the surface R =
2M , which corresponds to the vanishing expansion of the future-pointing null vector
normal to this surface [16]. Due to the lack of a timelike Killing vector or spherical
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symmetry, there are no previously known scalar polynomial curvature invariants (SPIs)
that will, in general, detect the apparent horizon [39,40].

To detect the apparent horizon, wewill consider the covariant derivative of theWeyl
tensor. The components of Cabcd;e may be expressed in terms of �2, �11, 	�11 and
the spin-coefficients (14). In the chosen invariant coframe, the form ofCabcd;e does not
conform with the known algebraic types from the alignment classification [33–35].4

Using the algebraic and differential Bianchi identities, the non-zero components of
Cabcd;e are:

C1214;3 = C1434;3 = C1213;4 = C1334;4 = 3ρ�2 (38)

and 2C1423;1 = C1212;1 = C3434;1 where

C3434;1 = −2	�11 − 32ε�11 − 4μ�11 + ρ(18�2 + 4�11)

3
. (39)

To show that R = 2M is a geometric horizon, we note that the extended Cartan
invariant ρ, defined in equation (14), will vanish on the surface R = 2M [9,10].
This surface is a dynamical geometric horizon since the extended invariant, μ, which
also appears in the covariant derivative of the curvature tensor, is negative within the
surface R = 2M [11]. The spin-coeficients ρ and μ correspond to the expansion of
the ingoing and outgoing null directions; i.e., ρ = θ(�) and μ = θ(n).

We have only considered the contracting phase by choosing the negative root of
(5); however, in the expanding phase, where (7) has a positive root, μ vanishes on
R = 2M and ρ is negative within this invariant surface, implying that the expanding
phase admits a dynamical geometric horizon.

We note that the geometric horizon coincides with the apparent horizon; however,
the geometric interpretation of these two surfaces differs. In the case of a geometric
horizon the preferred null directions � and n in (9) are not geodesic but lie in the plane
spanned by the null normals to the hypersurface R = 2M [10]. In general, geometric
horizons are not necessarily apparent horizons or any other horizon based on trapped
surfaces [11].

4.2 Areal radius

The areal radius can be shown to be an invariant function expressed in terms of the
Cartan invariants. By first combining the algebraically independent Ricci scalar and
Weyl scalar, we can write

C0 = �2 − κ

12
ρ̃ = − M̃

2Y 3 = − M

2R3 . (40)

4 Since the discriminant SPIs built from the Weyl and Ricci tensors, along with the covariant derivatives
of these tensors do not vanish anywhere, these tensors cannot be of alignment type II or more special.
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Then using ρ and μ in (14), we have two simpler invariants

C1 = −
√
2(ρ + μ)

2
=

√
1 + 2E

R
,

C2 =
√
2(ρ − μ)

2
= Y,tE

EY = R,t

R
.

(41)

The differential equation (5) allows us to combine the Cartan invariants:

−4C0 + C2
1 − C2

2 = 2M

R3 + 1 + 2E

R2 − R2
,t

R2 = R2
,t

R2 + 1

R2 − R2
,t

R2 = 1

R2 .

Outside of the singularities that occur when R = 0 (a bang, a crunch or potentially
the origin), R > 0 and so the areal radius can be isolated by taking the square root. It
is possible to choose initial conditions so that the origin is regular [14].

4.3 Themass and energy functions

The mass function, M , and energy function, E , are Cartan invariants as well since

M = −2C0R
3, and E = C2

1 R
2 − 1

2
. (42)

4.4 Expansion or contraction of spacetime

The expansion or contraction of spacetime is an invariant quantity determined by the
difference of ρ and μ:

C2 =
√
2(ρ − μ)

2
= Y,tE

EY = R,t

R
. (43)

4.5 Spatial extrema and rate of change of the areal radius

As the invariant frame derivative operators can be added together to give a newoperator
proportional to the coordinate derivative,

Dz = D + 	√
2

=
√
1 + 2E

EY,z
∂z, (44)

we can apply this to the inverse square of the areal radius to produce a new extended
Cartan invariant:

DzR
−2 = −

√
1 + 2ER,z

EY,z R3 . (45)
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This invariant will detect the spatial extrema, R,z = 0, when the numerator vanishes
and indicate distinct regions where R,t changes sign.

We can determine the sign of R,t in a region using the fact that ρ̃ ≥ 0 and

ρ̃ = 2E3M̃,z

R2EY,z
= 2

R2

(
M,z − 3ME,z

E
R,z − RE,z

E

)
, (46)

in regions where R,z �= 0 and 0 < ρ̃ < ∞ we can compare the sign of the following
invariant,

DzR

ρ̃
= Y 2

√
1 + 2ER,z

2E M̃,z
= R2

√
1 + 2ER,z

2E3M̃,z
. (47)

Since EY,z and E3M̃,z must both be positive or negative in the same region, the change
in the sign of R,z can be determined.Wenote that the Szekeresmetric is covariant under
the transformation r = g(r̃). If R,z < 0 then new local coordinates can be chosen
so that R,z > 0 [14]. However, if in a region R,z changes sign, this is a coordinate
independent property.

4.6 Spatial extrema and rate of change of themass function

Consider the invariant derivative of the mass function with respect to the derivative
operator (44):

DzM =
√
1 + 2EM,z

EY,z
. (48)

This will detect the spatial extrema of the mass function. In regions where M,z �= 0
and 0 < ρ̃ < ∞ the sign of M,z can be determined by comparing the sign of another
invariant,

C3 = DzM

ρ̃
= Y 2

√
1 + 2EM,z

2E M̃,z
= R2

√
1 + 2EM,z

2E3M̃,z
. (49)

Due to equation (46), the expressions EY,z and E3M̃,z must both be either positive or
negative in the same region and this determines the sign of M,z .

4.7 Shell-crossings

When twomatter shells with different z-values move towards each other and intersect,
a shell-crossing occurs and this leads to a weak curvature singularity since ρ̃ diverges
at the location of a shell-crossing [14]. To determine when this occurs, we can define
the distance between shells locally by
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√
gzz = EY,z√

1 + 2E
= R,z − RE,z

E√
1 + 2E

, (50)

Thus, a shell-crossing occurs when the numerator is zero and the energy density ρ̃

diverges.As this is a curvature singularity, itwill be reflected in the curvature invariants.
We would like to find invariants that vanish and do not diverge when a shell-crossing
occurs, we will consider the inverse of the energy density:

1

ρ̃
= Y 2Y,z

2M̃,z
= R2

2

(
R,z − RE,z

E
M,z − 3ME,z

E

)
. (51)

In principle, the denominator of ρ̃ will vanish in two cases: when a shell-crossing
occurs or when the numerator vanishes as well. If the numerator and denominator
vanishes, this is called a neck or belly and this will be discussed in subsection 4.9.
In order to distinguish between a shell-crossing and a neck, one must compute an
additional extended Cartan invariant with the derivative operator (44) applied to M

C4 = [
DzM

]−1 = EY,z√
1 + 2EM,z

. (52)

If a shell-crossing exists, then this surface can be determined by the vanishing of two
invariants:

ρ̃−1 = 0 and C4 = 0. (53)

We note that these hypersurfaces may not entirely intersect with the r = constant
2-spheres for a given value of t due to the x and y dependence in the numerators of
ρ̃−1 and C4.

4.8 Movement of thematter shells

Todetermine the relativemotion ofmatter shells, we can differentiate the local distance√
gzz by t to give:

(
√
gzz),t = (EY,z),t√

1 + 2E
,

from which it can be determined whether matter shells are, respectively, moving away
or moving together for

(
√
gzz),t > 0 or (

√
gzz),t < 0.

In order to construct Cartan invariants that invariantly describe this behaviour,
we will combine � and � in (20) and (21) to construct another extended Cartan
invariant ε:
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ε = − 1

2
√
2
ln(Y,z),t .

Multiplying ε by C4 yields the required invariant:

C5 = εC4 = (EY,z),t√
1 + 2EM,z

.

Since the sign of M,z can be determined invariantly, the sign of (EY,z),t is given by
the sign of the Cartan invariant C5.

4.9 Necks and Bellies: regular maxima andminima

The spatial slices of a QS Szekeres solution can have spatial extrema in R: either
a maximum areal radius for closed spatial sections or a minimum areal radius for
wormholes [41]. It is possible that the QS Szekeres solution will become degenerate
or singular at points. For example, in the LTB limit, the equality 1 + 2E = R2

,z = 0
can occur when R,z = 0 at z = zm . To ensure the metric components are finite at
z = zm we require that EY,z = 0, which then implies that E3M̃,z = 0 to keep the
energy density finite. If these conditions hold at z = zm , then the following equations
must hold:

M,z − 3ME,z

E = 0, R,z − RE,z

E = 0.

The surface defined by r = rm is either a regular minima (a neck) or a regular maxima
(a belly).

To determine when either a neck or belly occurs, we must determine when

ρ̃ = 0 and C4 = 0. (54)

The change of sign of R,z on either side of z = zm determines if the regular extrema
is a neck or belly.

5 Examples

5.1 Amodel for galactic black hole formation

As a simple example of the collapsing QS Szekeres dust models with no cosmological
constant, we will consider the example given in [3]. This is a special case of the
QS Szekeres dust models which can be seen as a generalization of the LTB models
describing the formation of galactic-sized black holes without any shell-crossings.
We will choose coordinates where z̃ = M(z), effectively setting z = M in the new
coordinate system:

tB(M) = −bM2 + tB0, tC (M) = aM3 + T0 + tB0, (55)
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where tB(M) is the big bang time, tC (M) is the crunch time, and a, b, tB0 and T0 are
arbitrary constants. In particular, tB0 is the time-coordinate of the central point of the
big bang and T0 is the time between the big bang and the big crunch measured along
the central line M = 0. Since η = 2π at t = tC , this gives a simple form for E :

2E(M) = − (κM)
2
3

4
2
3 (aM3 + bM2 + T0)

2
3

. (56)

To ensure that the mass density is not negative or infinite at any point in space, we will
employ the following parameter values and functions:

a = 0.1, b = 5000, T0 = 12.5, tB0 = 0, S = M0.29, P = 0.5M0.29, Q = 0.

(57)

The metric functions have been chosen so that shell-crossings never occur. This is
reflected in the Cartan invariants C3 and C4 which are always non-zero. The apparent
horizon can be determined by plotting the values for t and z where the extended Cartan
invariant ρ (or μ) vanishes as displayed in Fig. 1.

5.2 Formation of a primordial black hole

We will now consider model D in [13] as an example of the formation of a primordial
black hole with shell-crossing singularities. In this model, the shell-crossings will be
contained within the apparent horizon. The QS Szekeres solution is generated from a
reference LTB solution by adding an axisymmetric dipole to deviate from spherically
symmetry. The functions in (7) are:

E(z) =
⎧⎨
⎩− 1

2

(
z
rc

)2 (
1 +

(
z
rw

)n1 − 2
(

z
rw

)n2)4
0 < z < rw

0 z ≥ rw
,

M(z) = 1

2
z3,

(58)

where rc and rw are positive constants, n1 > 1 and n2 > 2 are positive integers and
for consistency rc/rw >

√
fmax must be satisfied where f (x) = x2(1+ xn1 − 2xn2)4

for 0 < x < 1. We will choose the constants:

n1 = 8, n2 = 10, rc = 10, and rw = 1.

To deviate from spherical symmetry we will choose P(z) = Q(z) = 0 and S(z) =√
2z.
The behaviour of the apparent horizon of the full QS Szekeres solution is displayed

in Fig. 2 by graphing the zero-sets of μ or ρ for the expanding and collapsing phases,
respectively.
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In the expanding phase, the pair of Cartan invariants C3 and C4 are always non-
zero, implying that there are no shell-crossing singularities in the expanding phase. In
the collapsing phase the Cartan invariants C3 and C4 admit a non-trivial zero-set. To
graph the occurrence of shell-crossings of the QS Szekeres solution, we must consider
the zero sets of C3 and C4 and graph the resulting surfaces in three-dimensions for a
chosen set of t = constant slices.

We note that any shell-crossing that occurs in the reference LTB solution will form
at a later time in the QS Szekeres solution, once the dipole has been reintroduced [13].
While in practice one will consider the full QS Szekeres solution instead of the ref-
erence LTB solution, the latter provides the advantage that the shell-crossings can be
graphed in 2D which clearly shows the formation of shell-crossings after the apparent
horizon forms.

In the collapsing phase of the LTB seed, we see that a shell-crossing forms at a
particular value of z and t and persists for the remainder of the solution. However, the
shell-crossing appears within the region bounded by the surface R = 2M and will not
interact with the exterior region.

Remark 5.1 The determination of the shell-crossing singularities for the QS Szekeres
solution and the reference LTB solution are computationally comparable. We have
chosen to work with the LTB solution purely for the purposes of displaying the graph
in Fig. 3.

Fig. 3 Example 2: The zero set of �, the numerator of C4, in orange for the LTB reference solution
indicating a shell-crossing will occur. The geometric horizon is displayed in blue for comparison
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6 Discussion

We have considered the role of QS Szekeres dust solutions as potential black hole
solutions and introduced an invariant characterization of the apparent horizon. While
the family of QS Szekeres solutions always admit an apparent horizon, only a subset
of these solutions permit a physical interpretation as black hole solutions due to par-
ticular features that can occur during the evolution of a QS Szekeres solution, such as
the appearance of shell-crossing singularities outside of the apparent horizon, or the
duration until collapse of a QS Szekeres black hole being lesser or greater than the
anticipated values. Due to the short time of collapse for QS Szekeres solutions it is
argued that they are well-suited to describing the formation of primordial black holes
in the early universe.

We have shown that relative to an appropriate coframe coincidingwith the preferred
timelike direction u [27], the kinematic scalars and the q-scalars along with their
respective evolution equations (both of which fully characterize the QS Szekeres dust
solutions) can be expressed in terms of Cartan invariants. While the kinematic scalars
and q-scalars describe the evolution of QS Szekeres solutions irrespective of their
interpretation, they are unable to identify geometric characteristics (such as an invariant
characterization of the apparent horizon) that would be suitable for the interpretation
of a black hole solution.

To address this, a new set of curvature invariants has been introduced that are
adapted to the interpretation of QS Szekeres PBH solutions. In addition to showing
that the apparent horizon is detected by the vanishing of a Cartan invariant, implying
that it is a geometric horizon [9–11], we have also introduced invariants to characterize
the expansion or contraction of spacetime itself, the spatial rate of change and extrema
of the areal radius, the spatial rate of change and extrema of the mass function, the
relative movement of matter shells, the existence of shell-crossings and regular spatial
extrema in a QS Szekeres solution. We note that this new set of invariants can describe
the evolution of any QS Szekeres dust models and has a physical interpretation. These
physical properties can distinguish whether a given QS Szekeres solution is a valid
model for galaxy formation, a wormhole or the formation of a PBH.

The geometric horizon could be helpful in addressing the possibility of global visi-
bility in these spacetimes, which occurs when a light ray emanates from the singularity
before the event horizon forms [13]. In asymptotically flat spacetimes, we can define
globally naked singularities in terms of future null infinities. In the cosmological set-
ting this is not well defined, and so in order to investigate the global visibility, by
determining the event horizon, null radial geodesics which emanate from the singular-
ity must be tracked. This is a difficult problem because null geodesics cannot be kept
radial and the null geodesic equations cannot be integrated analytically in general.

For both the general spherically symmetric metric and the QS Szekeres dust solu-
tions, the discriminant SPIs built from the Weyl and Ricci tensors, along with their
covariant derivatives, are non-zero on the apparent horizon (although combinations of
them can vanish). Relative to the coframe chosen from the Cartan–Karlhede algorithm
there appears to be some regular structure in the covariant derivatives of the Weyl ten-
sor. This suggests that for dynamical black hole solutions the covariant derivative of
the Riemann tensor will be algebraically special on a geometric horizon but it will not
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necessarily be readily classified using the alignment classification, and hence may not
necessarily be of type II.

At this stage there is no procedure to generate a SPI which is globally defined
and vanishes on the geometric horizon. However, it is possible to locally solve for
the relevant Cartan invariants in terms of SPIs and this is reviewed in the appendix.
Fortunately, there is a Cartan invariant, ρ (or μ), that will indicate the existence of
the geometric horizon and in the case of the spherically symmetric metric a SPI is
provided that will detect it [10]. Therefore, ρ = 0 (or μ = 0) provides a putative
characterization for the geometric horizon. The vanishing of ρ (or μ), relative to
the invariant coframe, is an integral part of the definition of a geometric horizon.
This condition will be examined for more general Szekeres dust models, such as
the QS Szekeres solutions with non-zero cosmological constant, and warrants further
investigation for less idealized solutions in GR. It is also of interest to explore the
relationship between the appearance of ρ at first order and spacetimes admitting a
tensor of alignment type D.
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through the Research Council of Norway, Toppforsk grant no. 250367: Pseudo-Riemannian Geometry and
Polynomial Curvature Invariants: Classification, Characterisation and Applications (D.M.).

Appendix: Frame independent curvature invariants

As in the case of the spherically symmetric metrics, the components in (38) vanish on
the apparent horizon R = 2M , while the components in (39) do not. This relationship
is reflected in the vanishing of the Cartan invariant ρ relative to the invariant coframe
chosen by theCartan–Karlhede algorithm. Taking the zeroth order and first order SPIs:

I1 = CabcdC
abcd = �2, R = Ra

a = 8�11, (59)

along with the quadratic first order SPIs:

I3 = Cabcd;eCabcd;e, I3a = Cabcd;eCebcd;a, I5 = I1;a I ;a
1 ,

J1 = Rab;c Rab;c, J2 = Rab;c Rac;b, J3 = R;a R;a,
(60)

we can produce the following algebraically independent SPIs:

(μ − ρ)(μ − ρ + 8ε),

ε(μ − ρ − ε),

ρμ − 2|τ |2,
μ	 ln(�11) + 4ρ	 ln(�11) + 8ρμ + 16ρε − 8ρ2 − 9ρμ

�2

�11
,

225ρ	 ln(�11) − 25ε	 ln(�11) + 25ρμ + 26ρε + 25ρ2 − 62ρμ
�2

�11
+ 32ρμ

�2
2

�2
11

,
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27(	 ln(�11)
2 − 28ρ	 ln(�11) + 28μ	 ln(�11) + 29ε	 ln(�11) + 6223|τ |2 �2

2

�2
11

.

The six SPIs in (59) and (60) are polynomials in terms of six Cartan invariants:

	 ln(�11), ρ, μ, ε, |τ |2, and
�2

�11
.

Locally, it is possible to expressρ (orμ) as a function of these SPIs in order to detect the
horizon when the Jacobian of these polynomials in terms of the six Cartan invariants is
non-zero. However, this will introduce additional regions where the SPIs will vanish,
giving rise to the possibility of the incorrect detection of the apparent horizon.
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