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Abstract
We study the classical and quantum cosmology of a universe in which the matter
content is a perfect fluid and the background geometry is described by a Bianchi type
Imetric. Towrite theHamiltonian of the perfect fluidwe use the Schutz representation,
in terms of which, after a particular gauge fixing, we are led to an identification of
a clock parameter which may play the role of time for the corresponding dynamical
system. In viewof the classical cosmology, it is shown that the evolution of the universe
represents a late time expansion coming from a big-bang singularity. We also consider
the issue of quantum cosmology in the framework of the canonical Wheeler–DeWitt
(WDW) equation. It is shown that the Schutz formalism leads to the introduction of a
momentum that enters linearly into Hamiltonian. This means that the WDW equation
takes the form of a Schrödinger equation for the quantum-mechanical description
of the model under consideration. We find the eigenfunctions and with the use of
them construct the closed form expressions for the wave functions of the universe. By
means of the resultingwave functionwe evaluate the expectation values and investigate
the possibility of the avoidance of classical singularities due to quantum effects. We
also look at the problem through Bohmian approach of quantum mechanics and while
recovering the quantum solutions, we deal with the reason of the singularity avoidance
by introducing quantum potential.
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1 Introduction

One of the most important questions in cosmology is that of the initial conditions
from which the universe began to evolve. As is well known, standard theories of
cosmology based on classical general relativity do not provide an acceptable answer
to this question. The main reason is that almost all of these models suffer from the
existence of various types of singularities such as big-bang, big-crunch, big-rip and so
on. In the presence of any of these singularities, some physical observables take values
that are physically unacceptable, which in turn means that their underlying theory
is not valid in the vicinity of singularities and thus can not be applied. As to how
the physical phenomena should be described near these singularities, the dominant
belief implies the development of a concomitant and conducive quantum theory of
gravity. These efforts have begun with the works of DeWitt in canonical quantum
gravity [1] and so far continue with the more modern approaches such as string theory
and loop quantum gravity [2–4]. Based on quantum gravity it would be useful to
describe the state of the universe near the classical singularities within the framework
of quantum cosmology. Depending on the theory of quantum gravity the formalism of
the corresponding quantum cosmology is based on the canonical or loop quantization
of the minisuperspace variables and the evolution universe is described by a wave
function in this space [5–7].

In this paper we deal with the issue of the classical and quantum cosmology in
the framework of the Bianchi type I model. Bianchi models are the most well-known
anisotropic and homogeneous space-timeswhose classical and quantumsolutions have
been studied in a number of works, see for example [8–14]. On the other hand, an
important ingredient in any model theory related to cosmology is the choice of the
matter field used to couple with gravity and construct the energy-momentum tensor in
Einstein field equations. Inspired by theWeyl principle in cosmology, the most widely
used matter source has traditionally been the perfect fluid. So, in the present study, we
consider a perfect fluid as thematter content of the universe and describe its evolution in
the framework of Schutz formalism [15,16]. In Schutz formulation of the perfect fluid,
its four-velocity can be expressed in terms of some thermodynamical potentials. The
advantage of using this representation is that a canonical transformation can transform
a pair of the fluid’s dynamical variable to another conjugate pair (T , pT ) in such a way
that themomentum pT associated to the variable T appears linearly in theHamiltonian.
This means that Schutz representation of perfect fluid can offer a time parameter in
terms of dynamical variables of the fluid. Therefore, when canonical quantization we
are facing with a Schrödinger like equation in which the wave function, in addition to
the dependence on the configuration space variables, has time dependence [17–20].
In this way, it can be seen that by the Schutz formalism we may address the problem
of time in quantum cosmology.

In the following, in Sect. 2, after a quick look at some main properties of the
Bianchi type I metric, we write the total Hamiltonian based on the Einstein-Hilbert
action coupled to a perfect fluid in Schutz representation. Section 3 is devoted to the
classical Hamiltonian equations of motion and their solutions. Here, in terms of the
abovementioned time parameter, we shall obtain the dynamical behavior of the cosmic
scale factors that are the comoving volume function of the universe and its anisotropic
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factors. We show that the evolution of the universe represents a late time power law
expansion coming from a big-bang singularity. In Sect. 4, we dealwith the quantization
of the model. By the resulting wave function, we compute the expectation values of
the scale factors and show that the evolution of the universe according to the quantum
picture is free of classical singularities but in good agreement with classical dynamics
in late times of cosmic evolution. Section 5 deals with the Bohmian trajectories of
the problem at hand, by means of which we introduce the quantum potential. We will
see that the repulsive force associated to the quantum potential may be considered
responsible for the elimination of singularity. Finally, we summarize the results in
Sect. 6.

2 Themodel

In this section we make a brief overview of the most important features of the Bianchi
type I model and obtain its Lagrangian and Hamiltonian in terms of the ADM vari-
ables in 1 + 3 decomposition. Bianchi type I universe is the simplest anisotropic
generalization of the flat FRW space–time whose metric reads as

ds2 = −N 2(t)dt2 + a2(t)dx2 + b2(t)dy2 + c2(t)dz2. (1)

In this metric N (t) is the lapse function and there are three functions a(t), b(t) and
c(t), to be determined by the gravitational field equations, and are the scale factors of
the corresponding universe in the x , y and z directions respectively. When writing the
Lagrangian of this model, the scale factors in different directions are considered as
independent variables. The Bianchi I metric as a cosmological setting is the simplest
homogeneous and anisotropic model, which becomes the flat FRW metric provided
that its scale factors are equal.

In general, Bianchi I space-time is a subset of the class A Bianchi metrics with nine
models. They are the most general homogeneous dynamical solutions of the Einstein
field equations which admit a three-dimensional isometry group, i.e. their spatially
homogeneous sections are invariant under the action of a three-dimensional Lie group.
In order to transform the Lagrangian of the dynamical system which corresponds to
the Bianchi models to a more manageable form, let us introduce the following change
of variables

a(t) = eu(t)+v(t)+√
3w(t), b(t) = eu(t)+v(t)−√

3w(t), c(t) = eu(t)−2v(t). (2)

In the Misner notation [21], the metrics of all class A Bianchi models can be written
in terms of the above variables as

ds2 = −N 2(t)dt2 + e2u(t)e2βi j (t)dxidx j , (3)

where V (t) = e3u(t) = abc is the comoving volume of the universe andβi j determines
the anisotropic parameters v(t) and w(t) as follows
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βi j = diag(v + √
3w, v − √

3w,−2v). (4)

The action of such a structure may be written as (we work in units where c = � =
8πG = 1)

S = 1

2

∫
M
d4x

√−gR +
∫

∂M
d3x

√
hhi j K

i j +
∫
M
d4x

√−g p, (5)

where g is the determinant andR is the Ricci scalar of the space-time metric (1). Also,
Ki j is the extrinsic curvature (second fundamental form), which represents howmuch
the spatial space is curved in the way it sits in the space-time manifold, and hi j is the
inducedmetric over the three-dimensional spatial hypersurface, which is the boundary
∂M of the four-dimensional manifold M . The boundary term in (5) will be canceled
by the variation of the first term. This is the reason for including a boundary term in
the action of a gravitational theory. That such a boundary term is needed is due to the
fact that R, the gravitational Lagrangian density contains second derivatives of the
metric tensor, a nontypical feature of field theories. The last term of (5) denotes the
matter contribution to the total action where p is the pressure of perfect fluid which is
linked to its energy density by the equation of state (EoS)

p = ωρ, (6)

where −1 ≤ ω ≤ 1 is the EoS parameter. In terms of the ADM variables, the gravi-
tational part of the action (5) can be written as [22]

Sg = 1

2

∫
dtd3xL = 1

2

∫
dtd3xN

√
h(Ki j K

i j − K 2 + R), (7)

where h and R are the determinant and Ricci scalar of the spatial geometry hi j respec-
tively, and K represents the trace of Ki j . The extrinsic curvature is given by

Ki j = 1

2N

(
Ni | j + N j |i − ∂hi j

∂t

)
, (8)

where Ni | j represents the covariant derivative with respect to hi j . Using (3) and (4) we
obtain the nonvanishing components of the extrinsic curvature and its trace as follows

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

K11 = − 1
N (u̇ + v̇ + √

3ẇ)e2(u+v+√
3w),

K22 = − 1
N (u̇ + v̇ − √

3ẇ)e2(u+v−√
3w),

K33 = − 1
N (u̇ − 2v̇)e2(u−2v),

K = −3 u̇
N ,

(9)

where a dot represents differentiation with respect to t . It is easy to show for the
Bianchi-I metric the Ricci scalar of the three dimensional spatial geometry hi j van-
ishes, R = 0. The gravitational part of Lagrangian for the Bianchi-I model may now
be written by substituting the above results into action (7), giving
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Lg = 3e3u

N
(−u̇2 + v̇2 + ẇ2). (10)

The momenta conjugate to the dynamical variables are given by

pu = ∂L
∂ u̇

= − 6

N
u̇e3u, pv = ∂L

∂v̇
= 6

N
v̇e3u, pw = ∂L

∂ẇ
= 6

N
ẇe3u, (11)

leading to the following Hamiltonian

Hg = 1

12
Ne−3u(−p2u + p2v + p2w). (12)

Now, let us deal with the matter field with which the action of the model is augmented.
The matter will come into play in a common way and the total Hamiltonian can be
made by adding the matter Hamiltonian to the gravitational part (12). According to
Schutzs representation for the perfect fluid, its Hamiltonian can be viewed as (see
[17–20] for details)

Hm = N
PT
e3ωu

, (13)

where T is a dynamical variable related to the thermodynamical parameters of the
perfect fluid and PT is its conjugate momentum. Finally, we are in a position in which
can write the total Hamiltonian H = Hg + Hm as

H = N

[
1

12
e−3u(−p2u + p2v + p2w) + PT e

−3ωu
]

. (14)

The setup for constructing the phase space andwriting theLagrangian andHamiltonian
of themodel is nowcomplete. In the following sections,we shall dealwith classical and
quantum cosmologies which can be extracted from a theory with the above mentioned
Hamiltonian.

3 Classically cosmological dynamics

The classical dynamics is governed by the Hamiltonian equations, that is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇ = {u, H} = − Npue−3u

6 ,

ṗu = {pu, H} = N
[
3ωPT e−3ωu + 1

4e
−3u(−p2u + p2v + p2w)

]
,

v̇ = {v, H} = Npve−3u

6 ,

ṗv = {pv, H} = 0,

ẇ = {w, H} = Npwe−3u

6 ,

ṗw = {pw, H} = 0,

Ṫ = {T , H} = Ne−3ωu,

ṖT = {PT , H} = 0.

(15)
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We also have the constraint equation H = 0 which comes from the variation with
respect to N . Up to this point the cosmological model, in view of the concerning issue
of time, has been of course under-determined. Before trying to solve these equations
we must decide on a choice of time in the theory. The under-determinacy problem at
the classical level may be resolved by using the gauge freedom via fixing the gauge.
A glance at the above equations shows that choosing the gauge N = e3ωu , we have

N = e3ωu ⇒ Ṫ = 1 ⇒ T = t, (16)

which means that variable T may play the role of time in the model. Therefore, the
classical equations of motion can be rewritten in the gauge N = e3ωu as follows

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u̇ = − 1
6e

−3(1−ω)u pu,

ṗu = 3ωp0 + 1
4e

−3(1−ω)u(−p2u + p20v + p20w),

v̇ = 1
6 p0ve

−3(1−ω)u,

ẇ = 1
6 p0we

−3(1−ω)u,

(17)

in which we have set pv = p0v = const, pw = p0w = const and PT = p0 = const.
In addition the Hamiltonian constraint H = 0, yields

1

12
e−3u(−p2u + p2v + p2w) + PT e

−3ωu = 0, (18)

from which we get − p2u + p20v + p20w = −12p0e
3(1−ω)u . (19)

By using of this equation, the second equation of the system (17) takes the simple
form

ṗu = 3(ω − 1)p0,⇒ pu(t) = 3p0(ω − 1)t + p0u, (20)

where p0u is an integration constant which can be set to zero without loss of generality,
so we set p0u = 0.

Before going to solve the rest equations of the system (17), note that we may
consider the relation (16) as a gauge fixing condition G = T − t ≈ 0, the stability
of which results the choice N = e3ωu for the lapse function. Indeed, our dynamical
system is a totally constrained classical system in which the canonical coordinates
(q,p), with q = (u, v, w, T ) and p = (pu, pv, pw, PT ), parameterize its kinematical
phase space �. In such a system the classical dynamics is given by the constraint
C(q,p) ≈ 0. This means that the phase space variables evolve on a subset of �, say
�̄, on which this constraint holds. For our problem at hand this constraint is nothing
but the Hamiltonian constraint (14). Now, to find the gauge invariant phase space
functions, i.e. Dirac observables, we may solve the constraint C(q,p) ≈ 0. In some
special cases by this procedure the constraint takes the form [23,24]

C(qi , pi ) = C̄(q1, . . . , qn−1; p1, . . . , pn−1) + α pn ≈ 0, (21)

where 2n is the dimension of the phase space. For such a constraint the momentum
pn is a Dirac observable in the sense that {pn, C} = 0, so it is a constant of motion.
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On the other hand, we note that the above constraint does not depend on the variable
qn , which in turn, means that it is a linear function of the parameter t , and therefore
one may consider it as a suitable clock phase space function in terms of which the
evolution of the rest phase space variables can be viewed.

Now, let us return to our problem under consideration and see how the above
procedure works. First, note that by the gauge fixing G = T − t ≈ 0, the Hamiltonian
constraint takes the form

C(u, v, w, T ; pu, pv, pw, PT ) = C̄(u; pu, pv, pw) + PT , (22)

where

C̄(u; pu, pv, pw) = 1

12
e−3(1−ω)u(−p2u + p2v + p2w). (23)

It is seen that the constraint is of the formof the abovediscussedone (21). So, the system
de-parameterizes in the sense that the evolution (in terms of the clock parameter T ) of
all, but the perfect fluid degrees of freedom, can be generated by the time independent
gauge fixed Hamiltonian C̄ without referring to the Hamiltonian constraint H = 0.
In this way, it is not difficult to see the solution (20) is again recovered and thus to
continue, we have

u̇ = 1

2
(1 − ω)p0e

−3(1−ω)ut, (24)

where upon integration we obtain

u(t) = ln

[
3

4
p0(1 − ω)2t2 + C

] 1
3(1−ω)

, (25)

with C being an integration constant whose value can be evaluated in terms of the
other constants by substitution of the above expression into the constraint Eq. (19)

with result: C = − 1
12

p20v+p20w
p0

. Therefore, the comoving volume of the universe will
be

V (t) = e3u(t) = V0(t
2 − t2∗ )

1
(1−ω) , (26)

where V0 = [ 3
4 p0(1 − ω)2

] 1
1−ω and t2∗ = p20v+p20w

9p20(1−ω)2
. For this solution, the condition

V (t) ≥ 0 separates two sets of solutions, V−(t) and V+(t), each of which is valid
for t ≤ −t∗ and t ≥ t∗ respectively. For the former, we have a contracting universe
which decreases its size according to a power law relation and ends its evolution in a
singularity at t = −t∗, while for the latter, the evolution of the universe begins with a
big-bang singularity at t = t∗ and then follows the power law expansion at late time
of cosmic evolution. The corresponding equations for the anisotropic functions in this
case will be

v̇ = 1

6
p0vV

−(1−ω)
0 (t2 − t2∗ )−1, (27)

and

ẇ = 1

6
p0wV

−(1−ω)
0 (t2 − t2∗ )−1, (28)
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with solutions

v(t) = 1

6t∗
p0vV

−(1−ω)
0 tanh−1

(
t

t∗

)
, w(t) = 1

6t∗
p0wV

−(1−ω)
0 tanh−1

(
t

t∗

)
.

(29)
It is seen that, unlike the volume factor which was not defined in the time interval
(−t∗, t∗), the functions v(t) and w(t) are only well-defined in this interval. Therefore,
in general we do not get acceptable physical solutions. However, for some special
values of EoS parameter, say for ω = 2n−1

2n , n = 1, 2, . . ., the volume takes the form
V (t) = V0(t2 − t2∗ )2n which is always positive and well-defined also in (−t∗, t∗). For
such special occasions, we are facing with a universe that begins its evolution from a
singular point at t = −t∗ with zero size and high degrees of anisotropy, expands to
a isotropic state with maximum volume and then will collapse and eventually end its
evolution in a singularity similar to its initial singularity.

At the end of this section let us see what happened if C = 0, for which we get
p0v = p0w = 0. In this case the two last equations of the system (17) give v̇ = ẇ = 0.
Therefore, we have

V (t) = V0t
2

(1−ω) , v(t) = v0 = const, w(t) = w0 = const. (30)

In this situation, a look at the scale factors in (2) shows that they take the form

a(t) = a0e
u(t), b(t) = b0e

u(t), c(t) = c0e
u(t), (31)

where a0 = ev0+
√
3w0 , b0 = ev0−

√
3w0 and c0 = e−2v0 . Under these conditions, by

re-definition of the coordinates as X = a0x , Y = b0y and Z = c0z, the metric will be

ds2 = −N 2(t)dt2 + e2u(t)(dX2 + dY 2 + dZ2), (32)

which is nothing but the flat FRW metric. Since expression (30) for V (t) is singular
at t = 0, we may consider the intervals −∞ < t ≤ 0 or 0 ≤ t < +∞ as the domain
of variation for the time parameter t . Thus, with 0 ≤ t < +∞, the above solutions
give a flat FRW universe begins to evolve from a big-bang singularity and continually
expands according to the power law expression giving in (30).

In the next section we will deal with the quantization of the model described above
to see how the presented classical picture can be modified.

4 Quantization of themodel

In the previous section we saw that classical model consisted of two categories of
solutions (correspond to the cases C 	= 0 and C = 0), which in general, suffered
from the existence of big-bang singularities. In this section we focus our attention on
the quantization of the model described above. Quantum cosmology of the Bianchi
models arewidely investigated in literature, see for instance [25–33] and the references
therein. Our starting point is the WDW equation Ĥ	(u, v, w, T ) = 0, in which
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Ĥ is the operator version of the Hamiltonian (14) and 	(u, v, w, T ) is the wave
function of the universe. The operator Ĥ can be constructed by replacing q̂	 =
q	 and p̂q	 = −i ∂

∂q	, for each dynamical variable. Nevertheless, a point to be
considered is the issue of the factor-ordering problem when one is going to arrange
a quantum mechanical operator equation. In dealing with such Hamiltonians at the
quantum level one should be careful when trying to replace the dynamical variables
with their quantum operator counterparts, that is, in replacing a variable q and its
momentum pq with their corresponding operators, the ordering considerations should
be taken into account. In our present case, this is only important in the first term of
the Hamiltonian, since this term includes variables u and pu that do not commute.
Taking these considerations into account, the WDW equation for the Hamiltonian
(14) is written as

[
2

∂2

∂u2
+ 3q

∂

∂u
− 2

∂2

∂v2
− 2

∂2

∂w2 − 24ie3(1−ω)u ∂

∂T

]
	(u, v, w, T ) = 0, (33)

where q is the factor ordering parameterwhich represents the ambiguity in the ordering
of factors u and pu in the first term of (14). It is clear that there are infinite number
of possibilities to choose this parameter. For example q = 0 corresponds to no factor
ordering,withq = 1 the kinetic termof theHamiltonian takes the formof theLaplacian
− 1

2∇2 of the minisuperspace and q = −2 corresponds to the ordering e−3u p2u =
pue−3u pu . Although in general, the behavior of the wavefunction depends on the
chosen factor ordering [34], it can be shown that the factor-ordering parameter will not
affect semiclassical calculations in quantum cosmology [35], and so for convenience
one usually chooses a special value for it in the special models. With an eye to the
constraint Eq. (22), we can see that Eq. (33) is nothing other than C	 = (C̄+ PT )	 =
0. In our classical analysis, we saw that the momentum of the perfect fluid PT , is
a constant of motion and hence we have taken its value to be PT = p0 = const.
On the other hand our discussion about the sign of the volume function in Eq. (26)
shows that the sign of p0 should, in general, be positive. Therefore, classically, the
motion of the system is restricted to those regions of the phase space for which we
have C̄ = 1

12e
−3(1−ω)u(−p2u + p2v + p2w) < 0. Now, with separation ansatz

	(u, v, w, T ) = ei ETψ(u, v, w), (34)

for the quantum version of the constraint, we obtain

[
2

∂2

∂u2
+ 3q

∂

∂u
− 2

∂2

∂v2
− 2

∂2

∂w2 + 24Ee3(1−ω)u
]

ψ(u, v, w) = 0. (35)

Comparing of this equation with the classical constraint C = C̄ + PT ≈ 0, shows
that the separation constant E plays the role of the classically constant PT and thus
when constructing wave packets a superposition over non-negative values of E should
be taken (see Eq. 41 below). Note that this choice for the sign of E has in particular
the consequence, that the Hamiltonian involved in the WDW equation is given by the
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quantization of the classical expression |C̄|, as can be seen directly from Eq. (33) as
well as from the fact that C̄ is negative in the classical theory. Separation of variables
in the formψ(u, v, w) = U (u)V (v)W (w) yields the following form for the functions
V (v) and W (w):

V (v) = e±k1v, W (w) = e±k2w, (36)

where k1 and k2 are separation constants where without loss of generality, we can
choose positive values for them. At this point, let us take a look at the boundary
condition on the V (v) and W (w) sector of the wave function. If we assume that for
infinite values for the variables v and w, the wave function will be zero, we may take
the solutions (36) with upper (lower) sign in the exponential function for v,w < 0
(v,w > 0). This means that the function V (v) and W (w) can be written as

V (v) = e−k1|v|, W (w) = e−k2|w|. (37)

Also, for U (u) we get

[
2
d2

du2
+ 3q

d

du
+ (24Ee3(1−ω)u − ν2)

]
U (u) = 0, (38)

where ν2 = 2(k21 +k22). The solution of the above equation may be expressed in terms
of the Bessel functions J and Y . However, for having well-defined functions in all
ranges of the arguments of the Bessel functions, we only keep the function J , in terms
of which the solution is

U (u) = e− 3
4 qu J√

9q2+8ν2
6(1−ω)

(
4
√
Ee

3
2 (1−ω)u

√
3(1 − ω)

)
. (39)

Therefore, the eigenfunctions of the WDW equation may be written as

	E,ν(u, v, w, T ) = e− 3
4 quei ET e−(|v|+|w|)ν J√

9q2+8ν2
6(1−ω)

(
4
√
Ee

3
2 (1−ω)u

√
3(1 − ω)

)
, (40)

in which since the behavior of v and w is similar we have taken k1 = k2 = ν/2 and
also the variables v,w are re-scaled as |v|/2 → |v|, |w|/2 → |w|. The wave function
of the universe is indeed the general solution of theWDWequation which can bemade
from the superposition of its eigenfunctions. Thus, we may write the wave function as

	(u, v, w, T ) =
∫ ∞

E=0

∫ ∞

ν=0
A(E)C(ν)	E,ν(u, v, w, T )dEdν, (41)

where A(E) and C(ν) are some weight functions with the help of which suitable
wavepacket will be constructed. Indeed, the wave function in quantum cosmology
should be constructed in such a way as to achieve an acceptable match to the classi-
cal model. This means that by the above relation, one usually constructs a coherent
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wavepacket with good asymptotic behavior in the minisuperspace, peaking in the
vicinity of the classical trajectory. So, with the help of equality [36]

∫ ∞

0
e−ar2rη+1 Jη(br)dr = bη

(2a)η+1 e
− b2

4a , (42)

the integral over E may be evaluated to yield analytical expression if we choose the
weight factor A(E) to be a quasi-Gaussian function as

A(r) = 8

3(1 − ω)2
rηe−γ r2 , (43)

where γ is a positive constant and r = 4
√
E√

3(1−ω)
. With this, integration over E will be

done and we arrive at the following expression for the wave function

	(u, v, w, T ) = 1

2a
e− 3

4 que− b2
4a

∫ ∞

ν=0
C(ν)e−(|v|+|w|)ν

(
b

2a

)η

dν, (44)

where b = e
3
2 (1−ω)u , a = γ − 3

16 (1−ω)2iT and η =
√

9q2+8ν2

6(1−ω)
. A point to be noted is

that our choices for A(E) as quasi-Gaussian function also has physical grounds since
these types of functions are widely used in quantum mechanics to build localized
states. The reason is that these functions have a peak around a particular point of their
argument and rapidly decrease as they move away from that point. This makes the
wavepacket generated by the above relation (after integration over ν), behaves the
same way, i.e. is localized around some special values of its arguments.

Now, let us return to the superposition over ν which as seen from (44) finding a
function C(ν) that leads to an analytical expression for the wave function is not an
easy task. However, notice that the integrand in (44) only has a significant amount
for the small values of ν and becomes smaller and smaller as ν increases. Under this
condition, we may take the wave function as being represented by relation (44) with
the integral to be truncated at a suitable value of ν displaying this property. So, if
we assume that the superposition over ν is taken over some values of ν in the range
ν << q, we have η � q

2(1−ω)
and the integral (44) takes the form

	(u, v, w, T ) = 1

(2a)η+1 e
− b2

4a

∫ σ

ν=0
C(ν)e−(|v|+|w|)νdν, (45)

where σ is a positive constant. Now, we may use the equality [36]

∫ σ

0
να−1e−pνdν = p−αγ (α, σ p), Re(α) > 0, (46)

where γ (a, x) is the incomplete Gamma function

γ (α, z) =
∫ z

0
e−t tα−1dt, Re(α) > 0,
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to take the weight factor C(ν) as C(ν) = να−1. At the first look, it seems that this
form for the function C(ν) (which may look rather ad hoc) is chosen in such a way
that yields an analytical expression for the wave function. However, note that for small
values of ν, we have μ2 = 1 − να−1 > 0, so we may write e−μ2 = e−(1−να−1) �
1 − μ2 = να−1. This shows that the in the domain of ν, for which we are going to
perform the superposition (45), the function C(ν) = να−1 may be approximated with
a Gaussian function whose physical grounds are described above. This lead us to

	(u, v, w, T ) = 1

(2a)η+1 e
− b2

4a (|v| + |w|)−α γ (α, σ (|v| + |w|)) . (47)

Finally, in terms of the volume V = e3u the wave function reads as (we rescale
3
16T → t and V 1−ω

4 → V 1−ω)

	(V , v, w, t) = N[
γ − (1 − ω)2i t

]η+1

× exp

[
− V 1−ω

γ − (1 − ω)2i t

]
(|v| + |w|)−α γ (α, σ (|v| + |w|)) ,

(48)

where N is a normalization factor. Now, with this wave function we are interested
to see how the evolution of the dynamical variables is predicted in the framework
of the quantum model. In fact, what we expect from a consistent model of quantum
cosmology is that its late time predictions are in agreement with the classical model,
but should be separated from classical solutions in the early times of cosmic evolution
where classical singularities occur. To see how this procedure works in our model, let
us evaluate the time dependence of the expectation value of a dynamical variable q as

〈q〉(t) = 〈	|q|	〉
〈	|	〉 . (49)

To calculate the expectation values, note that the WDW Eq. (33) is like a Schrödinger
equation i∂	/∂T = H	, inwhich theHamiltonian operator isHermitianwith respect
to the inner product

〈�|	〉 =
∫

(V ,v,w)

V 1−ω�∗	dVdvdw. (50)

Now, we may write the the expectation value for the volume as

〈V 〉(t) =
∫ ∞
V=0

∫ ∞
v=−∞

∫ ∞
w=−∞ V 1−ω	∗V	dVdvdw∫ ∞

V=0

∫ ∞
v=−∞

∫ ∞
w=−∞ V 1−ω	∗	dVdvdw

, (51)

123



Bianchi type I, Schutz perfect fluid and evolutionary… Page 13 of 18 122

which yields

〈V 〉(t) = V0
[
γ 2 + (1 − ω)4t2

] 1
1−ω

. (52)

Also, the expectation values of the anisotropic functions read as

〈v〉(t) =
∫ ∞
V=0

∫ ∞
v=−∞

∫ ∞
w=−∞ V 1−ω	∗v	dVdvdw∫ ∞

V=0

∫ ∞
v=−∞

∫ ∞
w=−∞ V 1−ω	∗	dVdvdw

,

similar expression for 〈w〉(t), (53)

with the result

〈v〉(t) =
∫ ∞
v,w=−∞ v

[
(|v| + |w|)−α γ (α, σ (|v| + |w|))]2 dvdw∫ ∞

v,w=−∞
[
(|v| + |w|)−α γ (α, σ (|v| + |w|))]2 dvdw

= 0,

similarly: 〈w〉(t) = 0. (54)

It is important whether the quantum solutions are capable of solving the singularity of
the classical models.We see that the quantumwave function (48) gives the evolution of
the expectation value of the volume factor as a nonsingular (never vanishing) bouncing
function (52), which its late time behavior coincides to the late time behavior of the

classical solution (26) and (30), that is V (t) ∼ t
2

1−ω . Another feature of the quantum
picture is that it also predicts a zero expectation value for the anisotropy of the cor-
responding universe. This means that unlike classical models in which the expansion
of the universe was anisotropic (and in some cases even with infinite amounts), the
quantization of the system predicts an isotropic expansion. In summary, as a result of
the quantization of this cosmological model, the two classical solutions presented in
the previous section are united in a single non-singular picture.

5 Bohmian trajectories

In the previous section, we saw that quantization of the model based on the canonical
quantization procedure led to the replacement of the classical singular solutions with
a non-singular bouncing picture. Now, we might ask what causes the bounce? It is
clear that the answer to this question should be sought in the emergence of quantum
effects that show themselves when the size of the universe is very small. To deal with
this question, we are going to use the ontological (Bohmian) interpretation of quantum
mechanics [37–39]. In this formulation of the quantummechanics one writes the wave
function in the polar form 	(q, t) = �(q, t)ei S(q,t), where � and S are some real
functions of the configuration space variables and time. For the wavefunction (48)
these function take the form

�(V , v, w, t) =
[
γ 2 + (1 − ω)4t2

]− η+1
2

exp

(
− γ

γ 2 + (1 − ω)4t2
V 1−ω

)
f (v,w),

(55)
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S(V , v, w, t) = (η + 1) arctan
(1 − ω)2t

γ
− (1 − ω)2t

γ 2 + (1 − ω)4t2
V 1−ω, (56)

where f (v,w) = (|v| + |w|)−α γ (α, σ (|v| + |w|)). In theBohm-deBroglie interpre-
tation of quantum mechanics the central equations come from substituting the above
mentioned polar form of the wave function into the Schrödinger (or WDW) equation.
By this procedure one gets a continuity equation and the modified Hamilton–Jacobi
equation as, (see [40,41] for details)

H

(
qi , pi = ∂S

∂qi

)
+ Q = 0, (57)

where Q is the quantum potential which in our case a simple algebra gives it as

Q = 1

V 1−ω�

[
18V 2 ∂2�

∂V 2 + 9(q + 2)V
∂�

∂V
− 2

(
∂2�

∂v2
+ ∂2�

∂w2

)]
. (58)

The dynamical behavior of the variables will be determined from the key equation
pi = ∂S

∂qi
. To see how this mechanism works, first note that with N = e3ωu = V ω

the Lagrangian (10) takes the form Lg = − 1
3

V̇ 2

Vω+1 + · · · , from which we obtain

pV = − 2
3

V̇
Vω+1 . Therefore, from (56), the equation pV = ∂S

∂V gives us

2

3

V̇

V ω+1 = (1 − ω)3t

γ 2 + (1 − ω)4t2
V−ω, (59)

from which, after integration we obtain the Bohmian representation of the volume
factor as (considering that we have already re-scaled t and V when writing the wave-
function 48)

V (t) ∼
[
γ 2 + (1 − ω)4t2

] 1
1−ω

. (60)

Also, since ∂S
∂v

= ∂S
∂w

= 0, from (11) we arrive at

v̇ = ẇ = 0 ⇒ v,w = const. (61)

These expressions have exactly the same dynamical behavior that we had previously
obtained from the quantum cosmological model. As is clear, here too, the bouncing
(from a non-zero value) behavior near the classical singularity is the main property
of the volume function and the anisotropy functions such as the quantum model have
a constant value. A point to be emphasized here is that, in addition to preventing the
classical singularities, the appearance of a bounce in the quantum and Bohemian mod-
els, from this aspect is also interesting that it predicts the existence of a minimum size
when the universe is evolving. This is important because we know that the existence of
a minimal length in nature is an idea supported by all candidates of quantum gravity.
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To understand the origin of the singularity avoidance, let us evaluate the quantum
potential in terms of the volume and anisotropic factors. With the help of the Eq. (60)
the function � takes the form

�(V , v, w) = V− 1
4 (q−2ω+2) (|v| + |w|)−α γ (α, σ (|v| + |w|)) , (62)

by means of which and Eq. (58) we arrive at the following expression for the quantum
potential

Q(V , v, w)

= −9

8
(q − 2ω + 2)(q + 2ω − 2)V ω−1

+ V ω−1 e
−σ(v+w)

[
4(σ (v + w))α(α + σ(v + w) + 1) − 4α(α + 1)eσ(v+w)γ (α, σ (v + w))

]
(v + w)2γ (α, σ (v + w))

.

(63)

As this relation shows, the quantum potential goes to zero when the volume function
is large (note that ω − 1 < 0) which is an expected behavior since in this regime the
universe evolves classically and so the quantum effects can be ignored. On the other
hand, by reducing the volume function, the quantum potential increases and here is
where the quantum effects are important in cosmology. Indeed, in this regime a huge
repulsive force may be produced which can be extracted from the quantum potential

as
−→F = −∇Q, with components

FV = −∂Q
∂V

= − (9/8)(1 − ω)(q − 2ω + 2)(q + 2ω − 2) − (1 − ω)h(v,w)

V 2−ω
,

(64)

F(v,w) = − ∂Q
∂(v,w)

= −e−2σ(v+w)

V 1−ω
g(v,w), (65)

where h(v,w) is the fraction appearing in the second term of (63) and g(v,w) =
∂vh/e−2σ(v+w). From the above expressions it is clear that in the vicinity of classical
singularity (for small values of V ) this force becomes large and its repulsive nature
prevents the volume to evolve to zero size but instead a bounce will occur. In summary,
the above discussion shows that quantum potential and consequently quantum effects
are important when the universe is in its early stages and in the late time of cosmic
evolution, i.e. in the limit of the large scale factors these effects can be neglected, see
Fig. 1. Therefore, asymptotically the classical behavior is recovered.

6 Summary

In this paper we have studied the Bianchi type I cosmological model with a perfect
fluid as its matter content. To write the Hamiltonian of the corresponding dynamical
system we have used the Schutz’ formalism for perfect fluid, the advantages of which
is that it allows us to introduce a time parameter in terms of the one of the fluid’s
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Fig. 1 The contour plots of FV (left) and F(v,w) (right). The figures are plotted for the numerical values:
ω = −1, q = 1, σ = 1 and α = 2. As the figures show, these quantities get their significant amounts (white
area) near the classical singularity. For FV (left), to better see this issue, we have expanded the V -axis to
negative values, although we know that V is positive

thermodynamical variable. Indeed, since the momentum conjugate to this variable
appears linearly in the fluid’s Hamiltonian, this formalism helps one to have an eye to
the problem of time when quantizing the system.

Based on this time gauge, we constructed the Hamiltonian equations of motion,
solving of them led us to two classes of classical solution. The first one gave us
unacceptable physical solutions except for special values of EoS parameter in the
form ω = 2n−1

2n . The evolution of volume factor in this case is such that, from a big-
bang singularity it begins an power law expansion until reaches a maximum value and
then its contraction phase starts and ends in a singularity. The evolution of the universe
in this case is anisotropic with an infinite of anisotropy in the singular points. Finally,
by another set of classical solutions, we obtained an expanding volume factor with
singularity at t = 0 in which the volume of the universe is zero. While the universe
expands its anisotropy remains constant which by a re-scaling of the coordinates we
showed that this case can be viewed as a flat FRW universe.

We then have dealt with quantization of the cosmological setting. Here, because of
our specific choice of time gauge, the WDW equation took the form of a Schrödinger
equation allowed us to have a time dependent wave function. We showed that the
WDW equation can be separated and its eigenfunctions can be obtained in terms
of known special functions. By finding suitable weight function we constructed the
superposition of the eigenfunctions which led us to an appropriate wave function. By
means of the obtained wave function we got the expectation values of the volume
and anisotropic functions. Based on the results, we verified that while the quantum
solutions recover the late time behavior of classicalmodels, they predict a non-singular
bouncing universe in the early times of cosmic evolutions. Therefore, the avoidance of
classical singularities and the recovery of the late time classical dynamics are important
features of our quantum model.
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In the last part of the article, we returned to the quantum picture by using of the
Bohmian approach to quantummechanics. It is shown that the resulting expressions for
the dynamical variables of the system are the same as those previously obtained from
the canonical quantization of the model. However, the use of the Bohmian trajectories
has helped us to understand the origin of the avoidance of singularity by a repulsive
force due to the existence of the quantum potential. We saw that near the classical
singularities the quantum potential gets a huge amount and thus the repulsive nature
of its corresponding force prevents the universe to reach the singularity. This is while
this force tends to zero at late timeswhichmeans that the quantumeffects are negligible
there and the universe behaves classically.
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