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Dirac electron in the gravitational field I

1 Introduction

The unification of the Dirac theory of the electron with the general theory of relativity
has already been attempted repeatedly, for example by Wigner [1], Tetrode [2], Fock
[3], Weyl [4], Zaycoff [5], Podolsky [6]. Most authors introduce in every world point
axes of coordinates and numerically specialized Dirac matrices with respect to them.
With this procedure it is a little bit difficult to recognize whether Einstein’s idea of
teleparallelism, to which reference is partly made, really enters or whether one is inde-
pendent of it. It is, moreover, necessary to recast the concepts of Riemannian geometry
into the less familiar and definitelymore complicated form of the “frame components”.
In order to avoid all of this, it seemed tome desirable, like Tetrode (see also [7]), to rely
only on the generalized commutation relations [see equation (2) below]. It turns out
that one is led in this way very simply and straightforwardly to the important operators
Γk , whose trace is the four-potential, and which Fock introduces as the “components
of the parallel transport of a spinor”; and one is just as straightforwardly led to the
important system of equations [see (8) below], which Fock obtains by a detour through
the frame components. By restriction of the admissable reference frames (see Sec. 4
below), which is completely analogous to the usual one in the special theory of rela-
tivity, one then introduces the Hermiticities, which are desirable for the interpretation,
as well as an assignment between tensor operators and local c-tensors, which is also
completely analogous to the one put up by v. Neumann [8] in the special theory [see
equation (57) below]. A principal advantage seems to me that the whole apparatus can
be constructed almost entirely by pure operational calculus, without making reference
to the ψ-function. I hope that the exact justification of this apparatus is not too shock-
ing by its length, for which the author’s broad way of writing is partly responsible.
Having prepared the ground, with it the application and the thinking may turn out to
be simple. — I want to declare once and for all my deep indebtedness to the work
of my predecessors, but for methodological reasons I ask for the permission to derive
everything in a new way, as if it had not yet been found by anyone else.

2 Construction of themetric from fields of matrices

We call the world variables

x0 = ict, x1 = x, x2 = y, x3 = z.

The first is always pure imaginary, the other three are real. Dirac’s basic idea was to
interpret the Euclidean wave operator

∂2

∂x20
+ ∂2

∂x21
+ ∂2

∂x22
+ ∂2

∂x23
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as the square of a linear operator
(

0
γ 0

∂

∂x0
+ 0

γ 1
∂

∂x1
+ 0

γ 2
∂

∂x2
+ 0

γ 3
∂

∂x3

)2

where the
0
γ k are 4 × 4 matrices1, which have to fulfil the condition

0
γ i

0
γ k + 0

γ k
0
γ i= 2δik, (1)

i.e. the left side is equal to the null matrix or equal to twice the identity matrix,

depending on whether i �= k or i = k. By the condition (1), one knows that the
0
γ k are

exactly determined up to a similarity transformation

0
γ

′
k= S−1 0

γ k S

with an arbitrary non-singular 4×4 transformationmatrix S.This freedom in the choice

of the
0
γ k is evident, and one knows, as said, that with it the freedom is exhausted.

Since instead of the wave operator one could have also started from the squared
line element:

dx20 + dx21 + dx22 + dx23 ,

it seems reasonable to interpret the conditions (1) in such a way that the matrices
0
γ k , in addition to the other tasks which they are attributed later in the description of
the electron, also have the task of describing the world metric, which so far has been
assumed Euclidean. If this is not assumed, but instead

ds2 = gμνdx
μdxν,

one will have to replace (1) by

γiγk + γkγi = 2gik (2)

[2]. The γk are functions of space and time, i.e. they are 4×4matrices, whose elements
are functions of the xi .

In every point P , the equations (2) certainly have solutions for the γk if one imagines
the gik somehow as given (of course in such away that they correspond to anon-singular
metric). The freedom which still exists for the γk , given the gik , is exactly the same

as above for the
0
γ k , namely: transformation with an arbitrary non-singular matrix S.

One recognizes the correctness of these statements by considering one by one the
following:

1 Incidentally, the number of rows is irrelevant for all what follows.

123



4 Page 4 of 25 E. Schrödinger

1. The equations (2) can always be solved by 4 suitably chosen linear combina-

tions of an arbitrary Dirac basis system
0
γ k — the ansatz leads to conditions for the

coefficients that can be met.
2. On the other hand: If one has a system of γk for which one knows that it fulfils

(2), one can specify 4 linear combinations of these γk which fulfil (1) and which thus
form a Dirac basis. If one thus has, for example, two systems of solutions γk and
γ ′
k for (2), they can be transformed into a respective Dirac basis by the same linear

transformation. But these twoDirac bases are certainly related by an S-transformation.
The same transformation then also transforms γk and γ ′

k into each other.
3. It is obvious that any S-transformation leaves (2) untouched. — With this, all

statements are demonstrated.

A very essential difference between the
0
γ k and the γk is the following. It is

known that there are Hermitian
0
γ k-systems, but that there are in general no Her-

mitian γk-systems; there are also none where some γk are Hermitian and others are
skew-Hermitian. This is connected with the well known reality conditions which one
has to demand for the gik : pure imaginary if one and only one index 0 appears, and real
otherwise. (One has to recall that the symmetrized product, the anticommutator, of two
Hermitian matrices is always Hermitian.) We will later address the Hermiticity ques-
tions in more detail and have mentioned them here only to show that for the moment
there is not the slightest reason to restrict the transformation S, which is arbitrary in
each point, for example to a unitary one. Because the γk are anyway not Hermitian,
one has for now no reason to be concerned about the “conservation of Hermiticity”.

We shall now derive from (2) an important system of differential equations for
the γk . We imagine the gik as given and the equations (2) as solved in every point
P; solved in such a way that these solutions can be joined together to form four
continuous, differentiable fields of matrices, which will obviously be possible. We
now proceed from a point P to a neighbouring point P ′ and form in this sense the
complete differential of equation (2),

δγi · γk + γi · δγk + δγk · γi + γk · δγi = 2
∂gik
∂xl

δxl . (3)

If we now observe the theorem of Ricci, according to which the covariant derivative
of the fundamental tensor gik vanishes identically:

gik;l ≡ ∂gik
∂xl

− Γ
μ
kl giμ − Γ

μ
il gμk ≡ 0, (4)

the right-hand side of (3) will be equal to the following:

2
(
Γ

μ
kl giμ + Γ

μ
il gμk

)
δxl .

This value can be attributed to the left-hand side of (3) by setting

δγi = Γ
μ
il γμδxl (5)
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and taking into account (2). I.e. the matrices

γi + δγi = γi + Γ
μ
il γμδxl (6)

obey equation (2) in point P ′ if the γi obey it in point P .
The ansatz (5) would in general be contradictory if one wanted to apply it to all

points P ′ in the neighbourhood of P . For one can convince oneself by a simple
calculation that the expression (5) is a total differential if and only if the curvature
in P vanishes. But according to what has been said above, the γi -values in P ′ — we
want to call them γi + δ′γi — can and will differ from our somehow guessed solution
ansatz (5) resp. (6) by a similarity transformation, namely, of course, by an infinitely
small one if continuity has to be preserved. That is, there must exist an infinitely small
matrix ε in such a way that

γi + δ′γi = (1 − ε)(γi + δγi )(1 + ε) = γi + δγi + γiε − εγi

or δ′γi = Γ
μ
il γμδxl + γiε − εγi . (7)

In principle, ε could assume another, entirely arbitrary, value at any neighbouring
point. But if γi should have a correct differential quotient with respect to xl when
progressing in direction xl (i.e. for δxl �= 0, all others = 0), ε must be proportional to
δxl . The same for any l. If one should then be able to calculate the change of γi when
progressing in arbitrary direction correctly from its differential quotient, ε must be the
sum of these four terms. In this way, one arrives at the ansatz

ε = −Γlδx
l ,

in which the Γi are four matrices independent of space and time (the minus sign is,
of course, completely arbitrary). Inserted into (7), the important system of differential
equations announced above follows2:

∂γi

∂xl
= Γ

μ
il γμ + Γlγi − γiΓl . (8)

We shall express this later as follows: the covariant derivative of the fundamental
vectors γk vanishes, in full analogy to the theorem of Ricci, equation (4). On the
other hand, the source freedom of the four-current is closely related to this system of
equations. I want to put particular emphasis on the fact that we have derived it here
purely from the conditions on the metric, without reference to the ψ-function, for
which we had to exploit the freedom in transforming the Dirac matrices. This led —
and it did it unavoidably — to the appearance of the new operators Γl , for which we
shall see that they are inextricably linked with the four-potential (but they do not form
a vector!).

We now investigate, in addition, the necessary conditions for the consistency of the
equations (8), namely, that the mixed second differential quotients, when calculated

2 In its content, this agrees with equation (24) in [3]. But the meaning of the symbols here and there is a
little bit different. If one wishes to make the two coincide, one should first read our section 5 on Hermiticity!
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in two different ways, must coincide. By expressing the first derivatives that appear
after differentiation again by (8), one finds:

Φklγi − γiΦkl = R...μ
kli γμ. (9)

Here, R...μ
kli is the mixed Riemann curvature tensor in the usual notation (see e.g.

Levi-Civita, Der absolute Differentialkalkül, p. 91; Berlin, Springer 1928). Φkl is an
abbreviation that we introduce for the following six matrices, which are antisymmetric
in the indices k, l:

Φkl = ∂Γl

∂xk
− ∂Γk

∂xl
+ ΓlΓk − ΓkΓl , (10)

which, as it will turn out, stand in close relation to the electromagnetic field. For given
γi -field, by (8) every Γi , and by (9) every Φkl is fixed up to an added term which is
commutable with all γi and which is thus a multiple of the identity matrix. From (9),
the Φkl are easily calculable. Besides the γi one introduces the contravariant

γ i = gikγk . (11)

Furthermore, one declares

sμν = 1

2

(
γ μγ ν − γ νγ μ

)
. (12)

(The sμν correspond for μ, ν = 1, 2, 3 in a certain sense to the spin, for μ = 0, ν =
1, 2, 3 in a certain sense to the velocity. See later.) We remark, in addition, that accord-
ing to (2) and (11)

γiγ
k + γ kγi = 2δki . (13)

One now easily finds

γi s
μν − sμνγi = 2

(
δ
μ
i γ ν − δν

i γ
μ
)
. (14)

Upon commutation with a γ , the sμν thus produce again γ . This is exactly what one
needs in order to solve (9) with respect to Φkl . The right-hand side of (9) can, in fact,
also be written as Rkl,iμγ μ, where Rkl,iμ is the symmetric Riemann tensor. One then
confirms with the C.R. (14) that

Φkl = −1

4
Rkl,μνs

μν + fkl · 1 (15)

is the general solution of (9)3. fkl is the undetermined multiplier of unity. The fkl will
(multiplied by i) assume the role of the electromagnetic field. One recognizes that

3 In content essentially in accordance with the index-rich frame equations (46), (48) in [3].
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although the appearance of these quantities is suggested by the construction of the
metric frommatrices, it is exactly the fkl which are, for the time being, not determined
by the γ -field, but left entirely free.

As commutators, the sμν have trace zero. Therefore,

trace Φkl = fkl · trace 1 = 4 fkl .

According to (10) we have, on the other hand,

trace Φkl = ∂

∂xk
(trace Γl) − ∂

∂xl
(trace Γk) ,

for differentiation and performance of trace are commutable and the commutator does
not contribute to the trace. If one sets, for example,

1

4
trace Γl = ϕl ,

one gets

fkl = ∂ϕl

∂xk
− ∂ϕk

∂xl
. (16)

The traces of the Γl are the four-potential (apart from a factor i).

3 Transformation theory, first part

According to the fundamental principle of general relativity, a re-labelling of all points

x ′
k = x ′

k(x0, x1, x2, x3); k = 0, 1, 2, 3 (17)

should not change the form of description. In doing so, the function x ′
0 should only

assume pure imaginary, x ′
1, x

′
2, x

′
3 only assume real values, and the functional determi-

nant should remain positive. We call this a point substitution. The gik then transform
as a covariant tensor of second rank.

As long as we impose for the γi no other requirement than obeying the equations
(2), the question how they have to be transformed under a point substitution cannot
at all be answered unambiguously. For after as well as before the point substitution,
a similarity transformation with a transformation matrix S that varies from point to
point remains entirely free. But we can demand that the γi are to be transformed
as a covariant vector under a pure point substitution, under which (2) at any rate is
preserved. One then has to demand the same for the Γl , so that (8) is preserved. For
the commutator Γlγi − γiΓl then transforms as a covariant tensor, which is also the
case for the rest of the equation, namely,

∂γi

∂xl
− Γ

μ
il γμ (18)
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if γi is substituted as a vector; for (18) is, after all, formally the covariant derivative
of γi . The similarity transformations

γ ′
k = S−1γk S (19)

would then have to be considered as something by themselves, where, as one can
easily convince oneself, the Γl must be transformed as follows in order to preserve
(8):

Γ ′
l = S−1Γl S − S−1 ∂S

∂xl
, (20)

which is different from the γk . But one would find that after these determinations the
following combination of terms, for which we want to introduce the symbol ∇k ,

∇k = ∂

∂xk
− Γk, (21)

first — naturally – transforms as a covariant vector under a pure point substitution
(because this holds, of course, for the ∂

∂xk
alone and was fixed for the Γk) and that

secondly because of (20) the ∇k transform under an S-transformation exactly in the
way that the γk transform according to (19),

∇′
k = S−1∇k S. (22)

For the meaning of ∇′
k is, in fact,

4

∇′
k = ∂

∂xk
− Γ ′

k = ∂

∂xk
− S−1Γk S + S−1 ∂S

∂xk
, (23)

and one has

∂

∂xk
= ∂

∂xk
· S−1S = S−1 ∂

∂xk
S + ∂S−1

∂xk
S = S−1 ∂

∂xk
S − S−1 ∂S

∂xk
; (24)

the last equality holds because of the identity:

S−1S ≡ 1; ∂S−1

∂xk
S + S−1 ∂S

∂xk
≡ 0.

By inserting (24) into (23), one confirms (22).
TheΦkl introduced through (10) would firstly behave— naturally— as a covariant

tensor under point substitution, secondly under an S-transformation analogously to
(19),

Φ ′
kl = S−1Φkl S, (25)

4 Translator’s note: I have corrected typos in the following two equations.
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the latter because of (22) and because they are, according to the definitions (10) and
(21), the commutators of the ∇k :

Φkl = ∇l∇k − ∇k∇l . (26)

One should add that due to (25) the traces of the Φkl , the fkl , do not change under
the similarity transformation, whereas those of the Γl , which we called ϕl , in fact do,
because we do not have for the Γl a transformation law analogous to (19) resp. (25),
but instead (20).

We have formulated all of this in the “would”-form, because the requirements we
have imposed contain the abovementioned arbitrariness: since a point substitution any-
how forces, in general, amodification of the γi (the old γi will, of course, in general no
longer obey the equations (2)!), we have for the new selection again a whole manifold
of γi -fields at our disposal, whose members follow from an arbitrary one of them by
arbitrary, coordinate-dependent S-transformations. And for the moment none of these
members is intrinsically distinguished in any way, not even the one selected above.

It is now recommendable, at least for certain purposes, to restrict this freedom of
choice to a large extent by using it to satisfy certain Hermiticity aspirations, which
are not unavoidable, but which are natural, as is also usually done in the special
relativistic Dirac theory. In order to see what can be achieved in this respect, we have
to contemplate more closely the eigenvalues of γk and their bi-products.

4 Eigenvalues and Hermitization

Since according to (2)

γkγk = gkk, (no summation!)

γk has the eigenvalues ±√
gkk , and each of these occur twice, because it has trace

zero. The latter is seen if one sets analogously to (12)

sμν = 1

2

(
γμγν − γνγμ

)
.

Then one has in analogy to (14)

γ i sμν − sμνγ
i = 2

(
δiμγν − δiνγμ

)
. (27)

Every γ can thus be represented in many ways as a commutator, and a commutator
always has trace zero.

Although the γ have only real eigenvalues and thus each single one of them can be
made Hermitian by an S-transformation, this can, for example, in general not be done
simultaneously, because according to (2) their symmetric product is equal to 2g01 · 1
and thus is (since g01 is pure imaginary) skew-Hermitian.
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Let us consider further the products γiγ
k , first for i �= k. Their square is [cf. (13)]:

(
γiγ

k
)2 = γiγ

k · γiγ
k = −γiγiγ

kγ k = −gii g
kk . (no summation!)

Thus the eigenvalues are ±i
√
gii gkk , and each of them occurs twice, since after all

γiγ
k = 1

2

(
γiγ

k − γ kγi

)

as a commutator must have trace zero. — The eigenvalues of γ kγi are equal and
opposite. — On the other hand, one has for i = k:

(
γkγ

k
)2 = γkγ

kγkγ
k = γk

(
2 − γkγ

k
)

γ k = 2γkγ
k − gkkg

kk (no s.)
(
γkγ

k − 1
)2 = 1 − gkkg

kk . (no s.)

γkγ
k − 1 thus has the eigenvalues ±√

1 − gkkgkk , and since it can be written as a
commutator:

γkγ
k − 1 = 1

2

(
γkγ

k − γ kγk

)
, (no s.)

each of them occurs twice. γkγ k thus has the eigenvalues

1 ±
√
1 − gkkgkk,

and each of them occurs twice. For k = 0, these values are real, since g00g00 ≤ 1.
Among the 4 matrices

γ0γ
0, γ0γ

1, γ0γ
2, γ0γ

3, (28)

the first one thus has only real, the three others pure imaginary eigenvalues. They
thus just have (apart from a factor i) the reality conditions of a physically reasonable
four-vector5. It thus seems reasonable to find out whether these four matrices can be

5 In the Euclidean case, they in fact coincide with the Dirac current vector (apart from a factor i). The
difficulty which has prevented us hermitizing the γk or the γ k themselves, namely, that their symmetrized
products do not show the needed reality conditions, also does not exist anymore for the matrices (28). For
i �= k, one has

γ0γ
iγ0γ

k + γ0γ
kγ0γ

i = γ0(2δ
i
0 − γ0γ

i )γ k + γ0(2δ
k
0 − γ0γ

k )γ i = 2(δi0γ0γ
k + δk0γ0γ

i ) − 2g00g
ik .

This is indeed real if none of the indices i, k is equal to zero, but if i = 0, k �= 0 one has:

2γ0γ
k − 2g00g

0k .

This has indeed pure imaginary eigenvalues, because we know this for γ0γ
k and because g0k is pure

imaginary.
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Hermitized (resp. skew-Hermitized) simultaneously. It turns out that this is possible
and that in addition a number of other matrices can be simultaneously Hermitized.
This goes as follows.

If the metric gik is real and positive definite, the equations (2) can be satisfied by
Hermitian γk , in the same way as the equations (1) can be satisfied by Hermitian
0
γ k . This I may assume to be known without proof, the only thing involved being the

projection of a
0
γ k-system, which is assumed Hermitian, from rectangular to skew

coordinate axes, in which only real coefficients appear as direction cosines. And since
the gik are real in this case, the contravariant γ k also turn out to be Hermitian; that is,
one can also satisfy the contravariant analogues to (2),

γ iγ k + γ kγ i = 2gik, (29)

by Hermitian γ k if the tensor gik is real and positive definite. This, however, is not
the case for our tensor gik : one can make it the case if one mutilates gik and simply
neglects the “mixed” space-time components g0k for the time being, i.e. sets them to
zero. Let

α0, α1, α2, α3 (30)

be a Hermitian quadruple of matrices which satifies the equations (29) with the muti-
lated metric. That is, one demands

αiαk + αkαi = 2gik (31)

if neither or both indices i, k are equal to zero, and one demands for k �= 0,

α0αk + αkα0 = 0. (32)

Let us now set

γ k = i

g00
α0αk for k �= 0 (33)

and

γ 0 = α0√
g00g00

− 1

g00

(
g01γ

1 + g02γ
2 + g03γ

3
)

. (34)

One can convince oneself by calculation that these γ k obey the unmutilated equations
(29).

Since according to (32) α0 anticommutes with αk (k �= 0), α0αk is skew for k �= 0
and thus γ 1, γ 2, γ 3 areHermitian according to (33). Furthermore, one calculates from
(34)
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4 Page 12 of 25 E. Schrödinger

γ0 = g0kγ
k = α0

√
g00
g00

= Hermitian. (35)

By our construction of the contravariant γ 1, γ 2, γ 3 we thus have renderedHermitian
at the same time the covariant γ0. — We note also the following Hermiticities: the
contravariant purely spatial

skl = 1

2

(
γ kγ l − γ lγ k

)
for k, l = 1, 2, 3 (36)

are, as commutators of Hermitian matrices, skew-symmetric. Furthermore, for k �= 0
the γ0γ

k and also the γ kγ0 are skew, because, already according to (13), γ0 anticom-
mutes with γ k (k �= 0). One then finds from (34) and (35) that γ0γ

0 and γ 0γ0 are
Hermitian. Furthermore, from this it follows very simply by lowering the index that
for k �= 0 also γ0γk and γkγ0, and thus also

s0k = 1

2
(γ0γk − γkγ0)

turn out to be skew. But let us emphasize strongly that nothing can be said about the
covariant skl for k, l �= 0 and also not about the contravariant s0k! The same for
γ 0, γ1, γ2, γ3. We summarize once again all statements. According to our construc-
tion,

γ0, γ
1, γ 2, γ 3, γ0γ

0, γ 0γ0 are Hermitian;
γ0γk, γkγ0, γ0γ

k, γ kγ0, s0k, s
kl are skew (k, l �= 0). (37)

We now finally want to liberate ourselves from the reference to a particular matrix
construction, which has only served as an existence proof. One can easily understand
the following: already the requirement that four suitably chosenmatrices from the ones
presented in (37) have the properties stated there — for example, the requirement that
γ0, γ

1, γ 2, γ 3 be Hermitian — suffices to fix the γ -field for given gik uniquely up to
a unitary transformation. For there is nomore freedom at all, given gik , for the γ -field
than the following: transformation with an arbitrary matrix. If this transformation is
supposed to leave thematrices γ0, γ

1, γ 2, γ 3 Hermitian, fromwhich everymatrix, that
is, also everyHermitianmatrix can be constructed by addition andmultiplication6, the
transformation must leave every Hermitian matrix Hermitian, i.e., it must be unitary.
Q.E.D.

From now on we want to admit only such γ -fields — one could also say, only such
reference frames—, forwhich thematrices γ0, γ

1, γ 2, γ 3 turn out to beHermitian. All

6 First, it is known for Dirac’s
0
γ k that any matrix can be rationally constructed from them. Then one can

conclude the same for the γk alone or for the γ k alone. That we have in the above quadruple γ0 instead of
γ 0 does no harm, because in fact

γ0 = g00γ
0 + g01γ

1 + g02γ
2 + g03γ

3,

from which γ 0 is calculable, since we have certainly g00 �= 0.
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statements made in (37) then hold automatically. The “admissable” reference system
is determined by the metric up to a unitary transformation.

It is very comfortable to have reduced the permitted S-transformations by this new
requirement to unitary ones, for these are very good-natured and harmless. In general,
we do not need to think of them and can proceed as if the γ -field was uniquely
determined by the metric. But now, of course, the task arises of determining, when
starting from an admissable γ -field and performing a point substitution (17), the
transformation law of the γ more specifically, namely determining it in such a way that
one is led again to an admissable γ -field. The preliminary rule given at the beginning of
section 3: to substitute the γk as a covariant vector— does not at all obey this condition
and does not, of course, correspond to how one proceeds in special relativity, where

one does not at all substitute the
0
γ k . In the spirit of section 3 one could say: with every

point substitution one must connect a fully determined (strictly speaking, determined
up to a unitary factor!) S-transformation, which itself, of course, will not be unitary,
and it is this transformation that has to be determined. One can thus rightfully speak
of a complemented point substitution. In the next section, we shall perform this task
for infinitely small point substitutions.

5 Transformation theory, second part

We start from an admissable γ -field and proceed to primed variables by the infinitely
small point substitution

x ′
k = xk + δxk or xk = x ′

k − δxk, (38)

which we complement in the sense described above by an infinitely small S-
transformation with

S = 1 + Θ; S−1 = 1 − Θ. (39)

We shall, as usual, not explicitly denote the change of the variables in theargument. The
equations between primed and unprimed operators thus do not refer to the same, but
to corresponding values of the argument, i.e. to the same point. —We now introduce
the abbreviation

∂δxk
∂xl

= akl . (40)

These quantities are pure imaginary if one and only one index is equal to zero, and
real otherwise. One then has

γ ′
i = γi − aliγl + γiΘ − Θγi

γ ′k = γ k + akl γ
l + γ kΘ − Θγ k . (41)
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If one takes the first equation for i = 0 and multiplies it from the left into the second
equation, one gets (always valid only in quantities of first order):

γ ′
0γ

′k = γ0γ
k − al0γlγ

k + akl γ0γ
l + γ0γ

kΘ − Θγ0γ
k . (42)

We use our freedom of choice for Θ to eliminate resp. to replace the second term on
the right-hand side of this equation, which prevents conclusions about Hermiticity.
This can be achieved by

Θ = − 1

2g00
al0γlγ0. (43)

For then one has

− 2Θγ0γ
k = al0γlγ

k, (44)

and one gets

γ ′
0γ

′k = γ0γ
k + akl γ0γ

l + γ0γ
kΘ + Θγ0γ

k .

One can now convince oneself from our statements (37) that according to (43) Θ is
Hermitian. Its symmetrized product with γ0γ

k is thus Hermitian or skew depending on
whether γ0γ

k has this property. The same holds for the second term on the right-hand
side; it is skew for k �= 0, Hermitian for k = 0. Therefore the γ ′

0γ
′k keep the same

Hermiticity as the γ0γ
k . One can show in the same way that γ ′

0 stays Hermitian, too.
With that, the γ ′-field is legitimized as “admissable”.

Θ is, of course, not unique, but the value given in (43) has, after all, thismeaning: it
is uniquely theHermitian part of the infinitely small matrix to be used. There could be,
in addition, an arbitrary infinitely small skew part. With some thought one recognizes
that it would leave all conclusions unchanged – it corresponds, of course, only to an
additional unitary transformation! —

We now add the exact definition of a tensor operator. If it is known or fixed that a
system of operators

T ρσ..
αβ..

transforms under an infinitely small complemented point substitution as a tensor
according to the rank indicated by the indices and their positions, but with addition
of the commutator

T ρσ..
αβ.. Θ − ΘT ρσ..

αβ.. , (45)

we want to call the system of operators a tensor operator of the corresponding rank.
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The following important theorem7 then holds, which can be found by very easy
generalizations of the above conclusions:

Let T ρσ..
αβ.. be a tensor operator and let it be known that in one reference frame the

operators

γ0T
ρσ..
αβ.. (46)

are Hermitian or skew, depending on whether zero occurs in the indices αβ · ·ρσ · · in
even or odd multiples; then this fact remains true in every reference frame.— In this
theorem one may, of course, also exchange the words even and odd, i.e. one can take
into account the zero in γ0 or not. But what one must not do is concern oneself with
the Hermiticity of T ρσ..

αβ.. itself, which is completely irrelevant; it is the one of γ0T
ρσ..
αβ..

that is relevant! —
One easily confirms that the symbol

∇k = ∂

∂xk
− Γk

introduced in (21) is a vector operator. Γk by itself is not, it transforms [with consid-
eration of (20)] under a complemented point substitution obviously as:

Γ ′
k = Γk − aikΓi + ΓkΘ − ΘΓk − ∂Θ

∂xk
. (47)

Here, the last term is surplus, being in conflict with the vector property. The pure
differentiator ∂

∂xk
, on the other hand, transforms covariantly in the elementary sense,

without the Θ-commutator. Taking the two together, these evils compensate, because
∂Θ
∂xk

can be interpreted as a commutator of ∂
∂xk

and Θ . — To talk about “Hermitian” or
“skew” makes, of course, no immediate sense for operators such as ∇k which contain
differentiations. For this reason, we have also not included this in the definition of a
tensor operator.

If one has two tensor operators, one easily confirms by multiplication of their
transformation formulae [similarly to what was done above in the transition from
(41) to (42)], that one obtains by “writing next to each other”, i.e. matrix multi-
plication, again a tensor if the operator written on the left side does not contain
the differential operator. Otherwise not, because it is then not commutable with
the substitution coefficients akl . (This is, of course, also not different in standard
tensor calculus. Although there ∂

∂xk
is a vector, one does not, after all, obtain a

tensor by the usual differentiation of tensor components, but by covariant differ-
entiation.) The tensor character of theΦkl defined by (10) or (26) must be investigated
separately. But since we have already seen in section 3 that the Φkl behave as a
tensor under pure point substitution in the elementary sense referred to there, but
transform under every S-substitution according to (25), they evidently form also a

7 The Hermiticity statements make immediate sense only if T ρσ..
αβ.. does not contain the differentiator ∂

∂xk
,

but is simply a 4 × 4 matrix with coordinate-dependent elements.
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tensor operator under complemented point substitution in the finer sense considered
now.

We nowwant to take care of what may be understood by covariant differentiation of
a tensor operator. In this, we restrict ourselves to such operators which do not contain
the differential operator, that is, to 4 × 4 matrices whose elements are functions of
coordinates (which does not prevent them having the form of differential quotients; for
example, Φkl is allowed, but ∇k is not). The point is to derive from a tensor operator
T ρσ..

αβ.. by differentiation with respect to xλ and addition of suitable complementary
terms entities which transform under a complemented point substitution as a tensor
operator that is contravariant in ρσ · · and covariant in αβ . . . λ.

We make use of the fact that a complemented point substitution decomposes for-
mally into a pure point substitution and a Θ-transformation, where in the latter one
simply adds the commutator with Θ; we use, furthermore, that these two infinitely
small transformations are, of course, commutable. Let us now consider the covariant
differential quotient in the elementary sense,

∂T ρσ..
αβ..

∂xλ

− Γ
μ
αλT

ρσ..
μβ.. − + . . . , (48)

this will, of course, transform under a pure point substitution as a tensor of rank ρσ..
αβ..λ.

It would only be necessary to show, in addition, that under a Θ-transformation it
simply adds the commutator with Θ , as T ρσ..

αβ.. itself does. This is true for all terms in
the expression stated before except for the first, in which by the Θ-transformation the
term

∂
(
T ρσ..

αβ.. Θ − ΘT ρσ..
αβ..

)
∂xλ

is added instead of

∂T ρσ..
αβ..

∂xλ

− Θ
∂T ρσ..

αβ..

∂xλ

.

There thus emerges the surplus term

T ρσ..
αβ..

∂Θ

∂xλ

− ∂Θ

∂xλ

T ρσ..
αβ.. . (49)

We remove it by adding in (48) as a completion the commutator

T ρσ..
αβ.. Γλ − ΓλT

ρσ..
αβ.. .
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In this way, we arrive at the final definition for the covariant differentiation of a tensor
operator:

T ρσ..

αβ..;λ = ∂T ρσ..
αβ..

∂xλ

− Γ
μ
αλT

ρσ..
μβ.. − + . . . + T ρσ..

αβ.. Γλ − ΓλT
ρσ..
αβ.. . (50)

Proof According to (47), the added term behaves as follows: under a pure point trans-
formation, as a tensor of the desired rank; under a Θ-transformation, it adds, firstly,
its commutator with Θ and, secondly, it removes the surplus (49). With this, the proof
that (50) is a tensor is completed. One can write (50) also in the form:

T ρσ..

αβ..;λ = ∇λT
ρσ..
αβ.. − T ρσ..

αβ.. ∇λ − Γ
μ
αλT

ρσ..
μβ.. − +, (51)

which differs from the elementary formula only by the appearance of the differentiator
∇λ instead of the simple ∂

∂xk
. �	

One now recognizes that the important system of differential equations (8), which
we have met already at the beginning of our investigations, expresses nothing more
than the vanishing of the covariant derivatives of the metric vector γk . This is in full
analogy to the theoremofRicci, which states the same for themetric tensor gik . Exactly
the same holds, by the way, for every tensor derived from the γk by multiplication and
additionwith constant coefficients, e.g. γ k , sμν, sμν etc. All of these have the covariant
derivative zero. This is an immediate consequence of the equations (8).

6 Interpretation by theÃ-spinor

The restriction of the γ -fields to what we called “admissable” will be felt to be espe-
cially comfortable if the interpretation of the operators is based on a four-component
ψ-function, a so-called spinor, on which they act. If a system of equations

T ρσ..
αβ.. ψ = 0 (52)

has to remain valid inany reference frame if it holds inone frame, onemust demand that
ψ , as an invariant of an S-transformation, transforms under a pure point substitution
as follows:

ψ ′ = S−1ψ. (53)

The first is self-evident. And during an S-transformation it follows indeed from (52)
by multiplication from the left by S−1 that

S−1T ρσ..
αβ.. SS

−1ψ = T ′ρσ..
αβ.. ψ ′ = 0.

For a complemented infinitely small point substitution one will thus have to set

ψ ′ = ψ − Θψ, (54)

123



4 Page 18 of 25 E. Schrödinger

whereΘ is the Hermitian matrix (43). Since now∇k is a vector operator, there follows
among other things: if the four numbers

∇kψ = ∂ψ

∂xk
− Γkψ (55)

vanish in one reference frame, they do so in every frame. It is appropriate to call them
covariant derivatives of the spinor ψ .

From the operators (q-numbers), one gets the ordinary numbers (c-numbers), which
according to taste and mode of expression can be interpreted phyically as position
probability, density of electricity, current density, transition probability etc., as follows:
one applies the corresponding operator A to a spinor ψ : Aψ , and then forms the so-
called Hermitian inner product of the two spinors ψ and Aψ , i.e. one multiplies the
first component of the conjugate complex ψ∗ with the first of Aψ , the second of ψ∗
with the second of Aψ etc. and then adds these 4 products. For this, we want to write
briefly8

ψ∗Aψ. (56)

If A does not contain the differential operator ∂
∂xk

, but is only a 4 × 4 matrix with
coordinate dependent elements, one can also say: one inserts the components of ψ∗
and ψ as arguments into the bilinear form constructed from this matrix.

Only if the matrix is Hermitian (resp. skew) will the c-number (56) always be real
(resp. purely imaginary), as is necessary for the components of c-tensors which one
wants to interpret physically.Wehavenowseen in section5: ifT ρσ..

αβ.. is a tensor operator,
under an admissable transformation (i.e. under a complemented point substitution) one
will not at all preserve the Hermiticity of its components, but instead those of γ0T

ρσ..
αβ.. .

The reality conditions needed for a physical tensor of rank ρσ..
αβ.. are thus not at all

preserved by, for example, the c-numbers ψ∗T ρσ..
αβ.. ψ , but by the c-numbers

Tρσ..
αβ.. = ψ∗γ0T ρσ..

αβ.. ψ. (57)

We now want to show that it is also them that really transform as a c-tensor of rank ρσ..
αβ..

and thus have to be counted as the physical interpretation of the tensor operators T ρσ..
αβ.. .

This is because one finds, when performing the complemented point substitution (38),
(40), first the following:

Tρσ..′
αβ.. = (ψ∗ − Θ∗ψ∗)(γ0 − al0γl + γ0Θ − Θγ0)

(T ρσ..
αβ.. − alαT

ρσ..
lβ.. − + . . .)(ψ − Θψ)

= Tρσ..
αβ.. − Θ∗ψ∗γ0T ρσ..

αβ.. ψ − ψ∗Θγ0T
ρσ..
αβ.. ψ − al0ψ

∗γl T ρσ..
αβ.. ψ −

−alαT
ρσ..
lβ.. − + · · (58)

8 In this way of writing, the order does not matter. AϕBχ means the same as Bχ Aϕ, namely always: first
component of Aϕ times first of Bχ plus second of Aϕ times second of Bχ plus etc.
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(Two terms containing Θ have cancelled each other, namely the one arising from
−Θψ and the one arising from γ0Θ; terms of second order in Θ and alk are, of
course, suppressed.) The second, third, and fourth terms on the right-hand side cancel
each other, for: the second and the third are equal to each other, because Θ∗ may be
transferred under “transposition” (exchange of rows and columns) to the other factor
and in this way becomes Θ because it is Hermitian. Furthermore, one has from (43)

−2ψ∗Θγ0T
ρσ..
αβ.. ψ = 1

g00
al0ψ

∗γlγ0γ0T ρσ..
αβ.. ψ = al0ψ

∗γl T ρσ..
αβ.. ψ,

which thus cancels against the fourth term, as stated. One thus obtains for the c-tensor
(57)

Tρσ..′
αβ.. = Tρσ..

αβ.. − alαT
ρσ..
lβ.. − + . . . , (59)

the usual substitution formula, Q.E.D. — One should note explicitly that in this proof
the operator T ρσ..

αβ.. itself does not need to be moved nor to be commuted with a alk .

The proof thus also still holds, i.e. Tρσ..
αβ.. even then transforms as a c-tensor, if T ρσ..

αβ..

contains the differential operator ∂
∂xk

. Only the Hermiticity statements then make no
immediate sense for the local tensor components.

For the following it will be convenient to extend formula (55) to the case when one
does not have a spinor, but instead its complex-conjugate. The complex-conjugate of
(55) would read

∂ψ∗

∂xk∗ − Γ ∗
k ψ∗,

but this would for k = 0 (x0 = ict!) in the Euclidean case not become the usual
derivative, but its negative, which would be very inconvenient. We are thus, unfortu-
nately, forced to change the sign for k = 0 and to define the covariant derivative of
ψ∗ as

∇kψ
∗ = ∂ψ∗

∂xk
∓ Γ ∗

k ψ∗ (60)

(upper sign for k = 1, 2, 3; lower sign for k = 0.) We now want, in addition, to
investigate the covariant derivative of the c-tensor (57), which, as we expect, will be
somehow connected with the one of the tensor operator defined in (50). One first finds:

Tρσ..

αβ..;λ = ∂Tρσ..
αβ..

∂xλ

− Γ
μ
λαT

ρσ..
μβ.. − + . . . =

= ∂ψ∗

∂xλ

γ0T
ρσ..
αβ.. ψ + ψ∗ ∂γ0

∂xλ

T ρσ..
αβ.. ψ + ψ∗γ0

∂T ρσ..
αβ..

∂xλ

ψ + ψ∗γ0T ρσ..
αβ..

∂ψ

∂xλ

−
− Γ

μ
λαψ∗γ0T ρσ..

αβ.. ψ − + . . . .
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One can now extend the four derivatives in this equation to covariant derivatives
according to (60), (8), (50), (55), in which the one of γ0 vanishes. In this way, one
obtains

Tρσ..

αβ..;λ = ∇kψ
∗γ0T ρσ..

αβ.. ψ + ψ∗γ0T ρσ..

αβ..;λψ + ψ∗γ0Tρσ..
αβ..∇ψ (61)

plus a remainder, for which it has to be shown now that it vanishes. This remainder is

remainder = ±Γ ∗
λ ψ∗γ0T ρσ..

αβ.. ψ +
+ψ∗[Γ μ

0λγμT
ρσ..
αβ.. + (Γλγ0 − γ0Γλ)T

ρσ..
αβ.. − γ0T

ρσ..
αβ.. Γλ + γ0ΓλT

ρσ..
αβ.. ]ψ +

+ψ∗γ0T ρσ..
αβ.. Γλψ.

The underlined terms cancel each other. ±Γ ∗
λ is transferred to the other factor as

±Γ
†
λ .

9 There is still

remainder = ψ∗AT ρσ..
αβ.. ψ with

A = Γ
μ
0λγμ + (Γλ ± Γ

†
λ )γ0.

The proof will be completed if we can show that

1

2g00
Aγ0 ≡ 1

2
(Γλ ± Γ

†
λ ) + 1

2g00
Γ

μ
0λγμγ0 (62)

vanishes. (For from this one has A ≡ 0, because γ0 has the non-vanishing eigenvalues
±√

g00. If A = 0, the “remainder” vanishes and equation (61) will be proved.)
The operator (62) now is in the case of the upper sign, valid for λ = 1, 2, 3, the

Hermitian, in the case of the lower sign the skew-Hermitian part of

Γλ + 1

2g00
Γ

μ
0λγμγ0. (63)

It can be recognized without too much effort that this operator, if commuted with
the according to (37) Hermitian matrices γ0, γ

1, γ 2, γ 3 gives for λ = 1, 2, 3 only
Hermitian, for λ = 0 only skew-Hermitian results. For this reason, its Hermitian (resp.
forλ = 0 its skew-Hermitian) partmust at any rate be commutablewith γ0, γ

1, γ 2, γ 3,
thus must be a multiple of unity. In other words, the parts which are supposed to vanish
reduce to

real part trace (Γλ + 1

2g00
Γ

μ
0λγμγ0) for λ = 1, 2, 3

imaginary part trace (Γ0 + 1

2g00
Γ

μ
00γμγ0).

9 With the dagger † we shall denote the transposed and complex-conjugate matrix, as is almost always
(unfortunately, only almost) the case.
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Since trace γμγ0 = 4gμ0 and

gμ0Γ
μ
0λ = Γ0,0λ = 1

2

∂g00
∂xλ

for λ = 0, 1, 2, 3

the question is thus whether one really has

real part trace Γλ = −∂ lg g00
∂xλ

for λ = 1, 2, 3;

imaginary part trace Γλ = −∂ lg g00
∂x0

? (64)

It now turns out that we have promised too much. This is because we cannot prove
these equations, the reason being that the Γk were, after all, originally introduced and
so far exclusively applied in such a manner that only their commutators with other
matrices play a role, for which their traces are completely irrelevant. These play a role
for the first time in the covariant derivative of the spinor, equation (55) and (60), of
which we just make use for the first time in the equation (61) that we want to prove.We
can only prove that we are free to define the corresponding trace parts by (64). And this
is indeed the case. On the one hand, it certainly holds in one reference frame, because
the right-hand sides of (64) possess the necessary reality. On the other hand, one can
show from (47) and (43) that the decree once imposed is invariant under admissable
transformations — I suppress the proof.

By this decree, the covariant derivative of the spinor is made precise in a desired
way. But the decree is, in fact, desired also in another way. If the trace parts in question
cannot be described as the derivatives of one and the same function (− lg g00), they
would generate pure imaginary electromagnetic field strengths in the traces of the
Φkl . This is avoided in this way. — The real part of trace Γ0 and the imaginary
parts of trace Γλ (λ = 1, 2, 3), from which the real field strength follow, still remain
free.

We must, in addition, take a look at the pure unitary transformations which besides
the complemented point substitutions are also still admissable in themselves. The only
remaining thing to be said is that such a desired unitary transformationmust, of course,
also be applied to ψ according to the prescription (53). It is then completely irrele-
vant and harmless. In particular, the components of the c-tensors (57) are completely
insensitive to it; this also holds for the trace parts that were fixed in (64).

The essential results of this section are:

1. The determination of the transformation law (54) and the covariant derivative (55)
for the spinor.

2. The assignment of the c-tensor components to the tensor operator according to
(57) and the proof that they really transform as usual tensor components of the
same rank.

3. The presentation of a relatively simple formula (61) for calculating the covariant
derivative of a c-tensor; a formula which mainly is of interest because it demands
for its validity the, in principle welcome,
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4. normalization of that trace part of Γλ that without normalization would lead to the
appearance of pure imaginary electromagnetic field strengths.

7 The Dirac equation

The operator γ k∇k is an invariant which one can suitably call “absolute value of the
gradient”. The generalized Dirac equation demands10

γ k∇k = μψ, (68)

where μ is a universal constant,

μ = 2πmc

h
.

Let us call the c-vector belonging to γ k after the assignment (57) i Sk , that is,

i Sk = ψ∗γ0γ kψ. (69)

Since the covariant derivative of the operator γ k vanishes, the one of Sk reduces
according to (61) to11

i Sk;λ = ∇λψ
∗γ0γ kψ + ψ∗γ0γ k∇λψ.

10 But one could be tempted to “symmetrize” and to take as the left-hand side of (68)

1

2
(γ k∇k + ∇kγ

k ). (65)

Footnote 10 continued
But this term can be rewritten. The vanishing of the covariant derivative of γ k states:

∇lγ
k − γ k∇l = −Γ k

lμγ μ.

Contraction leads to

∇kγ
k − γ k∇k = −Γ k

kμγ μ = − ∂ lg
√
g

∂xμ
γ μ. (66)

Therefore,

1

2
(γ k∇k + ∇kγ

k ) = γ k∇k − 1

2

∂ lg
√
g

∂xk
γ k = g

1
4 gk∇k g

− 1
4 . (67)

This is not an invariant operator, about which we may not be surprised. Namely, ∇kγ
k is not one and also

has no duty to be one. For we have also emphasized above that a product of two tensor operators is only
then definitely a tensor operator if the left factor does not contain the differentiator. As a matter of fact, the

use of the ansatz (65) would anyway come to the same thing, one would only have to use g− 1
4 ψ instead of

ψ , that is, one would have to transform g− 1
4 ψ as a spinor. We thus keep the ansatz (68).

11 Translator’s note: I have corrected a typo in this equation.
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If one forms by contraction the covariant divergence:

i Sλ
;λ = ∇λψ

∗γ0γ λψ + ψ∗γ0γ λ∇λψ,

the first summand is the negative complex-conjugate of the second12, but this one is
according to (68)

μψ∗γ0ψ,

and thus is real, because γ0 is Hermitian. Therefore,

Sλ
;λ = 0. (70)

In this way, the source freedom of the four-current, which according to our assignment
(57) belongs as a c-vector to the contravariant metric vector, follows from the Dirac
equation and the fundamental equations (8) (cf. [3], p. 267).

We now want to square the Dirac equation in order to compare the result with the
one familiar from the special theory (for brevity, ψ will be suppressed):

γ k∇kγ
l∇l = μ2. (71)

One replaces the first two factors by equation (66) (in the footnote) and uses that one
has according to (2) and (12)

γ kγ l = gkl + skl . (72)

This leads to

∇k(g
kl + skl)∇l + ∂ lg

√
g

∂xμ

γ μγ l∇l = μ2.

From the vanishing of the covariant derivative of skl follows

∇ks
kl − skl∇k = −∂ lg

√
g

∂xμ

sμl .

This leads to [after using again (72)]:

∇kg
kl∇l + skl∇k∇l + ∂ lg

√
g

∂xμ

gμl∇l = μ2.

12 The Hermitian γ0γ
0 is applied as (γ0γ

0)∗ to the first factor, the skew γ0γ
λ, λ �= 0, as −(γ0γ

λ)∗. In
return, ∇0 gets a change of sign, ∇λ, λ �= 0, not. Compare the remarks to equation (60) made in the text
above as well as the comment to equation (56).
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For the second term one finds from (26) and because of the antisymmetry of the skl

that it is equal to − 1
2 s

klΦkl . The first and the third (in which one replaces μ by k)
combine to the generalized Laplace operator; one then finally gets:

1√
g
∇k

√
ggkl∇l − 1

2
sklΦkl = μ2. (73)

It is of interest to insert here for Φkl the expression (15) found much earlier. In this,
the invariant

1

8
Rkl,μνs

kl sμν

appears. Due to the symmetry of the covariant Riemann curvature tensor in the first
and second index pair this is also equal to

1

16
Rkl,μν(s

kl sμν + sμνskl).

If one now— something that I do not want to carry out in extenso— really calculates
the symmetrized products of the skl and thenmakes use of the known cyclic symmetry

Rkl,μν + Rlμ,kν + Rμk,lν = 0,

one finally gets

1

8
Rkl,μνs

kl sμν = −1

4
gkμglνRkl,μν = − R

4
,

where R is the invariant curvature. Consequently, inserting Φkl from (15) into (73)
gives the following:

1√
g
∇k

√
ggkl∇l − R

4
− 1

2
fkl s

kl = μ2. (74)

In the third term on the left-hand side one recognizes the familiar influence of the field
strength on the spin tensor, where fkl is the pure trace part already removed from Φkl ,
which can well be called field strength in the proper sense and which is, as mentioned
several times, still completely undetermined by the metric.

The second termseems tome tobeof considerable theoretical interest. It is, however,
too small by many, many powers of ten to be able to replace, for example, the term
on the right-hand side. For μ is the reciprocal Compton wavelength, about 1011cm−1.
At least it seems significant that one naturally meets in the generalized theory a term
at all similar to the enigmatic mass term (see also [9]).
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