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Abstract
We find generators of the conformal symmetry for the class of Kerr–Newman-NUT-
AdS black holes from the deformed scalar probe equation. We find two classes
of solutions for the generators (also known as conformal J and Q pictures). The
two classes of deformed generators are the extension of similar generators for the
regular conformal symmetry. Moreover, we find that the two pictures can be general-
ized and extended into a general picture. In each picture, the generators produce an
extended local family of SL(2,R)L×SL(2,R)R hidden conformal symmetries for the
Kerr–Newman-NUT-AdS black holes which are parameterized by one deformation
parameter. We find the absorption cross-section of the scalar probes for the Kerr–
Newman-NUT-AdS black holes, which in turn, supports the existence of Kerr/CFT
correspondence.Moreover, our deformed conformal generators for theKerr–Newman-
NUT-AdS black holes provide the deformed conformal generators for the non-rotating
Reissner–Nordström-NUT-AdS black holes.
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1 Introduction

The well-known Kerr/CFT correspondence states a relation between the associated
physical quantities of the extremal (and also extended to non-extremal) four-
dimensional Kerr black hole and almost similar physical quantities in a conformal field
theory (CFT) [1,2]. The generalization of the correspondence to the other extremal (as
well as non-extremal) rotating black holes, in both four dimensions, and higher than
four dimensions, have been extensively considered, during the last decade [3–39].

To find the correspondence for the non-extremal rotating black hole, we may look
at the solution space of a probe scalar field in the background of the non-extremal
rotating black hole which is known as the hidden conformal symmetry [40].

We note that any black hole can have two asymptotes at the large distance and
the near horizon. The large distance behaviour and the associated symmetry group
is different for flat, dS and AdS cases. We should emphasize that for the extremal
rotating black holes, the near horizon geometry of the black holes is always an AdS-
like geometry, and so the existence of the conformal symmetry is guaranteed in the
light of AdS/CFT correspondence. For the non-extremal black holes, the near horizon
geometry is not an AdS-like geometry. In fact, it is a Rindler geometry, which is a flat
metric in a non-inertial coordinates. It is worth noting that any scalar field theory on
the background of a flat spacetime, can be expressed as a conformal field theory. So it
would not be surprising that the conformal symmetry can emerge in the background
of near horizon geometry of a non-extremal rotating black hole.

Wealso stress that in this article, by any reference to the holographic duality between
the rotating black hole and the CFT, we exactly mean that the wave equation of a
scalar probe field, on the near horizon geometry of the rotating black hole, possesses
the conformal symmetry [3–40].

We try explicitly to find the conformal symmetry by looking at the scalar wave
equation (or other wave equations with higher spins), in the near horizon geometry
of the non-extremal black holes. This is the main reason, to call the symmetry as the
hidden conformal symmetry. The conformal generators are obtained by matching the
Casimir operators of the conformal algebra SL(2,R)L × SL(2,R)R , to the scalar (or
higher spin fields) wave equation in the background of the non-extremal black holes.
In references [15–20], the authors successfully construct the SL(2,R) × SL(2,R)

algebra, in such a way that the quadratic Casimir operators of the algebra generate
exactly thewave equation of the probefield. It isworth noting that SL(2,R)×SL(2,R)

symmetry is also the symmetry of AdS3 space.
Moreover for some charged rotating black holes, there is more than one dual hidden

CFT. As an example, for the four-dimensional Kerr–Newman black hole, there are
two dual hidden CFTs, associated with the solution space of the scalar wave equation.
The first CFT is associated to the rotation of black hole, while the second CFT is
associated to the charge of black hole. The former and latter CFTs are called CFTs
in J and Q pictures, respectively [41–56]. A counterexample in which there is only
one CFT associated with the scalar wave equation, is the rotating charged Kerr–Sen
black hole. The four-dimensional Kerr–Sen solution is an exact solution in the low
energy limit of the heterotic string theory [57]. The solution includes a black hole
in the presence of three fields; a dilaton field, an antisymmetric second-rank-tensor
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field and the Maxwell’s field [57]. The Kerr–Sen black hole is dual, only to one CFT
in J picture [49]. One other interesting feature of the Kerr–Sen black hole is that the
generators of the hidden conformal symmetry in J picture, can be extended to a new set
of generators, by including a deformation parameter in the wave equation for the probe
field [58]. One important advantage of the deformed hidden conformal symmetry is
that it provides the hidden conformal symmetry for the non-rotating black holes such
as Schwarzschild black hole [58] or Gibbons-Maeda-Garfinkle-Horowitz-Strominger
black hole [49].

Inspired by the existence of two dual hidden conformal symmetries for the scalar
field in the background of the Kerr–Newman black holes and also the interesting
invariance of the Kerr–Newman-NUT spacetime under the transformation of mass
to the NUT charge and radius to the angular coordinate [59,60], we investigate the
existence of the dual hidden conformal symmetry(ies) for the scalar wave equation in
the background of the Kerr–Newman-NUT-AdS geometries.

The paper is organized as follows. In Sect. 2, we consider the wave equation for an
scalar probe in the background of the Kerr–Newman-NUT-AdS spacetime and show
that the wave equation separates completely. In Sect. 3, we first find the generators of
the deformed conformal symmetry in the J picture. We then consider the deformed
wave equation for the scalar probe and find the generators of the deformed conformal
symmetry in the Q picture. We also find the deformed right and left temperatures
and the central charges of the dual CFTs. These quantities lead to the microscopic
entropy for the dual CFTs, in perfect agreement with the macroscopic Bekenstein–
Hawking entropy. After that, we consider the extension of former two pictures and
find the generators of the deformed conformal symmetry in the general picture. We
also discuss the deformed hidden conformal symmetry in the J and Q pictures as
the limits of results in the general picture. In Sect. 4, we consider the scattering of
the charged scalar fields in the background of the Kerr–Newman-NUT-AdS black
holes. We find the scattering cross-section of the charged scalar field, based on the
deformed wave equation for the scalar probe in the general picture. We also discuss
the proper limits of the scattering results in the general picture to find the results in
the J and Q pictures. We get enough support for the correspondence between the
Kerr–Newman-NUT-AdS black holes and the dual CFTs in the different pictures. In
Sect. 5, we consider the non-rotating Reissner–Nordström-NUT-AdS black holes as
the limit of the Kerr–Newman-NUT-AdS black holes and present the generators of
the deformed hidden conformal symmetry. We conclude the paper with conclusions
in Sect. 6.

2 The wave equation for the charged scalar field in the background of
the Kerr–Newman-NUT-AdS black holes

In this section, we consider the wave equation for a charged massless scalar probe
on the geometry of a Kerr–Newman-NUT-AdS black hole, which is solution to the
Einstein-Maxwell theory with non-vanishing cosmological constant [41–44,56]. The
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Kerr–Newman-NUT-AdS geometry is represented by the following metric

ds2 = − �r

�2�2

[
dt − {a sin2 θ + 2n(1 − cos θ)}dφ

]2 + �2

�r
dr2 + �2

�θ

dθ2

+�θ sin2 θ

�2�2

[
adt − {r2 + (a + n)2}

]
dφ2, (2.1)

where

�2 = r2 + (n + a cos θ)2, (2.2)

�r = r2 − 2Mr + e2 + g2+r2(r2 + 6n2 + a2)

l2
+ (3n2 − l2)(a2 − n2)

l2
, (2.3)

�θ = 1−a cos θ

l2
(4n + a cos θ), (2.4)

� = 1−a2

l2
, � = − 3

l2
. (2.5)

In (2.1), M and a are mass and rotational parameters of the black hole, e and g are
electric andmagnetic charges of the black hole and n is the NUT parameter. Moreover,
� is the cosmological constant. The corresponding electromagnetic potential is given
by [44]

Aμdx
μ = −er

[
adt − (

(a + n)2 − (n + acosθ)2
)
dφ

]

a�2�

−g(n + acosθ)
[
adt − (

r2 + (a + n)2
)
dφ

]

a�2�
. (2.6)

The non-vanishingNUT charge n in (2.1) can be interpreted as the gravitational analog
of a magnetic charge [61–63]. The coordinate t parametrizes a circle S1 fibered over
the non-vanishing sphere parametrized by (θ, φ), where the rotation parameter and
the black hole charges are zero. The coordinate t has a periodicity of πn to avoid any
conical singularities [61,62]. In fact, the geometry of a constant-t surface is that of
a Hopf fibration of S1 over an S2, and the metric (2.1) describes the contraction or
expansion of this 3-sphere in spacetime regions. There are no closed timelike curves
and the spacetime is asymptotically locally Anti-de Sitter.

The Bekenstein–Hawking entropy, Hawking temperature, angular velocity and the
electric potential on the horizon of the black hole (2.1) are given by

SBH = Area

4
= π

�

[
r2+ + (a + n)2

]
, (2.7)

TH = 2(r+ − M)l2+2r+(2r2+ + 6n2 + a2)

4π(r2+ + (a + n)2)l2�
, (2.8)

	H = a

r2+ + (a + n)2
, (2.9)
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H = er+[
r2+ + (a + n)2

]
�

, (2.10)

respectively, where r+ is the outer horizon of the black hole.
We consider a massless charged scalar probe,1 in the background of the Kerr–

Newman-NUT-AdS black hole (2.1). The field equation for the charged scalar probe
is given by

(∇α − iq Aα)(∇α − iq Aα)
 = 0, (2.11)

where q is the charge of the scalar probe. As we notice, there are two Killing vectors,
i.e. ∂t and ∂φ for the Kerr–Newman-NUT-AdS black holes (2.1), and so, we make the
separation of the coordinates in the scalar field, as


(t, r , θ, φ) = e−iωt+imφR(r)S(θ), (2.12)

where R(r) and S(θ) are two independent functions. After substituting Eq. (2.12) in
(2.11), we find two separated differential equations for the angular S(θ) and the radial
R(r) functions [45],

1

sin θ
∂θ (sin θ ∂θ )S(θ) − �2

�θ

[
m2

sin2 θ
+

[
2n(cos θ − 1) − a sin2 θ

]2
ω2

sin2 θ

]
S(θ)

−�2

�θ

[2amω cos θ(4n + a cos θ) + Kl ′ ] S(θ) = 0, (2.13)

∂r (�r∂r )R(r) +
[ [(r2 + (a + n)2)ω − qer − ma]2�2

�r
+ 2amω�2 − Kl ′

]
R(r) = 0,

(2.14)

where Kl ′ is the separation constant. To simplify the radial and angular Eqs. (2.13)
and (2.14), and the subsequent calculations, we set the black hole magnetic charge
g = 0. All our results in this article, can be extended for a black hole where g �= 0,
though the results are more complicated and lengthier.

To simplify the radial Eq. (2.14), we consider a few approximations. First, we con-
sider the near region, which means ωr << 1. Second, we assume the low-frequency
limit for the probe, which means ωM << 1. Third, we consider the small probe
charge, according to qe << 1. Accordingly, we also impose ωa << 1, ωe << 1,
andωn << 1. Aswe notice from themetric functions (2.5),�r is a quartic polynomial
of r . Applying the mentioned approximations on �r , we can approximate the quartic
polynomial as a quadratic polynomial such as

�r � K (r − r+)(r − r∗), (2.15)

1 The probe field is a massless field which does not induce any back-reaction on the background black
holes. For a massive scalar field, there is an extra term μ2ρ2 in the scalar wave equation, where μ is the
mass of scalar field [64]. The presence of the mass term hinders to establish the holography between the
black holes and the CFT.
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where r+ is the outer horizon of the black hole, and

K = 1+6r2+ + 6n2 + a2

l2
, (2.16)

r∗ = r+ − 1

Kr+

[
r2+ − e2−r2+(r2+ + 6n2 + a2)

l2
− (3n2 − l2)(a2 − n2)

l2

]
.

(2.17)

We notice that similar approximation has been used for the quartic metric functions of
the Kerr–Newman-AdS black holes [46,47] as well as, the Kerr-NUT-AdS black hole
[48]. We also notice that the Hawking temperature (2.8) could be approximated as

TH = K (r+ − r∗)
4π

[
r2+ + (a + n)2

]
�

. (2.18)

Applying the above-mentioned approximations to the radial Eq. (2.14), we find

∂r (�r∂r )R(r) +
[

�2
[
(r2+ + (a + n)2)ω − am − qer+

]2
K (r − r+)(r+ − r∗)

−�2
[
(r2∗ + (a + n)2)ω − am − qer∗

]2
K (r − r∗)(r+ − r∗)

]
R(r)

+ q2e2R(r) = l ′(l ′ + 1)R(r), (2.19)

where we set the separation constant as Kl ′ = l ′(l ′ + 1).
The radial differential Eq. (2.19) in the proper limits, reveals that there are two

different individual CFTs that are holographically dual to the Kerr–Newman black
hole [19,20]. The first CFT (which is also known as J picture) is holographically dual
to the black hole where the charge of probe is very small. The second CFT (which
is also known as Q picture)is holographically dual to the black hole where the probe
co-rotates with the horizon. In other words, in the J picture, we set the electric charge
of probe to be zero, and in the Q picture, we consider a probe field in the m = 0
mode. We should note that not necessarily any charged rotating black hole is twofold
dual to CFTs. As an counterexample, the four-dimensional charged rotating Kerr–Sen
black hole is not holographically dual to CFT in the Q picture [49]. Inspired with
the existence of two dual CFTs for the Kerr–Newman black holes, in this article, we
search for possible dual CFTs to the Kerr–Newman-NUT-AdS black holes. 2

2 Another alternative way to realize two possible dual CFTs to a four-dimensional charged rotating black
hole, is to uplift the black hole to five dimensions by adding an internal direction χ to four dimensions,
such that


(t, r , θ, φ, χ) = e−iωt+imφ+iqχ R(r)S(θ). (2.20)

We notice that the internal space χ leads to a U (1) symmetry along the coordinate φ. This extension has
been used to investigate the RN/CFT correspondence [50–54]. The existence of two coordinates φ and χ

with U (1) symmetry, provides the twofold hidden symmetry for the charged rotating black holes in J and

123



Deformed conformal symmetry of Kerr–Newman-NUT-AdS black holes Page 7 of 24 151

We should notice that in the near region and the low-frequency limit, the angular
Eq. (2.13) is just an standard Laplacian on the deformed 2-sphere by the NUT charge.
In [66], the authors showed that the symmetry of this equation is SU (2)× SU (2). So,
the angular equation reveals a hidden SU (2)× SU (2) symmetry, but not SL(2,R)L ×
SL(2,R)R that we need to describe the hidden conformal symmetry for the Kerr–
Newman-NUT-AdS black holes.

In this regard, in Sect. 3, we find a set of conformal generators which produce
exactly the deformed radial equation, in different conformal pictures. These confor-
mal generators make an SL(2,R)L × SL(2,R)R symmetry for the deformed radial
equation, which also is the symmetry group of AdS3 space [66]. We should emphasize
that the hidden conformal symmetry for the generic Kerr black holes could also be
obtained by considering higher spin fields [67]. For different massless spin s fields,
one can find the CFT temperatures and the central charges for the dual CFT to the Kerr
black holes. However, we should note the results of [67] are based on the separability
of the higher spin s wave equations in the background of the Kerr black holes [68]. To
our knowledge, for the other rotating black holes, such as Kerr–Newman-NUT-AdS,
the separability of the higher spin s wave equations have not been explored completely.
We leave this open question for a forthcoming article.

However, In addition, the hidden conformal symmetry of generic Kerr black hole
for higher spin field and in particular spin 2 field is found in [67]. Therein we can see
that the similar CFT temperatures are reproduced for any massless spin s field around
Kerr black hole. Ref. [57] affirmatively support the hidden conformal symmetry. A
relation of a scalar field to the CFT is also investigated in [69].

3 The dual deformed hidden conformal symmetry for the
Kerr–Newman-NUT-AdS black holes

3.1 The deformed conformal symmetry in J picture

Aswe notice, the radial wave Eq. (2.19) has two poles on r+ and r∗, where the function
�r vanishes. For the generic Kerr–Newman-NUT-AdS black holes which is far from
extremality, we note that r is far enough from r∗. Therefore, we can drop the linear and
quadratic terms in frequency that arise from expansion of the radial wave Eq. (2.19),
near r∗ horizon [49,58,65]. We deform the radial wave Eq. (2.19) near the horizon r∗
by a deformation parameter κ such that r∗ → κr+. In this section and the next section,
we search for the existence of possible J and Q pictures for the Kerr–Newman-NUT-
AdS black holes. More specifically, in this section, we consider the deformed radial
wave equation in the J picture that can be obtained from (2.19), by setting q = 0 and
is given by

∂r (�r∂r ) R(r) + K

[
r+ − r∗
r − r+

A + r+ − r∗
r − r∗

B + C

]
R(r) = 0, (3.1)

Footnote 2 continued
Q pictures, respectively [41,49,65]. We also note that an SL(2,Z) modular group transformation for the
torus (φ, χ) provides merging the two different J and Q pictures into the general picture.
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where

A = �2
[
(r2+ + (a + n)2)ω − am

]2
K 2(r+ − r∗)2

, (3.2)

B = �2
[
(κ2r2+ + (a + n)2)ω − am

]2
K 2(r+ − r∗)2

, C = − Kl ′

K
. (3.3)

The deformation parameter κ should satisfy the following conditions

[κ2r2+ + (a + n)2]2ω2 << 2(r+ − r∗)(r − r∗), (3.4)

[κ2r2+ + (a + n)2]2amω << 2(r+ − r∗)(r − r∗), (3.5)

to assure that the deformed scalar wave Eq. (3.1) is still within the low-frequency
limit. One feature of the deformation of r∗ is that it doesn’t alter the location of other
singularities of the radial equation which are located on the outer horizon r+ and also
on far infinity.

We consider the following set of vector fields, to find out the deformed hidden
conformal symmetry in the J picture,

L± = e±ρt±σφ

(
∓√

�∂r + C1 − γ r√
�

∂t + C2 − δr√
�

∂φ

)
, (3.6)

L0 = γ√
K

∂t + δ√
K

∂φ, (3.7)

where ρ, σ, γ, δ,C1 and C2 are constants. The vector fields L± and L0 form an
SL(2,R) algebra [49,58,65]

[
L±, L0

] = ±L±,
[
L+, L−

] = 2L0, (3.8)

which is invariant under the automorphisms L± → −L±, L0 → −L0. We require
that the quadratic Casimir operator of SL(2,R) algebra, represents the deformed radial
wave Eq. (3.1). We then find

H2 = L2
0−

1

2
(L+L− + L−L+) = ∂r (�r∂r )+K

[
r+ − r∗
r − r+

A + r+ − r∗
r − r∗

B

]
. (3.9)

Furnished by the explicit expression (3.9) for the quadratic Casimir operator, we can
re-derive the deformed scalar radial Eq. (3.1), directly from the quadratic Casimir
operator as

H2R(r) = Kl ′ R(r). (3.10)

in the near region and the low-frequency limit. We also note that considering any other
coordinate-dependent-coefficients for ∂r and the Killing vectors ∂t , ∂φ in (3.6) and
(3.7), leads to inconsistencies with satisfying the SL(2, R) algebra (3.8), as well as
with matching the Casimir operator (3.9) to the deformed radial Eq. (3.1).
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We can determine the constants ρ, σ, γ, δ,C1 and C2 from Eqs. (3.6), (3.7) and
(3.9). We find the following two equations for the coefficients of ∂r in (3.9)

ρC1 + σC2 + K

2
(r+ + r∗) = 0, (3.11)

and

K + ργ + σδ = 0. (3.12)

Moreover, the coefficients of ∂2φ and ∂2t in (3.9) give two other equations as

C2
2 − r+r∗δ2 + r

[
(r+ + r∗)δ2 − 2C2δ

]
= a2�2, (3.13)

and

C2
1 − r+r∗γ 2 + r

[
(r+ + r∗)γ 2 − 2C1γ

]
= �2

(
r2+ + (a + n)2

)2
(r − r∗)

r+ − r∗

−�2
(
κ2r2+ + (a + n)2

)2
(r − r+)

r+ − r∗
.

(3.14)

Finally, we get the following equation, as the coefficient of ∂φ∂t in (3.9)

−C2C1 + γ δ (r − r+) (r − r∗) + δrC1 − δr2γ + C2γ

= 2a�2
[(

κ2r2+ + (a + n)2
)
(r − r+) − (

r2+ + (a + n)2
)
(r − r∗)

]

r+ − r∗
.

(3.15)

We solve Eqs. (3.11)–(3.15) for ρ, σ, γ, δ,C1 and C2 and find two unique sets of
solutions that are given inTable 1. Each set of solutions provide an SL(2,R) symmetry,
and so we get an SL(2,R)L × SL(2,R)R symmetry based on two branches of the
solutions. The latter symmetry resembles to that of AdS3 space [66].

In the limit of 1/l2 = 0 where � = 1, K = 1 and r∗ = r−, we find the conformal
generators for the deformed dual CFT to the Kerr–Newman-NUT black hole. Further-
more, if we keep n to be non-zero, but e = 0,3 we find the conformal generators for
the deformed dual CFT to the Kerr-NUT black hole. Moreover, if we consider the
limit where n = 0, we find exactly the known conformal generators for the deformed
dual CFT to the Kerr–Newman black hole [65]. We note that setting e, n, 1/l2 = 0,
we find exact results for the deformed dual CFT to the Kerr black hole [58]. We find
the deformed conformal generators for the Kerr–Newman-AdS, Kerr-NUT-AdS and
Kerr-AdS black holes, by setting n = 0, e = 0 and e = n = 0, respectively in the

3 Note that e is implicitly in the expressions for the horizons r+ and r∗.
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Table 1 Coefficients of conformal generators (3.6) and (3.7) in the J picture

Branch a Branch b

δ 2a�
r+−r∗ 0

γ

[
r2+

(
κ2+1

)
+2(a+n)2

]
�

r+−r∗
r2+

(
κ2−1

)
�

r+−r∗

C1

[
(κ2r++r∗)r2++(a+n)2(r++r∗)

]
�

r+−r∗

[
(κ2r+−r∗)r2++(a+n)2(r+−r∗)

]
�

r+−r∗
C2

a(r++r∗)�
r+−r∗ a�

ρ 0 − K (r+−r∗)

r2+(κ2−1)�

σ − K (r+−r∗)
2a�

K (r+−r∗)
[
r2+(κ2+1)+2(a+n)2

]

2ar2+(κ2−1)�

generators (3.6) and (3.7). Moreover, substituting l → il in Eqs. (2.1)–(2.10), we
find the metric and the relevant physical quantities for the Kerr–Newman-NUT-dS
black holes. The same replacement for the cosmological parameter l in the conformal
generators (3.6) and (3.7) and in the Table 1, yields the conformal generators for the
dual CFT to the Kerr–Newman-NUT-dS black holes.

We can write the conformal generators in two branches, explicitly as

La± = e∓2πTRφ

√
�

[[
r2+(κ2r+ + r∗) + (r+ + r∗)(a + n)2 − (r2+(κ2 + 1) + 2(a + n)2)r

]
�

r+ − r∗
∂t

+ a(r+ + r∗ − 2r)�

r+ − r∗
∂φ ∓ �∂r

]
, (3.16)

La
0 =

[
r2+

(
κ2 + 1

) + 2(a + n)2
]
�√

K (r+ − r∗)
∂t + 2a�√

K (r+ − r∗)
∂φ, (3.17)

in branch a, and

Lb± = e
± K (r+−r∗)

r2+(κ2−1)�
t∓2πTLφ

√
�

[[
r2+(κ2r+ − r∗) + (r+ − r∗)(a + n)2 − r2+(κ2 − 1)r

]
�

r+ − r∗
∂t

+ a�∂φ ∓ �∂r

]
, (3.18)

Lb
0 = r2+

(
κ2 − 1

)
�√

K (r+ − r∗)
∂t , (3.19)

in branch b, respectively. In Eqs. (3.16)–(3.19), TR and TL show the temperatures of
the CFT, corresponding to the branch a and branch b, respectively, which are given by

TR = K (r+ − r∗)
4πa�

, TL = TR
r2+(κ2 + 1) + 2(a + n)2

r2+(1 − κ2)
. (3.20)
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The identification of TR and TL as the CFT temperatures, is a result of the sponta-
neously broken partition function of SL(2,R)L × SL(2,R)R theory, to the partition
function of U (1)L ×U (1)R CFT [1], which is given by

Z = e−4π2TRLa
0−4π2TL Lb

0 . (3.21)

We note that the vector fields L± and L0, are not periodic under the identification
φ ∼ φ + 2π of the coordinate φ. By periodic identification of the coordinate φ, the
SL(2,R)L × SL(2,R)R symmetry breaks down to aU (1)L ×U (1)R symmetry with
the partition function (3.21) [1,27,40]. We also notice that the CFT temperatures TR
and TL , are independent of the Hawking temperature (2.8). We note that in the limits
of n = 0 and � = 0, the conformal generators (3.16)–(3.19) reduce exactly, to the
dual hidden conformal generators for the Kerr–Newman black holes, in the J picture
[65]. So far, we have concluded there are some signatures for existence of the dual
CFT to the Kerr–Newman-NUT-AdS black hole. One crucial feature of any CFT is the
central charge of the conformal algebra. Though there is an explicit way to calculate
the central charge of a CFT dual to the extremal black holes [1], however the formalism
can’t be applied to the non-extremal black holes. For an extremal black hole, there is
only a left sector in the dual CFT with corresponding non-zero left temperature. For
a non-extremal black hole, both right and left sectors exist in the dual CFT, with two
non-zero left and right temperatures. We assume that the central charges of the dual
CFT to the non-extremal black holes should smoothly approach to those of dual CFT
to the extremal black holes, in the extremality limit. So, we propose the following left-
and right-moving central charges for the dual CFT in the J picture, as

cL = cR = 6ar2+(1 − κ2)

K (r+ − r∗)
. (3.22)

The microscopic entropy for the dual CFT with two right and left sectors, is given
by the Cardy entropy

SCardy = π2

3
(cRTR + cLTL), (3.23)

where the central charges and the temperatures are given by (3.22) and (3.20), respec-
tively.Wefind that theCardy entropy for the dual CFT to theKerr–Newman-NUT-AdS
black holes, is

SCardy = π

�

[
r2+ + (a + n)2

]
. (3.24)

The Bekenstein–Hawking entropy for the Kerr–Newman-NUT-AdS black holes is
given by (2.7), which leads to

SCardy = SBH . (3.25)

We also should mention about the reproduction of the Cardy formula, from the near
horizon geometry of the black holes, that lead to the Virasoro algebra [70–73]. As
we notice, the temperatures (3.20) and the central charges (3.22) of the CFTs, depend
non-trivially on the deformation parameter κ . We note that we did not derive the
central charges (3.22) from the asymptotic symmetry group (ASG) or the stretched
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horizon methods. We just propose them, to match the Cardy entropy of the CFT to the
Bekenstein–Hawking entropy of the black holes. However, it would be very interesting
to derive the central charges (3.22) of the deformedCFTs using eitherASGor stretched
horizon techniques [1,2,50–53]. Furthermore, it also would be fascinating to relate the
Cardy and Bekenstein–Hawking entropies with the entanglement entropy as what has
been done by Azeyanagi et. al. [74]. They compute the holographic entanglement
entropy via AdS/CFT corespondence for the BTZ black hole in (2 + 1) dimensions.
It is shown that this entanglement entropy is equal to Bekenstein–Hawking entropy
with the entanglement correction term in which the Bekesnstein-Hawking entropy
matches the entropy from CFT.4 We leave studying the entanglemnet entropy in the
background of the Kerr–Newman-NUT-AdS k holes for future.

3.2 The deformed conformal symmetry inQ picture

In Q picture, we set the angular momentum of the probe field m = 0 and keep q to be
a non-zero constant. We then find that the deformed radial wave equation in Q picture,
is given by

∂r
[
(r − r+)(r − r∗)∂r

]
R(r) +

[
r+ − r∗
r − r+

A + r+ − r∗
r − r∗

B + C

]
R(r) = 0, (3.26)

where the constants A, B and C are given by

A = �2
[
(r2+ + (a + n)2)ω − eqr+

]2
K 2(r+ − r∗)2

, (3.27)

B = �2
[
(κ2r2+ + (a + n)2)ω − eqκr+

]2
K 2(r+ − r∗)2

, C = e2q2 − Kl ′

K
, (3.28)

respectively. In Q picture, we require that the deformation parameter κ satisfies the
following conditions

[κ2r2+ + (a + n)2]2ω2 << 2(r+ − r∗)(r − r∗), (3.29)

4 The authors in [75,76], compute the entanglement entropy from the holographic prescription, that is given
by the area of the minimal surface at constant time,

SA = Area(γA)

4G(d+2)
N

,

where γA is the (unique) minimal surface in AdSd+2 whose boundary coincides with the boundary of the

region A. The setup of this calculation is the AdSd+2 space with the Newton constant G
(d+2)
N which is dual

to a CFTd+1. In that work, they compute for low and high temperature assumption. In high temperature
calculation, it is shown that the entanglement entropy of the black hole is the Bekenstein–Hawking entropy
plus the correction term. To confirm that computation, they also calculate the entropy using Cardy formula
from AdS3/CFT2 correspondence since the generic BTZ black hole’s degree of freedom is dual to the CFT
degree of freedom. They finally prove that both calculations are in agreement, so the entanglement entropy
of the black hole is also the entropy from CFT with the correction.
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Table 2 Coefficients of conformal generators (3.6) and (3.7) in the Q picture

Branch a Branch b

δ
er+(κ+1)�

r+−r∗
er+(κ−1)�

r+−r∗

γ

[
r2+

(
κ2+1

)
+2(a+n)2

]
�

r+−r∗
r2+

(
κ2−1

)
�

r+−r∗

C1

[
(κ2r++r∗)r2++(a+n)2(r++r∗)

]
�

r+−r∗

[
(κ2r+−r∗)r2++(a+n)2(r+−r∗)

]
�

r+−r∗
C2

er+(κr++r∗)�
r+−r∗

er+(κr+−r∗)�
r+−r∗

ρ
K (r+−r∗)

2
(
κr2+−(a+n)2

)
�

K (r+−r∗)(κ−1)

2(1−κ)
(
κr2+−(a+n)2

)
�

σ
Kr+(r+−r∗)(κ+1)

2e
(
κr2+−(a+n)2

)
�

K (r+−r∗)
[
r2+(κ2+1)+2(a+n)2

]

2er+(κ−1)
(
κr2+−(a+n)2

)
�

[κ2r2+ + (a + n)2]2eκqω << 2(r+ − r∗)(r − r∗), (3.30)

tomake sure that the deformed scalarwaveEq. (3.26) iswithin the low-frequency limit.
We note that the first condition (3.29) is the same as (3.4), while the second condition
(3.30) is quite different than (3.5). Similar to J picture, to reveal the deformed hidden
conformal symmetry, we consider the set of vector fields (3.6) and (3.7). The vector
fields L± and L0 form the SL(2,R) algebra with constants ρ, σ, γ, δ,C1,C2. The two
equations for the ∂r , are the same as Eqs. (3.11) and (3.12), while the equation for the
∂2t is the same as (3.14). Moreover, the coefficient of ∂2χ gives the following equation

C2
2 − r+r∗δ2 + r

[
(r+ + r∗)δ2 − 2C2δ

]
= �2e2r2+

[
(r − r∗) − κ2(r − r+)

]

r+ − r∗
.

(3.31)

We also find the following equation for the coefficient of ∂χ∂t , as

−C2C1 + γ δ (r − r+) (r − r∗) + δrC1 − δr2γ + C2γ

= 2er+�2
[(

κ2r2+ + (a + n)2
)
κ(r − r+) − (

r2+ + (a + n)2
)
(r − r∗)

]

r+ − r∗
. (3.32)

The two classes of solutions to the Eqs. (3.11), (3.12), (3.14), (3.31) and (3.32), are
given in Table 2.

The explicit expressions for the first and second sets of the deformed conformal
generators in Q picture, are given by

La± = e
± K (r+−r∗)

2
(
κr2+−(a+n)2

)
�
t∓2πTRφ

√
�

[
∓�∂r + er+ ((κr+ + r∗) − (κ + 1)r)�

r+ − r∗
∂χ

+
[
r2+(κ2r+ + r∗) + (r+ + r∗)(a + n)2 − (r2+(κ2 + 1) + 2(a + n)2)r

]
�

r+ − r∗
∂t

⎤
⎦ ,

(3.33)
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La0 =
[
r2+

(
κ2 + 1

)
+ 2(a + n)2

]
�

√
K (r+ − r∗)

∂t + er+(κ + 1)�√
K (r+ − r∗)

∂χ , (3.34)

for branch a

Lb± = e
± K (r+−r∗)(κ+1)

2(1−κ)(κr2+−(a+n)2)�
t∓2πTLφ

√
�[[

r2+(κ2r+ − r∗) + (r+ − r∗)(a + n)2 − r2+(κ2 − 1)r
]
�

r+ − r∗
∂t

+er+
[
(κr+ − r∗) − (κ − 1)r

]
�

r+ − r∗
∂χ ∓ �∂r

]
, (3.35)

Lb
0 = r2+

(
κ2 − 1

)
�√

K (r+ − r∗)
∂t + er+(κ − 1)�√

K (r+ − r∗)
∂χ , (3.36)

and for branch b, respectively.
Similar to J picture, the two sets of conformal generators represent the hidden

symmetry SL(2,R)L × SL(2,R)R of the radial wave equation. We find that the
deformed radial Eq. (3.26) can be re-written as

H2R(r) = Kl ′ R(r). (3.37)

whereH2 is the Casimir operator of the conformal algebra, constructed from the gen-
erators (3.33), (3.34) or (3.35), (3.36). The finite right- and left-moving temperatures
in (3.33)–(3.36), are given by

TR = Kr+(r+ − r∗)(κ + 1)

4πe
(
κr2+ − (a + n)2

)
�

, TL = TR
r2+(κ2 + 1) + 2(a + n)2

r2+(1 − κ2)
, (3.38)

respectively. We also conjecture the central charges as

cL = cR = 6er+(1 − κ)
(
κr2+ − (a + n)2

)

K (r+ − r∗)
. (3.39)

The CFT temperatures (3.38) and the central charges (3.39), lead to the Cardy entropy

SCardy = π2

3
(cRTR + cLTL) = π

�

[
r2+ + (a + n)2

]
, (3.40)

which is exactly in agreement with the Bekenstein–Hawking entropy (2.7) for the
Kerr–Newman-NUT-AdS black holes. We also note that in the limits of n = 0 and
1/l2 = 0, the conformal generators (3.33)–(3.36) reduce exactly, to the dual deformed
hidden conformal generators for the Kerr–Newman black holes in Q picture [65].
Moreover, in the limit of 1/l2 = 0 where � = 1, K = 1 and r∗ = r−, we find the
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conformal generators for the deformed dual CFT to the Kerr–Newman-NUT black
hole. Furthermore, if we keep n to be non-zero, but e = 0, we find the conformal
generators for the deformed dual CFT to the Kerr-NUT black hole. Moreover, if we
consider the limit where n = 0, we find exactly the known conformal generators for
the deformed dual CFT to the Kerr–Newman black hole [65]. We note that setting
e, n, 1/l2 = 0, we find exact results for the deformed dual CFT to the Kerr black hole
[58]. We also find the deformed conformal generators for the Kerr–Newman-AdS,
Kerr-NUT-AdS and Kerr-AdS black holes, by setting n = 0, e = 0 and e = n = 0,
respectively in the generators (3.6) and (3.7).

3.3 The dual deformed conformal symmetry in general picture

In this section, we find the deformed conformal generators for the dual CFT, to
the Kerr–Newman-NUT-AdS black holes, in the general picture. The modular group
SL(2,Z) consists of the following transformation on the torus (φ, χ) [49,55,56,65].

(
φ′
χ ′

)
=

(
α β

η τ

) (
φ

χ

)
, (3.41)

where

(
α β

η τ

)
is the SL(2,Z) group element and the coordinates φ′ and χ ′ are the

general angular coordinates [55]. In general picture, the phase factor of the charged
scalar field (2.20), is invariant under modular transformation (3.41). So, we find that

m = αm′ + ηq ′ , q = βm′ + τq ′. (3.42)

In the general picture, we have two possible options. First, we can set q ′ = 0 and keep
m′ �= 0, which we call the J ′ picture. Second, we can set m′ = 0 and keep q ′ �= 0,
which we call the Q′ picture. In the first picture, the deformed radial wave equation
becomes

∂r
[
(r − r+)(r − r∗)∂r

]
R(r) +

[
r+ − r∗
r − r+

A + r+ − r∗
r − r∗

B + C

]
R(r) = 0, (3.43)

where

A = �2
[
(r2+ + (a + n)2)ω − a1m′]2

K 2(r+ − r∗)2
, (3.44)

B = �2
[
(κ2r2+ + (a + n)2)ω − a2m′]2

K 2(r+ − r∗)2
, C = e2q2 − Kl ′

K
, (3.45)

and
a1 = aα + eβr+, a2 = aα + eβκr+. (3.46)
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Table 3 Coefficients of conformal generators (3.6) and (3.7) in the J ′ picture

Branch a Branch b

δ
(a1+a2)�
r+−r∗

(a1−a2)�
r+−r∗

γ

[
r2+

(
κ2+1

)
+2(a+n)2

]
�

r+−r∗
r2+

(
κ2−1

)
�

r+−r∗

C1

[
(κ2r++r∗)r2++(a+n)2(r++r∗)

]
�

r+−r∗

[
(κ2r+−r∗)r2++(a+n)2(r+−r∗)

]
�

r+−r∗
C2

(a1r∗+a2r+)�
r+−r∗

(a1r∗−a2r+)�
r+−r∗

ρ
−K (a1−a2)(r+−r∗)

2
[
r2+(a1κ2−a2)+(a+n)2(a1−a2)

]
�

−K (a1+a2)(r+−r∗)

2
[
r2+(a1κ2−a2)+(a+n)2(a1−a2)

]
�

σ
Kr2+(r+−r∗)(1−κ2)

2
[
r2+(a1κ2−a2)+(a+n)2(a1−a2)

]
�

K (r+−r∗)
[
r2+(κ2+1)+2(a+n)2

]

2
[
r2+(a1κ2−a2)+(a+n)2(a1−a2)

]
�

The deformation parameter κ , in J ′ picture, should satisfy the following conditions

[
κ2r2+ + (a + n)2

]2
ω2 << 2(r+ − r∗)(r − r∗), (3.47)

[
κ2r2+ + (a + n)2

]2
a2m

′ω << 2(r+ − r∗)(r − r∗), (3.48)

to make sure that the deformed scalar wave equation, is within the low-frequency
limit. After constructing the quadratic Casimir operator of SL(2,R) algebra, that
should match to the deformed radial wave Eq. (3.43), we find the two equations for
the ∂r , are the same as Eqs. (3.11) and (3.12), while the equation for the ∂2t is the same
as (3.14). However, the equation for the ∂2

φ′ yields

C2
2 − r+r∗δ2 + r

[
(r+ + r∗)δ2 − 2C2δ

]
= �2

[
a21(r − r∗) − a22(r − r+))

]

r+ − r∗
.

(3.49)

Moreover, the equation for the ∂φ′∂t , is given by

−C2C1 + γ δ (r − r+) (r − r∗) + δrC1 − δr2γ + C2γ

= 2�2
[
a2

(
κ2r2+ + (a + n)2

)
(r − r+) − a1

(
r2+ + (a + n)2

)
(r − r∗)

]

r+ − r∗
. (3.50)

We find two different classes of solutions to the Eqs. (3.11), (3.12), (3.14), (3.49) and
(3.50), that are given in Table 3, respectively.

We notice that the results in Table 3, reduce perfectly to those in Table 1 for J
picture, if we set α = 1 and β = 0. Moreover, the results in Table 3, reduce to those
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in Table 2 for Q picture, if we set α = 0 and β = 1. The explicit expressions for the
deformed conformal generators in J ′ picture, are given by

La± = e
± −K (a1−a2)(r+−r∗)

2
[
r2+(a1κ2−a2)+(a+n)2(a1−a2)

]
�
t∓2πTRφ′

√
�

[
∓�∂r + a2(r+ − r) + a1(r∗ − r)�

r+ − r∗
∂φ′

+
[
r2+(κ2r+ + r∗) + (r+ + r∗)(a + n)2 − (r2+(κ2 + 1) + 2(a + n)2)r

]
�

r+ − r∗
∂t

⎤
⎦ ,

(3.51)

La0 =
[
r2+

(
κ2 + 1

)
+ 2(a + n)2

]
�

√
K (r+ − r∗)

∂t + (a1 + a2)�√
K (r+ − r∗)

∂φ′ , (3.52)

for branch a and

Lb± = e
± −K (a1+a2)(r+−r∗)

2
[
r2+(a1κ2−a2)+(a+n)2(a1−a2)

]
�
t∓2πTLφ′

√
�

[
∓�∂r + a2(r+ − r) − a1(r∗ − r)�

r+ − r∗
∂φ′

+
[
r2+(κ2r+ − r∗) + (r+ − r∗)(a + n)2 − r2+(κ2 − 1)r

]
�

r+ − r∗
∂t

]
, (3.53)

Lb
0 = r2+

(
κ2 − 1

)
�√

K (r+ − r∗)
∂t + (a2 − a1)�√

K (r+ − r∗)
∂φ′ , (3.54)

for branch b, respectively, where the finite CFT temperatures are

TR = Kr2+(r+ − r∗)(κ2 − 1)

4π
[
r2+(a1κ2 − a2) + (a + n)2(a1 − a2)

]
�

, TL = TR
r2+(κ2 + 1) + 2(a + n)2

r2+(1 − κ2)
.

(3.55)
We note that, so far, the relation between the left-moving temperature TL versus the
right-moving temperature TR is the same in all different CFT pictures. We notice
that similar to J and Q pictures, the two sets of conformal generators (3.51)–(3.54),
represent SL(2,R)L × SL(2,R)R symmetry. Moreover, we can re-write the radial
Eq. (3.43) as

H2R(r) = Kl ′ R(r). (3.56)

In J ′ picture, we find exact agreement between the Bekenstein–Hawking entropy
(2.7) and the Cardy entropy (3.23), if we consider the central charges of the CFT, as

cL = cR = 6
[
r2+(a2 − a1κ2) + (a + n)2(a2 − a1)

]

K (r+ − r∗)
. (3.57)

The temperatures (3.55) and the central charges (3.57) of the CFTs, depend non-
trivially on the deformation parameter κ .We also note that we did not derive the central
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charges (3.57) from the asymptotic symmetry group (ASG) or the stretched hori-
zon methods. We just propose them, from the matching of the Bekenstein–Hawking
entropy and the Cardy entropy. However, it would be very interesting to derive the
central charges (3.57) of the deformed CFTs using either ASG or stretched horizon
techniques [1,2,50–53].We also note that in the limits of n = 0 and� = 0, the confor-
mal generators (3.51)–(3.54) reduce exactly, to the dual deformed hidden conformal
generators for the Kerr–Kerr–Newman black holes in J ′ picture [65].

The deformed scalar wave equation, in Q′ picture, is given by Eq. (3.43), with
following replacements for the modular group parameters: α → η and β → τ , as
well as replacing the mode number m′ → q ′. A similar calculation shows that, we
get the temperatures (3.55) and central charges (3.57) in Q′ picture with the above
replacements for the modular group parameters and the mode number. Finally, we
find two sets of deformed hidden conformal generators for the Q′ picture, given by
expressions (3.51)–(3.54), with replacements α → η, β → τ and m′ → q ′. We have
explicitly checked out, in the limits of n = 0 and � = 0, the dual deformed hidden
conformal generators reduce exactly, to the dual deformed conformal generators for
the Kerr–Kerr–Newman black holes in Q′ picture [65].

Moreover, we find that setting the deformation parameter κ = r∗/r+ in the
deformed generators (3.16)–(3.19), (3.33)–(3.36) and (3.51)–(3.54) yields the gen-
erators of the hidden conformal symmetry for the Kerr–Newman-NUT-AdS black
holes [45]. Similar behaviour was noticed in [65], where one set κ = r−/r+, in the
deformed conformal generators of the Kerr–Newman black holes.

A very interesting feature of the deformed conformal generators for the Kerr–
Newman-NUT-AdS, is that, they provide a realization of the conformal generators for
the non-rotating Reissner–Nordström-NUT-AdS black holes. We discuss about the
conformal generators for the Reissner–Nordström-NUT-AdS black holes in Sect. 5.

4 Scattering of the charged scalar fields, in the background of
Kerr–Newman-NUT-AdS black holes

In this section, we consider the absorption cross-section of the scalar fields in the back-
ground of Kerr–Newman-NUT-AdS black holes in general J ′ picture.We consider the
following coordinate transformations from (t, r , φ) to the near-extremal near-horizon
coordinates (τ, y, ϕ) [46–48]

r = r+ + r∗
2

+ λr0y, r+ − r∗ = μ1λr0, t = r0�

λ
τ, φ = ϕ + 	Hr0�

λ
τ, (4.1)

where r0 =
√

r2++a2

K and λ → 0 shows the near-horizon limit. We also note that we
should impose one more condition

r+ − κr+ = μ2λr0, (4.2)

where for the non-deformed near-extremal near-horizon geometry, μ2 = μ1 [45]. For
the frequencies ω, near the superradiant bound ωs
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ω = ωs + ω̂
λ

r0
, (4.3)

whereωs = m	H+q
H . In near-extremal near-horizon geometry, the radial equation
becomes

[
∂y

(
y − μ1

2

) (
y + μ1

2

)
∂y + As

y − μ1
2

+ Bs

y + μ1
2

+ Cs

]
R(y) = 0, (4.4)

where

As = ω̂2�2

μ1
, Bs = −μ2

2�
2

μ1

(
ω̂

μ2
− 2m	Hr+

K
+ qe

K

(a + n)2 − r2+
(a + n)2 + r2+

)2

, (4.5)

andCs is the separation constant in the angular equation. The angular equation is inde-
pendent of the frequency, but we don’t consider it anymore. To solve the differential
Eq. (4.4), we consider a coordinate transformation z = r−μ1/2

r+μ1/2
, where the the radial

Eq. (4.4) becomes

[
z(1 − z)∂2z + (1 − z)∂z + Âs

z
+ B̂s + Cs

1 − z

]
R(z) = 0, (4.6)

where Âs = As/μ1, B̂s = Bs/μ1. The solution to (4.6) are given by

R(z) = zα(1 − z)βF(as, bs, cs; z), (4.7)

where F(as, bs, cs; z) is the hypergeometric function. The parameters of the hyper-
geometric functions are given by

as = βs + i(γs − αs), bs = βs − i(γs + αs), cs = 1 − 2iαs, (4.8)

where

αs =
√
Âs, βs = 1

2

(
1 − √

1 − 4Cs

)
, γs =

√
−B̂s . (4.9)

In the very far limit, where (y >> μ1/2) ∼ (z = 1), the solutions (4.7) behave as

R(y) ∼ D1y
−β + D2y

β−1, (4.10)

where

D1 = �(cs)�(2h − 1)

�(cs − as)�(cs − bs)
, D2 = �(cs)�(1 − 2h)

�(as)�(bs)
, h = 1 − βs, (4.11)

123



151 Page 20 of 24 M. F. A. R. Sakti et al.

and h is the conformal weight. The essential properties of the absorption cross section
is captured by the coefficient D1 such as

Pabs ∼ |D1|−2 = sinh (2πα)

2πα

|� (cs − as)|2 |� (cs − bs)|2
(� (2h − 1))2

. (4.12)

The real-time correlator could be read alternatively as [77,78]

GR ∼ D2

D1
= �(1 − 2h)

�(2h − 1)

�(cs − as)�(cs − bs)

�(as)�(bs)
, (4.13)

where D1 as the source and D2 as the response.
The main objective of the Kerr/CFT correspondence is to find the agreement

between the absorption cross-section (4.12) and the absorption cross-section in a two-
dimensionalCFT. In this paper,wewish to prove the agreement between the absorption
cross-section (4.12) to the cross-section in dual CFT in three different pictures, that is
defined by [79]

Pabs ∼ TL
2hL−1TR

2hR−1 sinh

(
ω̃L

2TL
+ ω̃R

2TR

) ∣∣∣∣�
(
hL + i

ω̃L

2πTL

)∣∣∣∣
2 ∣∣∣∣�

(
hR + i

ω̃R

2πTR

)∣∣∣∣
2

,

(4.14)

where hL , hR are the conformal weights. The agreement between (4.12) and (4.14)
further could be found by choosing the suitable left and right frequencies ω̃L , ω̃R . In
order to do so, we consider the first law of thermodynamics for the general charged
rotating black holes

δSBH = δM

TH
− 	H

TH
δ J − 
H

TH
δQ, (4.15)

where TH , 	H and 
H are given by (2.8)–(2.10), respectively. On the other hand, we
have

δSCFT = δEL

TL
+ δER

TR
. (4.16)

that comes from the variation of Cardy entropy formula. We may identify δM as ω,
δ J as m, δQ as q and δER,L as ω̃R,L . When we equate (4.15) with (4.16), we find a
family of left and right frequencies

ω̃L,R = ωL,R − qL,RμL,R, (4.17)

where

ωL = (r2+ − r2∗ )
[
r2+(κ2 + 1) + 2(a + n)2

]

2
[
r2+(a2 − a1κ2) + (a + n)2(a2 − a1)

]ω, qL = q, (4.18)

μL = e(r+ − r∗)[r2+(κ2 + 1) + 2(a + n)2]
2

[
r2+(a2 − a1κ2) + (a + n)2(a2 − a1)

]
�

, (4.19)
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ωR = r2+(κ2 − 1)
[
r2+ + r2∗ + 2(a + n)2

]
ω − 2ar2+(κ2 − 1)m

2
[
r2+(a2 − a1κ2) + (a + n)2(a2 − a1)

] ω, (4.20)

μR = er2+(r+ + r∗)(κ2 − 1)

2
[
r2+(a2 − a1κ2) + (a + n)2(a2 − a1)

]
�

, qR = q. (4.21)

For the scalar fields, we have hL,R = h. To find the quantities in J and Q pictures,
we just have to set α = 1, β = 0 and α = 0, β = 1, respectively. From this fact,
we conclude that the identifications support the existence of dual deformed CFT to
the Kerr–Newman-NUT-AdS black holes. A similar calculation in general Q′ picture
shows that the scattering results are given by the Eqs. (4.19)–(4.21), replacing the
modular group parameters α and β to η and τ , respectively, and changing m′ to q ′.

5 The dual deformed hidden conformal symmetry for the
Reissner–Nordström-NUT-AdS black holes

As we mentioned before, a very interesting feature of the dual deformed hidden con-
formal generators for the Kerr–Newman-NUT-AdS, is that, they provide a realization
of the dual conformal generators for the non-rotating Reissner–Nordström-NUT-AdS
black holes. In fact, such a realization of the dual deformed hidden conformal genera-
tors for the non-rotating black holes, was discovered for the Schwarzschild [58,80], the
Reissner–Nordström [65], and the Gibbons-Maeda-Garfinkle-Horowitz-Strominger
black holes [49].

The dual deformed hidden conformal generators in Q′ picture, in the limit of no-
rotation (a = 0), reduce to

La± = e
± K (r+−r∗)

2(κr2+−n2)�
t∓2πTRφ

√
�

[
∓�∂r + er+

[
(κr+ + r∗) − (κ + 1)r

]
�

r+ − r∗
∂χ

+
[
r2+(κ2r+ + r∗) + (r+ + r∗)n2 − (r2+(κ2 + 1) + 2n2)r

]
�

r+ − r∗
∂t

]
, (5.1)

La
0 =

[
r2+

(
κ2 + 1

) + 2n2
]
�√

K (r+ − r∗)
∂t + er+(κ + 1)�√

K (r+ − r∗)
∂χ , (5.2)

in branch a, and to

Lb± = e
± K (r+−r∗)(κ+1)

2(1−κ)(κr2+−n2)�
t∓2πTLφ

√
�

[[
r2+(κ2r+ − r∗) + (r+ − r∗)n2 − r2+(κ2 − 1)r

]
�

r+ − r∗
∂t

+er+
[
(κr+ − r∗) − (κ − 1)r

]
�

r+ − r∗
∂χ ∓ �∂r

]
, (5.3)

Lb
0 = r2+

(
κ2 − 1

)
�√

K (r+ − r∗)
∂t + er+(κ − 1)�√

K (r+ − r∗)
∂χ , (5.4)
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in branch b, respectively. Moreover, the central charges and the CFT temperatures are
given by

cL = cR = 6er+(1 − κ)
(
κr2+ − n2

)

K (r+ − r∗)
, (5.5)

and

TR = Kr+(r+ − r∗)(κ + 1)

4πe
(
κr2+ − n2

) , TL = TR
r2+(κ2 + 1) + 2(a + n)2

r2+(1 − κ2)
, (5.6)

respectively, where

K = 1+6(r2+ + n2)

l2
, r∗ = r+ − 1

Kr+

[
r2+ − e2−r2+(r2+ + 6n2)

l2
+ (3n2 − l2)n2

l2

]
.

(5.7)

The central charges (5.5) and temperatures (5.6), lead to the Cardy entropy which is
exactly equal to the Bekenstein–Hawking entropy for the Reissner–Nordström-NUT-
AdS black holes. We also note that in the limits of � = 0 and n = 0, the generators
(5.1)–(5.4) provide the dualCFTdescription for the non-rotatingReissner–Nordström-
NUT and Reissner–Nordström-AdS black holes, respectively.

6 Conclusions

We construct different classes of dual deformed hidden conformal generator for the
wave equation of a scalar field in the backgroundof theKerr–Newman-NUT-AdSblack
holes. We explicitly deformed the inner horizon of the black hole by a deformation
parameter, to find the deformed radial equation for the scalar fields. The deformation of
the inner horizon is, in fact, a result of the back-reaction of the scalar field on the black
hole geometry. Under the back-reaction, the inner horizon changes to a space-like
singularity.

We construct the dual deformed conformal generators in three different pictures
for the scalar wave equation in the background of the Kerr–Newman-NUT-AdS black
holes. We also show that the dual deformed conformal generators in the J and Q
pictures are special cases of the generators in general picture with special elements
of modular group. We also notice that the deformed hidden conformal generators
reduces to the hidden conformal generators for the scalar fields, in the background of
the Kerr–Newman-NUT-AdS black holes for a very special value of the deformation
parameter.

A very unique feature of the deformed hidden conformal generators, is that, they
provide a realization of the deformed hidden conformal symmetry for the scalar wave
equation in the background of the non-rotating black holes. More specifically, we
construct the dual conformal generators for the scalar wave equation in the background
of non-rotating Reissner–Nordström-NUT-AdS black holes.
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We also find the absorption cross-section of the charged scalar fields in the back-
ground of Kerr–Newman-NUT-AdS black holes. The results are in agreement with
the cross-sections in two-dimensional conformal field theory in all three conformal
pictures.

We also emphasis that in this article, by any reference to the holographic duality
between the rotating black hole and theCFT,we exactlymean that thewave equation of
a scalar probe field, on the near horizon geometry of the rotating black hole, possesses
the conformal symmetry [3–40].
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