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Abstract
We investigate the field equations in the Einstein-aether theory for static spherically
symmetric spacetimes and a perfect fluid source and subsequently with the addition
of a scalar field (with an exponential self-interacting potential). We introduce more
appropriate dynamical variables that facilitate the study of the equilibrium points of
the resulting dynamical system and, in addition, we discuss the dynamics at infinity.
We study the qualitative properties of the models with a particular interest in their
asymptotic behaviour and whether they admit singularities. We also present a number
of new solutions.

Keywords Einstein-aether theory · Static spherically symmetric spacetimes ·
Asymptotic behaviour

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Einstein-aether gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Static spherically symmetric spacetime with a perfect fluid . . . . . . . . . . . . . . . . . . . . . 8
4 Stationary comoving aether with perfect fluid and scalar field in static metric . . . . . . . . . . . 24
5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
A Regularity conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
B Equilibrium points in the finite region of the phase space for a perfect fluid with linear equation of

state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
C Equilibrium points in the finite region of the phase space for the exponential potential . . . . . . 47
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

B Genly Leon
genly.leon@ucn.cl

Alan Coley
aac@mathstat.dal.ca

1 Department of Mathematics and Statistics, Dalhousie University, Halifax, NS B3H 3J5, Canada

2 Departamento de Matemáticas, Universidad Católica del Norte, Avda. Angamos 0610, Casilla, 1280
Antofagasta, Chile

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10714-019-2598-y&domain=pdf
http://orcid.org/0000-0002-1152-6548


115 Page 2 of 57 A. Coley, G. Leon

1 Introduction

Einstein-aether theory [1–9] is an effective field theory that consists of General rela-
tivity (GR) coupled to a dynamical time-like unit vector field, the aether. Since both
the dynamical aether vector field and the geometric metric tensor characterize the
spacetime structure [7], the Lorentz invariance is spontaneously broken by the choice
of a preferred frame at each spacetime point (while local rotational symmetry is main-
tained). Such a Lorentz violation has been proposed to model quantum gravity effects
at the microscopic level. In addition, every hypersurface-orthogonal Einstein-aether
solution is a solution of the IR limit of Horava–Lifshitz gravity [10–12].

In a recent review some developments of Einstein-aether theory in general and
Horava–Lifshitz theory in particular were discussed [13]. This included a discus-
sion of universal horizons and black holes and their thermodynamics, non-relativistic
gauge/gravity duality, and the quantization of the theory. The well-posednessness of
theCauchy formulation of Einstein-aether theorywas recently studied in [14] to ensure
the stability of the numerical evolution of the initial value problem, and it was shown
that, under suitable conditions on the parameters couplings, the governing equations
can be cast into strongly hyperbolic form and even into symmetric hyperbolic form
using a first-order formulation in the frame variables. Gravitational plane-waves in
Einstein-aether theory were also recently studied, and it was found that [15] the vac-
uum Einstein-aether theory system of linearly polarized gravitational waves is, in
general, overdetermined, and that there are further constraints on the coupling param-
eters ci in order to allow arbitrary gravitational plane waves. In GR ci = 0.

Cosmological scenarios in these theories were tested against new observational
constraints including updated Cosmic Microwave Background data from Planck and
the expansion rates of elliptical and lenticular galaxies, Joint Light-Curve Analysis
data for Type Ia supernovae and Baryon Acoustic Oscillations. Using priors on the
Hubble parameter andwith an alternative parametrization of the equations inwhich the
curvature parameter is considered as a free parameter in the analysis, it was found [16]
that the detailed-balance scenario exhibits positive spatial curvature to more than 3σ ,
whereas for further theory generalizations it was found that there is evidence for posi-
tive spatial curvature at 1σ . In general, cosmologically viable extended Einstein-aether
theories are known that are compatible with Planck Cosmic Microwave Background
temperature anisotropy, polarization, and lensing data [17].

A number of exact solutions and a qualitative analysis of Einstein-aether cosmo-
logical models have been presented [18–25]. An emphasis has been placed on whether
Lorentz violation affects the inflationary scenario (in particular, in spatially anisotropic
cosmological models) in Einstein-aether theory [4–6]. Einstein-aether cosmology has
been studied for the FRW metric [26] (including contracting, expanding and bounc-
ing solutions), for the Kantowski–Sachs metric [22,27] and for spatially homogenous
metrics [28]. In all cases the matter source was assumed to be coupled to the expansion
of the aether field through an exponential potential. The models have been generalized
to include an additional scalar field source.

In a recent paper [21] we studied spherically symmetric Einstein aether models
with a perfect fluid matter source. We begin by discussing the field equations. In order
to perform a dynamical systems analysis it is useful to introduce suitable normal-
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ized variables [29–34], which also facilities their numerical study. We then derive the
equilibrium points of the algebraic-differential system in terms of proper normalized
variables [21] and analyze their stability. The Einstein-aether static model with a per-
fect fluid was first introduced in Section 6.1 of [21] utilizing the dynamical variables
inspired by [35]. We attempt to find asymptotic expansions for all of the solutions
corresponding to the equilibrium points. In particular, explicit known exact spheri-
cally symmetric solutions are recovered [35–39] and a number of new solutions with
naked singularities or horizons are found and the line elements are presented. We also
investigate the dynamics at infinity and we present some numerical results that support
our analytic results.

In addition to defining appropriate normalized variables, we also wish to utilize
well defined coordinates and to exploit any symmetries of the spacetimes. Since we
use qualitative techniques of dynamical systems theory that do not involve actually
solving the field equations, some of the problems of coordinate choices and coordinate
singularities are avoided. In particular, the local semi-tetrad splitting [40] allows the
field equations to be recast in the form of an autonomous system of covariantly defined
quantities [41,42].

1.1 Themodels and spherical symmetry

Spherically symmetric static and stationary solutions are physically important. The
evolution equations follow from the Einstein aether action [1,3]. There are extra terms
in the Einstein-aether field equations due to the effects of the aether field on the spher-
ically symmetric geometry, and from an additional stress tensor, T ae

ab , which depends
on a number of dimensionless parameters ci . In the case of spherically symmetry the
aether is hypersurface orthogonal,1 and so it has vanishing twist so that c4 can be
set to zero without loss of generality [7], leaving a 3-dimensional parameter space.
A renormalization of the parameters in the model can be then used to set 8πG = 1,
where G defines the effective Newtonian gravitational constant, so that the model
can consequently be characterized by only two non-trivial constant parameters. The
remaining constraints on the ci have been summarized in [7,43].

Solutions which involve a static metric coupled to a stationary aether are called
“stationary spherical symmetric” models and, in principle, must be treated separately.
If the spherically symmetric aether is parallel to the Killing vector, the solutions are
referred to as “static aether” solutions (and an explicit solution is known [44]).

Therefore, in Einstein-aether theory, and in contrast to GR, there is an additional
spherically symmetric mode corresponding to the radial tilting of the aether. That is,
the preferred aether frame can be tilted relative to the CMB rest frame in spherically
symmetric models, which adds additional terms to T ae

ab , characterized by a so-called
hyperbolic tilt angle, α, which measures the boost of the aether relative to this rest
frame. The tilt is anticipated to decay in spatially homogeneous models [45,46]. For
example, it was shown that to linear order in the anisotropy a Bianchi type I anisotropic

1 Aether fields are hypersurface orthogonal in the spherically symmetric case and, hence, all solutions of
Einstein aether theory will also be solutions of the IR limit of Horava gravity. The converse is not true
generally, but it is so for spherically symmetric solutions with a regular center [7].
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system (with a positive cosmological constant) relaxes exponentially to the isotropic,
de Sitter solution, and that the tilt decays to the future [4]. The dynamics of a tilted
aether in a Bianchi I cosmological model without the assumption of a small tilt was
studied in [6], and it was found that when the initial hyperbolic tilt angle α (and its
time derivative) is sufficiently small, then α → 0 at late times (consistent with the
linearized stability analysis in [4]).

A number of time-independent spherically symmetric solutions and, in particular,
black hole solutions, were studied in [44,47], surveyed in [7], and recently revisited in
[43]. In general, the dynamics of the perturbations in non-rotating neutron stars and
black hole solutions do not differ much from those in GR. Although a fully nonlinear
positivity of the energy has been established for spherically symmetric solutions at
an instant of time symmetry [9], a comprehensive investigation of the fully nonlinear
solutions has not yet been done.

In particular, in Einstein-aether theory there is a 3-parameter family of spherically
symmetric static vacuum solutions, since the aether vector and its derivative add 2
extra degrees of freedom at each spacetime point [47]. In the case that we assume
asymptotic flatness, for a fixedmass there is then a single parameter family of solutions
[7], unlike the the unique Schwarzschild solution in GR. In addition, in GR asymptotic
flatness is a result of the vacuum field equations so that the 1-parameter family of local
(Schwarzschild) solutions is immediately asymptotically flat. Since the radial aether
tilt constitutes an additional local degree of freedom, spherical solutions in aether
theory are not necessarily time-independent (even in the stationary case). Spherically
symmetric solutions are not generally static, but even in the case of staticity they need
not be asymptotically flat.

The model is restricted to a single parameter (the total mass) when the aether
is aligned with the time-like Killing field [47]. Therefore, in this case, for a given
mass the exterior solution for a static star is the unique “static aether” vacuum solution
(depending on the ci parameters via only one parameter) presented analytically in [47];
it has a global time-like Killing vector, is asymptotically flat, and the affine parameter
distance to the singularity is finite along radial null geodesics. Although this static
“wormhole” implies an effective negative energy density in the field equations, all
solutions in this family actually have a positive total mass. In addition, it was found
[48] that such a static aether solution is, in general, linearly stable under precisely the
same conditions as flat Minkowski spacetime. In the pure GR limit, c1 = 0, we just
have the Schwarzschild solution. However, for small r values the static aether solutions
can have quite different behaviour to that of the Schwarzschild solution.More recently,
an analytic static spherically symmetric vacuumEinstein-aether solution was obtained
numerically [44,47,49,50].

Unlike the case of a singular wormhole, the static solutions have an origin that is
regular [47]. It is also well known that no asymptotically flat self-gravitating aether
solutions with a regular origin exist [47]; i.e., there are no pure aether stars. In the
presence of a perfect fluid, regular asymptotically flat stellar solutions have been shown
to exist parameterized (for a given equation of state) by the central pressure (in addition
to the vacuum aether parameters). If the central pressure is fixed, then there is only
a single parameter that can be further tuned to obtain an asymptotically flat solution.
Static aether star solutions with an interior with constant energy density were obtained
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numerically in [47] by matching the interior solution to a specific vacuum exterior.
The solution inside a fluid star has also been found by numerical integration for more
realistic neutron star equations of state [51]. There are small differences from GR in
sufficiently compact stars.

Since the Killing vector cannot be time-like on or inside an horizon, the aether
cannot be aligned in the case of black holes. Instead, at spatial infinity the aether is at
rest but travels in an inward direction at a finite radius. A unique spherical stationary
solution from the 1-parameter family of solutions for a given mass is selected if
regularity is required at the so-called spin-0 horizon [44,47]. This horizon develops
in a regular region of spacetime when a black hole forms under graviational collapse.
Some particular examples of such a collapse producing a nonsingular black hole
horizon have been confirmed in numerical simulations of scalar field collapse [52].
Black holes with a nonsingular spin-0 horizon are, in general, very similar to the
Schwarzschild solution exterior to the horizon. But in the region interior to the horizon
the solutions are typically different by a few percent. However, they do contain a
spacelike singularity like the Schwarzschild spacetime. Recently static spherically
symmetric, asymptotically flat, regular (non-rotating) black hole solutions in Einstein-
aether theory have been studied numerically [43], generalizing the results of [44,47,
50]. Quasi-normal modes of black holes in aether theory have also been investigated
in [53,54].

This paper is the first of a series of papers devoted to the study of static and stationary
Einstein-aether models, and it will be referred hereafter as Paper I. In Paper I here
we will study, from the dynamical system point of view, the models and we shall
classify the equilibrium points and comment on some particular interesting solutions.
We note that the formalism employed facilitates a natural physical interpretation. In
some cases the matter configuration is enclosed in a finite radius and the models
have an astrophysical application [35,55,56]. In the companion paper [57], referred
as the Paper II of the series, we will apply the classical singularity analysis, which is
summarized in the so-called ARS algorithm [58–60]. Furthermore, the formulation of
the modified Tolman–Oppenheimer–Volkoff (TOV) equations for perfect fluids with
linear and polytropic equations of state (EoS) in the Einstein-aether theory is also
of interest. The relativistic TOV equations are drastically modified in Einstein-aether
theory [57]. The addition of a scalar field, ϕ, with an exponential or an harmonic
potential is also of interest.

In futurework in the serieswewill generalize thework to the conformally static (i.e.,
timelike selfsimilar) case and to scalar field models with generalized self-interacting
potentials. In particular in [61], referred to as paper III of the series, will be studied
the general monomial potential [62]:

W (ϕ) = 1

2n
(μϕ)2n, μ > 0, n = 1, 2, . . . , (1)

which contains as a particular case the harmonic potential W (ϕ) = 1
2m

2ϕ2.
The plan of the paper follows: the basic definitions of the Einstein-aether gravity

are given in Sect. 2. The stability analysis for the static spherically symmetric perfect
fluid spacetime are presented in Sect. 3, and the analysis with the additional scalar
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field model is discussed in Sect. 4. Finally, in Sect. 5 we discuss our results and draw
our conclusions.

2 Einstein-aether gravity

In Einstein-aether theory the action is given by the following expression [7,8]:

S = SGR + Su + Sm, (2)

where SGR = ∫
d4x

√−g
( R
2

)
is the Einstein–Hilbert term, Sm is the term which

corresponds to the matter source and

Su =
∫

d4x
√−g

(
−Kab

cd∇au
c∇bu

d + λ
(
ucuc + 1

))
, (3)

corresponds to the aether field. λ is a Lagrange multiplier enforcing the time-like
constraint on the aether [9], for which we have introduced the coupling [7]

Kab
cd ≡ c1g

abgcd + c2δ
a
c δ

b
d + c3δ

a
dδ

b
c + c4u

aubgcd , (4)

which depends upon four dimensionless coefficients ci . Finally ua is the normalized
observer in which uaua = −1. For simplicity in the following we redefine the con-
stants, ci , as follows:

cθ = c2 + (c1 + c3)/3, cσ = c1 + c3, cω = c1 − c3, ca = c4 − c1.

Variation with respect to the metric tensor in (2) provides the gravitational field
equations

Gab = T ae
ab + Tmat

ab , (5)

in which Gab is the Einstein tensor, Tm
ab corresponds to Sm and T ae

ab is the aether tensor
[52]:

T ae
ab = 2c1(∇au

c∇buc − ∇cua∇cub) − 2[∇c(u(a J
c
b)) + ∇c(u

c J(ab)) − ∇c(u(a Jb)
c)]

− 2c4u̇a u̇b + 2λuaub + gabLu, Jam = −Kab
mn∇bu

n, u̇a = ub∇bua .
(6)

In addition, variation with respect to the vector field ua and the Lagrange multiplier
gives us

λub = ∇a J
a
b + c4u̇a∇bu

a, (7a)

uaua = −1, (7b)
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where from (7a) we derive the Lagrange multiplier to be

λ = −ub∇a J
a
b − c4u̇a u̇

a . (8)

Hence the compatibility conditions are

0 = hbc∇a J
a
b + c4h

bcu̇a∇bu
a . (9)

The energy momentum tensor of the matter source in the form of a perfect fluid
(with energy density μ, and pressure p) in the 1+3 decomposition with respect to ua

is given by:

Tm
ab ≡ μuaub + p(gab + uaub), (10)

in which hab = (gab + uaub) is the projective tensor where habub = 0. We shall use
the Eq. (8) as a definition for the Lagrange multiplier, whereas the equation (9) leads
to a set of constraints that the aether vector must satisfy.

The theory has additional degrees of freedom (model parameters) in flat space as
compared with GR. The theory presents two spin-2 polarizations, as in GR, but also
one spin-0 and two spin-1 polarizations. The squared propagation speeds on flat space
are, respectively, given by [63]:

s22 = 1

1 − c1 − c3
= − 1

cσ − 1
, (11)

s21 = 2c1 − c21 + c23
2(c1 − c4)(1 − c1 − c3)

= − cσ cω − cσ − cω

2(β − 1)(cσ − 1)
, (12)

s20 = (c1 + c2 + c3)(2 − c1 + c4)

(c1 − c4)(2 + c1 + c3 + 3c2)
= − (β + 1)(3cθ + 2cσ )

3(β − 1)(3cθ + 2)
, (13)

where we have introduced the parameter redefinition β = ca + 1.
Stability at the classical and quantum levels requires all of the s2i (i = 0, 1, 2)

to be positive [9,63]. Ultra-high energy cosmic ray observations requires s2i >

1 − O(10−15) to prevent cosmic rays from losing energy into gravitational modes
via Cherenkov-like cascade [64]. Additionally, from constraints on the PPN param-

eters it follows that |α1| � 10−4 and |α2| � 10−5, α1 = − 8
(
c32−c1c4

)

−c21+2c1+c23
, α2 =

− (−c1+c4+2)(c1+2c−3+c4)(2c−1+3c−2+c3−c4)
c1+c2+c3

+ α1
2 [65]. Combining all the above restric-

tions we find cω ≈ O(10−15), β ≈ 1+O(10−4), cσ ≈ 3cθ +O(10−4). These bounds
change if we consider static spherically symmetric curved space or if we change the
matter content to include a perfect fluid or scalar field. Therefore,we assume no bounds
on the model parameters.
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3 Static spherically symmetric spacetime with a perfect fluid

In a static spherically symmetric spacetime with line element

ds2 = −N 2(r)dt2 + dr2

r2
+ K−1(r)(dϑ2 + sin2 ϑdϕ2), (14)

that is, we have fixed the spatial gauge to have e11(r) ≡ r , the field equations are [21]:

r
dx

dr
= μ + 3p

2β
+ 2(β − 1)y2 + 3xy + K , (15a)

r
dy

dr
= μ + 3p

2β
+ 2xy − y2, (15b)

r
dp

dr
= −y (μ + p) , (15c)

r
dK

dr
= 2xK . (15d)

where x ≡ 1
2r

d ln(K )
dr , y ≡ r d ln(N )

dr , and p is the pressure of the perfect fluid.
Furthermore there exists the constraint equation

x2 = (β − 1)y2 + 2xy + p + K , (16)

From (15c) and (15d) we have that y = − rp′
μ+p , x = 1

2
r K ′
K , and substituting into

(15a ), (15b) we find a system of two second-order ordinary differential equations,

r2
[

p′′

μ + p
− p′μ′

(μ + p)2
− p′K ′

K (μ + p)
− 2

(
p′)2

(μ + p)2

]

+ rp′

μ + p
+ μ + 3p

2β
= 0,

(17a)

r2
[
K ′′

2K
− 1

2

(
K ′

K

)2
+ 3

2

p′K ′

K (μ + p)
− 2 (β − 1)

(
p′)2

(μ + p)2

]

+ r K ′

2K
− K − μ + 3p

2β
= 0, (17b)

and (16) becomes

r2
[

(β − 1)

(
p′

μ + p

)2
+ p′K ′

K (μ + p)
− 1

4

(
K ′

K

)2]

+ p + K = 0, (18)

where prime means the derivative with respect r .
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3.1 Phase-space evolution

In this section we use the dynamical systems approach for investigating the structure
of the whole solution space of (15) [23–25]. With this purpose, we introduce the
quantities θ = y − x, σ = y as in [35].2 The equations then read:

r
dθ

dr
= −βσ 2 − θ2 + θσ + p, (19)

r
dσ

dr
= −4βθσ + βσ 2 + θ2 − K + μ0 + (η + 1)p

2β
, (20)

r
dp

dr
= −σ(ηp + μ0), (21)

r
dK

dr
= 2K (σ − θ), (22)

where

K + p = −βσ 2 + θ2, (23)

and we have assumed a linear EoS

μ = μ0 + (η − 1)p, (24)

where the constants μ0 and η satisfy μ0 ≥ 0, η ≥ 1. The case η = 1 corresponds to
an incompressible fluid with constant energy density, while the case μ0 = 0 describes
a scale-invariant EoS.

Next, we introduce the scale invariant quantities:

Q = θ
√

μ0
η

+ θ2
, S = σ

√
μ0
η

+ θ2
, C = ηK

μ0 + ηθ2
, (25)

which are more appropriate for describing the dynamics than those used in [21] as it
covers new equilibrium points with Q = S (i.e., x = 0, where x ≡ 1

2∂r ln(K )). Fur-
thermore, to define the x-normalized dimensionless variables and the new independent
coordinate τ given by ∂r ( f ) = −x∂τ ( f ) in (6.7) of [21], it was presumably assumed
that x does not change sign during the whole evolution; but, when x changes sign,
the direction of the flow given by the independent variable τ in [21] is lost. For this
reason we use below the variables (25) and we introduce a new independent variable
λ given by [35]:

dr

rdλ
= 1
√

μ0
η

+ θ2
=

⎧
⎪⎪⎨

⎪⎪⎩

√
η(1−Q2)

μ0
, μ0 	= 0

√
C
K , μ0 = 0,C 	= 0

S
σ
, μ0 = 0,C = 0,

(26)

2 Do not confuse these quantities with the usual expansion and shear scalars of homogeneous cosmologies.
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which defines unequivocally the flow direction. The “past attractors” (λ → −∞)
corresponds to r → 0 and the “future attractors” ( λ → ∞) corresponds to r → ∞.

The relation between the variables {Q, S,C} and {U , V ,Y } to be used in the forth-
coming paper [57] is

U = C(η − 1) − η + Q2 + β(η − 1)S2

C(η − 2) − η + 2Q2 − 2QS + S2(β(η − 1) + 1)
, (27a)

V =
(
C − (Q − S)2

) (
C(η − 1) − η + Q2 + β(η − 1)S2

)

(
C + (Q − S)2

) (
C − Q2 + βS2

)+ η
(
C − (Q − S)2

) (
C + βS2 − 1

) ,

(27b)

Y = C − Q2 + βS2

η
(
C + βS2 − 1

) . (27c)

We obtain then the evolution equations

dQ

dλ
=
(
Q2 − 1

)
(C + S(2βS − Q)), (28a)

dS

dλ
= C(2βQS − η − 2) + (βS2 − 1

) (
4βQS − η − 2Q2

)

2β
, (28b)

dC

dλ
= 2C

(
Q
(
C + 2βS2 − QS − 1

)
+ S
)

. (28c)

We have the useful relations

μ0

η
= (1 − Q2)K

C
, p = −K

(
C + βS2 − Q2

)

C
,

C(μ + p)

ηK
= 1 − C − βS2.

(29)

The Eq. (28) reduce to the system (17) investigated in [35] for β = 1. Because
μ0 ≥ 0, η ≥ 1, it follows that −1 ≤ Q ≤ 1. Due to K ≥ 0, it follows that C ≥ 0.
The condition C + βS2 − Q2 = 0 defines the surface of zero-pressure. However, it is
not an invariant set of (28), neither C + βS2 − Q2 > 0.3 If we assume that the weak
energy condition p + μ ≥ 0 is satisfied, then we obtain the subset of the phase space
1 − C − βS2 ≥ 0. Defining Ω = 1 − C − βS2 we obtain

dΩ

dλ
= Ω

[
2CQ + S

(
4βQS − η − 2Q2

)]
. (30)

Thus 1−C −βS2 ≥ 0 defines an invariant set. In summary, the Eq. (28) define a flow
on the invariant set

{
(Q, S,C) : −1 ≤ Q ≤ 1,C ≥ 0,C + βS2 ≤ 1

}
. (31)

3 A set of states E ⊂ R
n of a system of differential equations, say (28), is called an invariant set of (28)

if for all x0 ∈ E and for all λ ≥ 0, x(λ; x0) ∈ E , where by x(λ; x0) we understand the solution of (28)
satisfying the initial condition x(0; x0) = x0, evaluated at λ.
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This phase-space is compact for β ≥ 0 and unbounded for β < 0. The invariant sets
Q = ±1 corresponds to μ0 = 0. The expression

(
C + βS2 − Q2

) = 0 defines a
surface on the phase space, which refers to the surface of vanishing pressure. This
surface, however, is not an invariant surface for the flow.

Amonotonic function excludes equilibrium points, periodic orbits, recurrent orbits,
and homoclinic orbits in is domain. As in [35] we introduce the function

Z = 2Q − S
√

(2Q − S)2 + 3(1 − Q2)
, (32)

which satisfies

dZ

dλ
= −3

(
1 − Q2

) (
2(2β − 1)C + 2(Q − 2βS)2 + ηΩ

)

2β
(
3
(
1 − Q2

)+ (2Q − S)2
)3/2 . (33)

Since C ≥ 0,W ≥ 0 it is obvious that (32) is a monotonic decreasing function
for (2β − 1) ≥ 0. Furthermore, it is defined everywhere except on the scale-invariant
boundaries Q = ±1. Hence, the “past” (r → 0) and the “future” (r → ∞) attractors
lie on the Q = ±1 boundary sets. We also have the auxiliary equations

d ln N

dλ
= S, (34a)

d ln K

dλ
= −2(Q − S), (34b)

d ln y

dλ
= −C(η + 2) + 2Q(Q − 2βS) − βηS2 + η

2βS
. (34c)

The relation between the gravitational potential φ (related with the lapse function
by N = eφ), and the matter field is given by

dφ

dp
= − 1

μ + p
, μ = μ0 + (η − 1)p. (35)

Hence,

eφ = ec1(μ0 + ηp)−1/η = α

(
1 − Q2

1 − C − βS2

) 1
η

. (36)

where α is a freely specifiable constant corresponding to the freedom of scaling the
time coordinate in the line element.

The line element expressed in the variables (25) and the dynamical system (28) are
invariant under the discrete symmetry

(Q, S) → (−Q,−S). (37)
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with a simultaneous reversal of the radial direction λ → −λ. With respect to the phase
space dynamics this implies that for two points related by this symmetry, say A+ and
A−, one has the opposite dynamical behavior to the other; that is, if the equilibrium
point A+ is an attractor for a choice of parameters, then A− is a sink for the same
choice of parameters. On the other hand, as both the system and the line element
are invariant under (37), a physical solution is represented by two orbits in the phase
space. We can, however, without loss of generality, focus upon orbits entering the
phase space from the “upper” boundary set Q = +1 [35].

3.1.1 Equilibrium points in the finite region of the phase space

The equilibrium points of the system (28) are described in the Appendix B. In Table
1 we summarize the existence and stability conditions of the equilibrium points of
physical interest of the system (28). At the relevant equilibrium points we discuss some
regularity conditions of the corresponding physical solutions (see Appendix A.1):

1. P+
1 is a source for β = 1, 1 ≤ η < 2. Since the conditions (93) are fulfilled

this solution has a regular center as λ → −∞. Because of C = 0 it belongs to
the plane-symmetric boundary set. Furthermore, it belongs to the scale invariant
boundary Q = +1.

2. P−
1 is a sink for β = 1, 1 ≤ η < 2. Because of C = 0 it belongs to the plane-

symmetric boundary set. Furthermore, it belongs to the scale invariant boundary
Q = −1. Since the conditions (94) are fulfilled this solution is asymptotically flat
as λ → +∞.

3. P+
2 is a source for β = 1, η ≥ 1. Since the first inequality of (93) is not fulfilled,

this solution does not have a regular center. Because of C = 0 it belongs to
the plane-symmetric boundary set. Furthermore, it belongs to the scale invariant
boundary Q = +1.

4. P−
2 is a sink for β = 1, η ≥ 1. Because ofC = 0 it belongs to the plane-symmetric

boundary set. Furthermore, it belongs to the scale invariant boundary Q = −1.
This solution is not asymptotically flat since the conditions (94) are not fulfilled
as λ → +∞.

5. P+
2 is a sink for β = − η+2

4 ≤ 1, η ≥ 1. Because of C = 0 it belongs to the plane-
symmetric boundary set. Furthermore, it belongs to the scale invariant boundary
Q = +1. This solution is not asymptotically flat since the conditions (94) are not
fulfilled as λ → +∞.

6. P−
2 is a source for β = − η+2

4 ≤ 1, η ≥ 1. Since the first inequality of (93) is
not fulfilled, this solution does not have a regular center as λ → −∞. Because of
C = 0 it belongs to the plane-symmetric boundary set. Furthermore, it belongs to
the scale invariant boundary Q = −1.

7. P+
5 is a sink for η ≥ 1, β < 0. Because ofC = 0 it belongs to the plane-symmetric

boundary set. Furthermore, it belongs to the scale invariant boundary Q = +1.
This solution is not asymptotically flat since the conditions (94) are not fulfilled
as λ → +∞.

8. P−
5 is a source for η ≥ 1, β < 0. Since the conditions (93) are not fulfilled, this

solution does not have a regular center as λ → −∞. Because of C = 0 it belongs
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to the plane-symmetric boundary set. Furthermore, it belongs to the scale invariant
boundary Q = −1.

9. P+
6 is a source for η ≥ 1, 16β ≥ (η+2)2. It has a regular center as λ → −∞ only

when β = 1 (i.e., when this point coincides with P+
1 ). Otherwise the conditions

(93) are not fulfilled, and the solution does not have a regular center as λ → −∞.
Because of C = 0 it belongs to the plane-symmetric boundary set. Furthermore,
it belongs to the scale invariant boundary Q = +1.

10. P−
6 is a sink for η ≥ 1, 16β ≥ (η+2)2. Because of C = 0 it belongs to the plane-

symmetric boundary set. Furthermore, it belongs to the scale invariant boundary
Q = −1. It is not asymptotically flat as λ → +∞ unless β = 1 (i.e., when P−

6
merge with P−

1 ).
11. P+

7 is a source for η ≥ 1, β > 0. The conditions (93) are not fulfilled, and the
solution does not have a regular center as λ → −∞. Because of C = 0 it belongs
to the plane-symmetric boundary set. Furthermore, it belongs to the scale invariant
boundary Q = +1.

12. P−
7 is a sink for η ≥ 1, β > 0. Because ofC = 0 it belongs to the plane-symmetric

boundary set. Furthermore, it belongs to the scale invariant boundary Q = −1.
13. P+

8 is a sink for β < 0. It is not asymptotically flat as λ → +∞.
14. P−

8 is a source for β < 0. It has a regular center as λ → −∞ if η > 1, β <

0, μ0 > 0, pc ≥ μ0(6β−βη−3)
βη(η−1) .

There are relevant equilibrium points which are saddle points:

1. The equilibrium point P+
3 represents the Minkowski spacetime in spherical sym-

metric form. The idea now is to find approximated solutions for the regular orbit
near P+

3 as λ → −∞. In the limit λ → −∞ the unstable manifold of P+
3 provides

the necessary mathematical structure for constructing this approximated solution.
For this reason we introduce the coordinate transformation

Q = 3βv1

2
− 1

4
(η + 2)v2 + 1, S = u1 + v1, C = 1 − v2. (38)

Applying the Invariant Manifold theorem we find that the local unstable manifold
of P+

3 ,{
(u1, v2, v3): u1 = h(v1, v2), h(0, 0) = 0, ∂h

∂v1
(0, 0) = 0, ∂h

∂v2
(0, 0) = 0, v21 +

v22 ≤ δ
}
, δ > 0, can be approximated up to third order by the graph

u1 = h(v1, v2) ≈ ηv1v2(−3β + η + 2)

30β
. (39)

Now, substituting the approximated solutions (found by solving just the linear part
of the differential equations along the unstable eigendirections):

v1 = ε1e
2λ, v2 = ε2e

2λ, (40)
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where ε1, ε2 are small positive constants, and keeping only the linear terms in ε

we find the approximated solutions

Q = 1 + 3β

2
ε1e

2λ − 1

4
(η + 2)ε2e

2λ, S = ε1e
2λ, C = 1 − ε2e

2λ. (41)

Replacing

ε1 = −2

3
(ε1 − ε2), ε2 = 4

2 + η
((1 − β)ε1 + ε2), (42)

where ε1 and ε2 are still small constants (we assume they are positive), we find
the more familiar equations

Q = 1 − ε1e
2λ, S = 2

3
(ε2 − ε1)e

2λ, C = 1 − 4

2 + η
((1 − β)ε1 + ε2)e

2λ,

(43)

that reproduce equations (27a–27c) of [35] for β = 1. We see that ε = ε1
ε2

parametrize a 1-parameter family of regular solutions with an equation of state
parameter at the center:

pc
μc

= lim
λ→−∞

p

μ
= lim

λ→−∞
μ − μ0

(η − 1)μ
= lim

λ→−∞
C − Q2 + βS2

C(η − 1) − η + Q2 + β(η − 1)S2

= 2 − ε(2β + η)

ε(2β(η − 1) − 3η) + 2(η − 1)
. (44)

We see that there exists solutions with a regular center but negative pressure, so
that we have to impose the condition4

2 − ε(2β + η)

ε(2β(η − 1) − 3η) + 2(η − 1)
> 0, (45)

that is:

(a) η > 1, β ≤ − η
2 , ε > 0, or

(b) η > 1,− η
2 < β ≤ 3η

2η−2 , 0 < ε < 2
2β+η

, or

(c) η > 1, β >
3η

2η−2 , 0 < ε < 2
2β+η

, or

(d) η > 1, β >
3η

2η−2 , ε >
2η−2

2βη−2β−3η .

For C − (Q − S)2 > 0, the first and second the Buchdahl conditions are satisfied
at the solution as λ → −∞, if

4 This condition is reduced in GR, to η > 1, 0 < ε < 2
η+2 , when β = 1.
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(β − 1)(η + 2)ε

ε(6β + η − 4) + 2(η − 1)
≥ 0, (46)

η(η + 2)ε(μ0 + (η − 1)pc)

μ0(ε(6β + η − 4) + 2(η − 1))
≤ 1. (47)

Additionally, taking the limit λ → −∞ we have

1

9

(
7C − 3Q2 + 3βS2

)
+ 2
√
C
(
C + 3Q2 − 3βS2

)− C

+(Q − S)2 → 40

9
> 0, (48)

such that the third Buchdahl condition is also satisfied. Thus, combining the con-
ditions (45), (46), and (47), we have the conditions for the existence of regular
solution at the center associated to P+

3 .
The quotient, pc

μc
in (44) is a gravitational strength parameter. In GR where

the parameter β = 1, the maximal value of the gravitational strength, 1
η+1 , is

obtained when ε1 = 0, which corresponds to the subset Q = 1. However, in
the Einstein-aether theory the parameter β is a freely specifiable parameter, and
for η > 1, β >

3η
2η−2 ,

ε1
ε2

>
2η−2

2βη−2β−3η , the maximal strength is not pc
μc

= 1
η+1

anymore as it is in GR.
2. The equilibrium point P+

4 generalizes the so called Tolman point (which corre-
sponds to β = 1), which now is promoted to a 1-parameter solution. This solution
exists for 0 ≤ β ≤ 1

8 (η + 2)2. The eigenvalues are

λ1 = 2η

η + 2
, λ2 = −η + 2 +√64β − 7(η + 2)2

2(η + 2)
,

λ3 = −η + 2 −√64β − 7(η + 2)2

2(η + 2)
. (49)

Notice that λ2 + λ3 + 1 = 0.
The eigenvalue λ1 is always real and positive.
The eigenvalues λ2, λ3 are both real and negative for

(a) 63
64 < β ≤ 9

8 , 1 < η ≤ −2 + 8
√

β√
7
, or

(b) β > 9
8 , 2

√
2
√

β − 2 < −2 + η ≤ 8
√

β√
7
.

The eigenvalues λ2, λ3 are complex conjugated with negative real part for

(a) 0 < β ≤ 63
64 , η > 1, or

(b) β > 63
64 , η > −2 + 8

√
β√
7
.

Following the samemethod as for the analysis of P+
3 we can explore approximated

solutions related to P+
4 by constructing the unstable manifold of this equilibrium

point.
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Case 1:
When λ2, λ3 are both reals and negative, that is whenever 63

64 < β ≤ 9
8 , 1 < η ≤

−2 + 8
√

β√
7
, or β > 9

8 , 2
√
2
√

β − 2 < −2 + η ≤ 8
√

β√
7
, we can define the real

quantities

u = λ2(λ2 + 1)(1 − Q)
(
(η + 2)2λ22 + (η + 2)2λ2 + 2η(η + 6)

)

(η(λ2 − 2) + 2λ2)((η + 2)λ2 + 3η + 2)
, (50a)

v1 = λ2(λ2 + 2)
(
2C + λ22 + λ2

)

4λ2 + 2

+ λ2(λ2 + 1)(Q − 1)
(
η
(
λ22 + λ2 + 2

)+ 2(λ2 − 2)(λ2 + 1)
)

(2λ2 + 1)((η + 2)λ2 + 3η + 2)

+ λ2(λ2 + 1)
(
λ22 + λ2 + 2

)
((η + 2)S − 2)

4λ2 + 2
, (50b)

v2 = −
(
λ22 − 1

) (
2C + λ22 + λ2

)

4λ2 + 2

+ λ2(λ2 + 1)(Q − 1)
(
η
(
λ22 + λ2 + 2

)+ 2λ2(λ2 + 3)
)

(2λ2 + 1)(η(λ2 − 2) + 2λ2)

− λ2(λ2 + 1)
(
λ22 + λ2 + 2

)
((η + 2)S − 2)

4λ2 + 2
(50c)

where we have used the relation

β = 1

16
(η + 2)2

(
λ22 + λ2 + 2

)
. (51)

Now, applying the Invariant Manifold theorem we find that the local unstable
manifold of P+

4 is

{(u, v2, v3): v1 = h1(u), v2 = h2(u),

h1(0) = 0, h′
1(u) = 0, h2(0) = 0, h′

2(u) = 0, u ≤ δ
}
,

with δ > 0. Calculating the unstable manifold up to second order in powers of u,
neglecting the higher order terms and substituting back to the equations of Q, S,C ,
in terms of u, through v1 = h1(u), v2 = h2(u), we obtain that any solution near
the unstable manifold of P+

4 , satisfies
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Q = 1 − (η + 2)2(−4β + η(2η + 3) + 2)

2
(
(4β + η − 2)

(
(η + 2)2 − 8β

))εe
2ηλ
η+2 , (52a)

S = 2

η + 2
− (η + 2)

(−8β2 − 2(η − 2)β + η(η + 2)2
)

2
(
β(4β + η − 2)

(
(η + 2)2 − 8β

)) εe
2ηλ
η+2

+ η(η + 2)4(−4β + η + 2)

8β2(4β + η − 2)2
(
(η + 2)2 − 8β

)2
(−8β + η(11η + 8) + 4)

(52b)

×
[

− 32β3 + 4β2(η(7η − 2) + 8)

− β(η(η(η(2η + 33) + 102) + 28) + 8) + η(η + 2)2(η(η + 12) + 4)
]
ε2e

4ηλ
η+2 ,

(52c)

C = 1 − 8β

(η + 2)2
+ εe

2η
η+2 λ −

[
128β4 − 48β3(η(5η + 4) + 4)

+ 8β2 (η
(
η
(
7η2 + η + 19

)+ 24
)+ 12

)

− β(η(η(η(η(42η + 251) + 300) + 80) + 48) + 16) + 2η2(η + 2)3(9η + 2)
]

× (η + 2)2

4β(4β + η − 2)2
(
(η + 2)2 − 8β

)
(−8β + η(11η + 8) + 4)

ε2e
4ηλ
η+2 , (52d)

where we have used the original parameters β and η and we have substituted the

approximated solution u1 = εe
2η

η+2λ, that is obtained by integrating the linearized
equation along the unstable direction. This expansion is accurate as long as λ →
−∞.
Using this solution, we find

pc
μc

= lim
λ→−∞

C − Q2 + βS2

C(η − 1) − η + Q2 + β(η − 1)S2

= lim
λ→−∞

1

η − 1
−

ε

(

η(η + 2)4(−4β + η(2η + 3) + 2)e
2ηλ
η+2

)

4
(
β(η − 1)2(4β + η − 2)

(
(η + 2)2 − 8β

)) + O
(
ε2
)

= 1

η − 1
> 0. (53)

Furthermore, the Buchdahl conditions can be expressed as

1 ≥ −(η − 1)
(
C + βS2

)+ η − Q2

3
(
C − (Q − S)2

) , (54)

1 ≤ η
(
1 − Q2

)
(μ0 + (η − 1)pc)

3μ0
(
C − (Q − S)2

) , (55)

1

9

(
7C − 3Q2 + 3βS2

)
+ 2
√
C
(
C + 3Q2 − 3βS2

)− C + (Q − S)2 ≥ 0.

(56)
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As λ → −∞, applying the above conditions we have that the second one is
satisfied; and the first and third imply

β − βη

6β − 3(η + 1)
≥ 1, (57)

4(7β + 9)

9(η + 2)2
+ 2

√(

4 − 20β

(η + 2)2

)(

1 − 8β

(η + 2)2

)

− 4

η + 2
+ 4

9
≥ 0. (58)

These conditions are not satisfied for β = 1 (that is, for GR). But in AE-theory
β is a free parameter, such that the above inequalities can be satisfied for η >

1, 3η+3
η+5 ≤ β <

η+1
2 , 64β − 7(η + 2)2 ≥ 0.

Case 2:
For the choice 0 < β ≤ 63

64 , η > 1, or β > 63
64 , η > −2 + 8

√
β√
7
, the eigenvalues

λ2, λ3 are complex conjugates with negative real part. Indeed,

�(λ2) = �(λ3) = −1

2
,−�(λ2) = �(λ3) =

√
7(η + 2)2 − 64β

2(η + 2)
. (59)

For the analysis we introduce the parametrization

Q = 1 − (η + 2)2u(−4β + η(2η + 3) + 2)

2(4β + η − 2)
(
8β − (η + 2)2

) , (60a)

S = 2

η + 2
+ (η + 2)u

(−8β2 − 2β(η − 2) + η(η + 2)2
)

2β(4β + η − 2)
(
8β − (η + 2)2

)

+ (η + 2)v1
(
5(η + 2)2 − 32β

)

16β
(
8β − (η + 2)2

) − (η + 2)2v2
√
7(η + 2)2 − 64β

16β
(
8β − (η + 2)2

) , (60b)

C = 1 − 8β

(η + 2)2
+ u + 2v1, (60c)

where u, v1, v2 are reals.
Calculating the unstablemanifold up to second order in powers of u, neglecting the
higher order terms and substituting back to the equations of Q, S,C , in terms of
u, through v1 = h1(u), v2 = h2(u), we obtain that any solution near the unstable
manifold of P+

4 , satisfies
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Q = 1 − (η + 2)2(−4β + η(2η + 3) + 2)

2(4β + η − 2)
(
8β − (η + 2)2

) εe
2ηλ
η+2 , (61a)

S = 2

η + 2
+ (η + 2)ε

(−8β2 − 2β(η − 2) + η(η + 2)2
)
e

2ηλ
η+2

2β(4β + η − 2)
(
8β − (η + 2)2

)

− (η + 2)

9216β2(7η + 2)
(
(η + 2)2 − 8β

)2

[
2048β3(347η + 612)

− 32β2(η(η(8025η + 18818) + 7740) − 840)

− 4β(η(η(15457η + 67932) + 96052) + 49440)(η + 2)2

+ 9(η(η(826η + 3043) + 3628) + 1612)(η + 2)4
]
ε2e

4ηλ
η+2 , (61b)

C = 1 − 8β

(η + 2)2
+ εe

2ηλ
η+2

−
(−32β2(6η + 53) + 4β(η(η(6η + 77) − 126) − 184) + 9(η + 2)2(5η + 14)

)

72β(7η + 2)
(
(η + 2)2 − 8β

) ε2e
4ηλ
η+2 ,

(61c)

wherewe have substituted the approximated solution u1 = εe
2η

η+2λ, that is obtained
by integrating the linearized equation along the unstable direction. This expan-
sion is accurate as long as λ → −∞. At the stable manifold the orbits spiral

in and tends asymptotically to the origin with modes cos(
√

7(η+2)2−64β
2(η+2) λ)e− λ

2 ,

sin(
√

7(η+2)2−64β
2(η+2) λ)e− λ

2 .
We have the estimates

pc
μc

= lim
λ→−∞

C − Q2 + βS2

C(η − 1) − η + Q2 + β(η − 1)S2

= lim
λ→−∞

1

η − 1
+ η(η + 2)4ε

(−4β + 2η2 + 3η + 2
)
e

2ηλ
η+2

4β(η − 1)2(4β + η − 2)
(−8β + η2 + 4η + 4

) + O
(
ε2
)

= 1

η − 1
> 0.

Furthermore, for C − (Q − S)2 > 0, the Buchdahl conditions reduce to

2(β − 1)β

−2β + η + 1
+ β ≤ 3, 2βμ0 ≥ (η + 1)μ0,

9
√
40β2 − 13β(η + 2)2 + (η + 2)4 + 7β + η2 − 5η − 5

2β − η − 1
≤ 0,

as λ → −∞, respectively. That is, when 1 < η ≤ 1.04725, β <
1
64

(
7η2 + 28η + 28

)
, μ0 ≤ 0 or η > 1.04725, β ≤ 3η+3

η+5 , μ0 ≤ 0. We are
assuming μ0 ≥ 0, therefore the conditions are fulfilled if μ0 = 0.

Figure 1 shows the flow of the system (28) for different choices of the parameters
β, η. Figure 1a, b represents the scale-invariant (μ0 = 0) boundary Q = +1. In Fig.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 1 Streamlines of the system (28) for different choices of the parameters β, η
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1a the local attractor is P+
4 (but it is a saddle point for the 3D dynamical system). At

Fig. 1b the attractor is P+
5 . Figure 1c, d, show the behavior on the plane-symmetric

boundary C = 0. In Fig. 1c the stable (respectively, unstable) points are P−
7 and

P−
6 (respectively, P+

7 and P+
6 ). The P±

5 are saddles. In Fig. 1d the attractor is P+
5 .

Figure 1e–h, show the dynamics on the invariant set C = 1 − βS2 corresponding
to fluids satisfying μ + p = 0. In Fig. 1f P±

3 are saddles. The stable (respectively,
unstable) points in the physical regions are P−

7 and P−
6 (respectively, P+

7 and P+
6 ).

In Fig. 1f is presented the dynamics for β = 1
4 and η = 1. For these values P±

3 are
saddles. P−

7 (respectively P+
7 ) is a stable (respectively, unstable) node on the physical

region. At the bifurcation value β = 1
4 , P

±
6 merges with P±

9 and becomes saddles. In
the Fig. 1g show the dynamics on the invariant set C = 1 − βS2 for β = −1, η = 1.
The sink is P+

8 and the source is P−
8 . P±

3 are saddles. In Fig. 1h it is shown that the
points at infinity (Q = ±1, S = ∓∞) are saddle. Thus, P+

8 is a global attractor for
this choice of parameters.

3.1.2 Compactification procedure

The variables C, S satisfy C + βS2 ≤ 1 and Q ∈ [−1, 1]. Therefore, in case of
β > 0 the phase space is compact. However, S,C can be infinite values for β < 0.
Assuming β < 0, we have C ≤ 1+ |β|S2, such that we can use the dominant quatity,
1+|β|S2, to normalize. By introducing the compact variables, wherewe have assumed
1 + |β|S2 	= 0

u =
√|β|S

√
1 + |β|S2 , v = C

1 + |β|S2 , (62)

with

(Q, u, v) ∈ [−1, 1] × [−1, 1] × [0, 1],

and the radial derivative

d f

dξ
= |β|
√
1 + |β|S2

d f

dλ
, (63)

we obtain the dynamical system

dQ

dξ
=
(
Q2 − 1

) [
β
(
2u2 − v

)
− Qu

√
1 − u2

√|β|
]
, (64a)

du

dξ
=
(
u2 − 1

) [

βQu(v − 2) + 1

2

(
η + 2Q2 − (η + 2)v

)√
1 − u2

√|β|
]

, (64b)

dv

dξ
= (v − 1)v

[
2βQ

(
u2 − 1

)
− (η + 2)u

√
1 − u2

√|β|
]
. (64c)
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The system (64) covers all the equilibrium points in the finite region, with
the exception of P±

4 , P±
6 , P±

7 , and P±
9 (which do not exist for β < 0), and

incorporates the equilibrium points at infinity. That is, in the new coordinates, the

equilibrium points in the finite region are: P±
1 : (Q, u, v) =

(
±1,±

√|β|√
1+|β| , 0

)
,

P±
2 : (Q, u, v) =

(
±1,∓

√|β|√
1+|β| , 0

)
, P±

3 : (Q, u, v) = (±1, 0, 1), P±
5 : (Q, u, v) =

(

±1,∓ (η+2)√
(η+2)2+16|β| , 0

)

, P±
8 : (Q, u, v) =

(
ε√

1+|β| ,
√ |β|

1+2|β|ε, 1
)
. The lines of

equilibrium points at infinity are I±
1 : (Q, u, v) = (±1,±1, vc), and I±

2 : (Q, u, v) =
(±1,∓1, vc); that is, |S| → ∞, and C , arbitrary, such that C

1+|β|S2 → vc, constant.
The eigenvalues are ±2(2− vc)β,∓2(2− vc)β, 0. Therefore, they behave as saddles.

4 Stationary comoving aether with perfect fluid and scalar field in
static metric

In this section we investigate a stationary comoving aether with perfect fluid and scalar
field in static metric

ds2 = −N 2(r)dt2 + e1
1(r)−2dr2 + e2

2(r)−2(dϑ2 + sin2 ϑdϕ2), (65)

and we define x = e1 ln e22, y = e1 ln N , and the differential operator e1 = e11∂r .
The equations for the variables x, y, p, ϕ, K are:

e1 (x) = μ + 3p

2β
+ e1(ϕ)2 − W (ϕ)

β
+ 2(β − 1)y2 + 3xy + K , (66a)

e1 (y) = μ + 3p

2β
− W (ϕ)

β
+ 2xy − y2, (66b)

e1 (p) = −y(μ + p), (66c)

e1(e1(ϕ)) = − (y − 2x) e1(ϕ) + W ′(ϕ), (66d)

e1(K ) = 2xK , (66e)

whereW (ϕ) is the scalar field self-interactingpotential. The systemsatisfies the restric-
tion

− (x − y)2 + β y2 + p + 1

2
e1(ϕ)2 − W (ϕ) + K = 0. (67)

Equation (67) is called Gauss constraint, and it corresponds to a first integral of the
system (66). This can be proven by applying the differential operator e1(...) to both
sides of (67), and then using the Eq. (66) to eliminate the spatial derivatives. Therefore,
by using again the restriction (67) solved for K , we obtain an identity. On the other
hand, the aether constraint (9) is identically zero.
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As before, we assume an EoS parametrized by (24).We next consider the case of an
exponential self-interacting potential; we shall study the case of a harmonic potential
W (ϕ) = 1

2m
2ϕ2 elsewhere, e.g., as particular example in paper III [61].

4.1 Phase-space evolution: exponential potentialW(') = W0e−k'

For the analysis of the system of Eq. (66) one can use methods to obtain exact solu-
tions. Additionally one can use the dynamical systems approach for investigating the
structure of the whole solution space. Using the quantities θ = y − x, σ = y as in
[35], the equations read

e1
1 dθ

dr
= −βσ 2 − θ2 + θσ − W0e

−kϕ + p − Φ2

2
, (68a)

e1
1 dσ

dr
= 2βσ(σ − 2θ) − 2W0e−kϕ + μ0 + (η + 2)p

2β
, (68b)

e1
1 dK

dr
= −2(σ − θ)

(

βσ 2 − θ2 − W0e
−kϕ + p + Φ2

2

)

, (68c)

e1
1 dϕ

dr
= Φ, (68d)

e1
1 dΦ

dr
= Φ(σ − 2θ) − kW0e

−kϕ, (68e)

e1
1 dp

dr
= −σ(ηp + μ0), (68f)

where

K + p = −βσ 2 + θ2 + W0e
−kϕ − Φ2

2
, (69a)

μ = μ0 + (η − 1)p. (69b)

Now we define the radial variable λ

e1
1 dλ

dr
=
√

μ0

η
+ θ2. (70)

For convenience, we set one of the metric components as e11 = r . This is equivalent
to set e1 = ∂�, where r = e�, such that � → −∞ as r → 0 and � → ∞ as r → ∞. In
other words, λ unequivocally defines the flow direction. That is, the “past attractors”
(r → 0) correspond to λ → −∞ and the “future attractors” (r → ∞) correspond to
λ → ∞. Defining the scale invariant quantities:
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Q = θ
√

μ0
η

+ θ2
, S = σ

√
μ0
η

+ θ2
, C = ηK

μ0 + ηθ2
, Aϕ = Φ√

2
√

μ0
η

+ θ2
,

AW =
√
W0e− k

2ϕ

√
μ0
η

+ θ2
, (71)

we obtain the evolution equations

dQ

dλ
=
(
Q2 − 1

) (
2A2

ϕ + C + S(2βS − Q)
)

, (72a)

dS

dλ
= C(2βQS − η − 2) − 2Q

(
βS2 − 1

)
(Q − 2βS) − βηS2 + η

2β

A2
Wη + A2

ϕ(4βQS − η − 2)

2β
, (72b)

dC

dλ
= 2C

(
Q
(
2A2

ϕ + C + 2βS2 − QS − 1
)

+ S
)

, (72c)

d Aϕ

dλ
= Aϕ

(
Q
(
2A2

ϕ + C + 2βS2 − QS − 2
)

+ S
)

−
√
2

2
A2
Wk, (72d)

d AW

dλ
= 1

2
AW

(
4A2

ϕQ − √
2Aϕk + 2Q(C + S(2βS − Q))

)
. (72e)

We have the useful relations

μ0

η
= (1 − Q2)K

C
, (73a)

p = −K
(−A2

W + A2
ϕ + C + βS2 − Q2

)

C
, (73b)

C(μ + p)

ηK
= A2

W − A2
ϕ − C − βS2 + 1. (73c)

Since μ0 ≥ 0, η ≥ 1 it follows −1 ≤ Q ≤ 1. Since K ≥ 0 it follows C ≥ 0. The
condition

(
−A2

W + A2
ϕ + C + βS2 − Q2

)
= 0

defines the surface of zero-pressure. However, it is not an invariant set of (72), neither
is

(
−A2

W + A2
ϕ + C + βS2 − Q2

)
> 0.

If we assume that the weak energy condition p + μ ≥ 0 is satisfied, then we obtain
the subset of the phase space

1 + A2
W − A2

ϕ − C − βS2 ≥ 0.
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Defining Ω = 1 + A2
W − A2

ϕ − C − βS2 we obtain

dΩ

dλ
= Ω

[
4A2

ϕQ + 2Q(C + S(2βS − Q)) − ηS
]
. (74)

Thus, 1 + A2
W − A2

ϕ − C − βS2 ≥ 0 defines an invariant set. Summarizing, the Eq.
(72) defines a flow on the invariant set

{
(Q, S,C, Aϕ, AW ) : −1 ≤ Q ≤ 1,C ≥ 0, −A2

W + A2
ϕ + C + βS2 ≤ 1, AW ≥ 0

}
.

(75)

This phase-space is unbounded. The invariant sets Q = ±1 corresponds to μ0 = 0.
We have the auxiliary equations

d ln N

dλ
= S, (76a)

d ln K

dλ
= −2(Q − S), (76b)

d ln y

dλ
= −− (A2

W + 1
)
η + A2

ϕ(η + 2) + C(η + 2) + 4βQS + βηS2 − 2Q2

2βS
.

(76c)

Both the line element expressed in the variables (25) and the dynamical system (72)
are invariant under the discrete symmetry

(Q, S, Aϕ, λ) → (−Q,−S,−Aϕ,−λ). (77)

The equilibrium points are discussed in Appendix C.

4.1.1 Equilibrium points in the finite region of the phase space

We have recovered the previous results for the points P±
1 –P±

9 (when no scalar field
is present). For further details about the derivation of the physical interpretation of
the equilibrium points P±

1 –P±
9 we submit the reader to Appendix B. The equilibrium

points with non-trivial scalar field are discussed in Appendix C.
Now, we discuss the more interesting points (in the sense that they have the highest

dimensional stable/unstable manifold).

1. P+
5 is a sink for β < 0, η ≥ 1.

2. P−
5 is source for β < 0, η ≥ 1.

3. P+
8 is non-hyperbolic with a 4D stable manifold.

4. P−
8 is non-hyperbolic with a 4D unstable manifold.

5. The following subsets (arcs, or specific equilibrium points) of the line P+
10(Sc) are

unstable for the given conditions:
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(a) Sc < 0, β < 1
Sc2

, η > 1, k <

√
−2Sc2+8Sc−8

βSc2−1
, or

(b) Sc < 0, β = 1
Sc2

, η > 1, k ∈ R, or

(c) Sc = 0, β ∈ R, η > 1, k < 2
√
2, or

(d) 0 < Sc < 4
3 , β < 1

Sc2
, 1 < η < 4−2Sc

Sc
, k <

√
−2Sc2+8Sc−8

βSc2−1
, or

(e) 0 < Sc < 4
3 , β = 1

Sc2
, 1 < η < 4−2Sc

Sc
, k ∈ R.

6. The following subsets (arcs, or specific equilibrium points) of the line P−
10(Sc) are

stable for the given conditions:

(a) Sc < 0, β < 1
Sc2

, η > 1, k <

√
−2Sc2+8Sc−8

βSc2−1
, or

(b) Sc < 0, β = 1
Sc2

, η > 1, k ∈ R, or

(c) Sc = 0, β ∈ R, η > 1, k < 2
√
2, or

(d) 0 < Sc < 4
3 , β < 1

Sc2
, 1 < η < 4−2Sc

Sc
, k <

√
−2Sc2+8Sc−8

βSc2−1
, or

(e) 0 < Sc < 4
3 , β = 1

Sc2
, 1 < η < 4−2Sc

Sc
, k ∈ R.

7. The following subsets (arcs, or specific equilibrium points) of the line P+
11(Sc) are

unstable for the given conditions:

(a) Sc < 0, β < 1
Sc2

, η ≥ 1, k > −√
2

√

− Sc2−4Sc+4
βSc2−1

, or

(b) Sc < 0, β = 1
Sc2

, η ≥ 1, k ∈ R, or

(c) Sc = 0, β ∈ R, η ≥ 1, k > −2
√
2, or

(d) 0 < Sc < 4
3 , β < 1

Sc2
, 1 ≤ η < 4−2Sc

Sc
, k > −√

2

√

− Sc2−4Sc+4
βSc2−1

, or

(e) 0 < Sc < 4
3 , β = 1

Sc2
, 1 ≤ η < 4−2Sc

Sc
, k ∈ R.

8. The following subsets (arcs, or specific equilibrium points) of the line P−
11(Sc) are

stable for the given conditions:

(a) Sc < 0, β < 1
Sc2

, η ≥ 1, k > −√
2

√

− Sc2−4Sc+4
βSc2−1

, or

(b) Sc < 0, β = 1
Sc2

, η ≥ 1, k ∈ R, or

(c) Sc = 0, β ∈ R, η ≥ 1, k > −2
√
2, or

(d) 0 < Sc < 4
3 , β < 1

Sc2
, 1 ≤ η < 4−2Sc

Sc
, k > −√

2

√

− Sc2−4Sc+4
βSc2−1

, or

(e) 0 < Sc < 4
3 , β = 1

Sc2
, 1 ≤ η < 4−2Sc

Sc
, k ∈ R.

9. P+
12 is non-hyperbolic with a 4D unstable for

(a) β < 0, η ≥ 1, k > −√
2

√
(8β−η−2)2

β(16β−η2−4η−4)
, or
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(b) β > 9
16 , 1 ≤ η < 2

(
2
√

β − 1
)
, k <

√
2

√
(8β−η−2)2

β(16β−η2−4η−4)
.

10. P−
12 is non-hyperbolic with a 4D stable manifold for

(a) β < 0, η ≥ 1, k > −√
2

√
(8β−η−2)2

β(16β−η2−4η−4)
, or

(b) β > 9
16 , 1 ≤ η < 2

(
2
√

β − 1
)
, k <

√
2

√
(8β−η−2)2

β(16β−η2−4η−4)
.

11. P+
13 is non-hyperbolic with a 4D unstable manifold for

(a) β < 0, η ≥ 1, k <
√
2

√
(8β−η−2)2

β(16β−η2−4η−4)
, or

(b) β > 9
16 , 1 ≤ η < 2

(
2
√

β − 1
)
, k > −√

2

√
(8β−η−2)2

β(16β−η2−4η−4)
.

12. P−
13 is non-hyperbolic with a 4D stable manifold for

(a) β < 0, η ≥ 1, k <
√
2

√
(8β−η−2)2

β(16β−η2−4η−4)
, or

(b) β > 9
16 , 1 ≤ η < 2

(
2
√

β − 1
)
, k > −√

2

√
(8β−η−2)2

β(16β−η2−4η−4)
.

13. P+
16 is a source for

(a) η ≥ 1, 0 < β <
η+2
8 ,−

√
η
β

< k < −2
√
2
√

η2

−16β+η2+4η+4
, or

(b) η ≥ 1, 0 < β <
η+2
8 , 2

√
2
√

η2

−16β+η2+4η+4
< k <

√
η
β
.

14. P−
16 is a sink for

(a) η ≥ 1, 0 < β <
η+2
8 ,−

√
η
β

< k < −2
√
2
√

η2

−16β+η2+4η+4
, or

(b) η ≥ 1, 0 < β <
η+2
8 , 2

√
2
√

η2

−16β+η2+4η+4
< k <

√
η
β
.

15. P+
18 is a source for

(a) η ≥ 1, β < 0, k < −√
2
√

4β−1
β

, or

(b) η ≥ 1, β < 0, k >
√
2
√

4β−1
β

, or

(c) η ≥ 1, 0 < β ≤ η+2
8 , k < −

√
η
β
, or

(d) η ≥ 1, 0 < β ≤ η+2
8 , k >

√
η
β
, or

(e) η ≥ 1, β >
η+2
8 , k < −√

2
√

4β−1
β

, or

(f) η ≥ 1, β >
η+2
8 , k >

√
2
√

4β−1
β

.

16. P−
18 is a sink for
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(a) η ≥ 1, β < 0, k < −√
2
√

4β−1
β

, or

(b) η ≥ 1, β < 0, k >
√
2
√

4β−1
β

, or

(c) η ≥ 1, 0 < β ≤ η+2
8 , k < −

√
η
β
, or

(d) η ≥ 1, 0 < β ≤ η+2
8 , k >

√
η
β
, or

(e) η ≥ 1, β >
η+2
8 , k < −√

2
√

4β−1
β

, or

(f) η ≥ 1, β >
η+2
8 , k >

√
2
√

4β−1
β

.

As can be seen in the Appendix C, all the possible metrics (with nontrivial scalar
field) can be written in a compact form as

ds2 = −e2aλdt2 + e2bλdλ2 + e2cλ
(
dϑ2 + sin2 ϑdϕ2

)
; (78)

Hence for c 	= 0 always there is a singularity at l = ∞. You can make that easily
r = 0, through the transformation exp(2cl) = r2. The same for a = 0, or b = 0 just
c 	= 0. Now on the other hand the other possible case is for c = 0. In that case:

1. We do not have a singularity when: b < 0 or when b > 0 and a2 = ab.
2. When b = 0 and a2 	= ab we have a singularity.

5 Discussion

In this paper we have investigated the field equations in the Einstein-aether model in a
static spherically symmetric spacetime. The static model with perfect fluid, first intro-
duced in Section 6.1 of [21], has been investigated using more appropriate dynamical
variables inspired by [35] with a direct physical interpretation which lead to the system
(28), for which we have presented further results. The results of [35] for GR have been
extended to the Einstein-aether setup. In particular, we are interested in models which
are asymptotically vacuum and asymptotically flat, and which admit singularities. We
have found asymptotic expansions for all of the equilibrium points in the finite region.
We have shown that the Minkowski spacetime can be given in explicit spherically
symmetric form [35] irrespectively on the aether parameter. We have shown that we
can have nonregular self-similar perfect fluid solutions like those in [36–38], self-
similar plane-symmetric perfect fluid models and Kasner plane-symmetric vacuum
solutions [39]. We have discussed the existence of new solutions related with naked
singularities or with horizons. The line elements have been presented in explicit form.
In addition, we have discussed the dynamics at infinity and presented some numerical
results supporting our analytical results. In the next subsection we will summarize
all of the sources and sinks in the perfect fluid model. We have also investigated
Einstein-aether perfect fluid cosmological models and a scalar field with an exponen-
tial self-interaction potential (we shall study the case of a harmonic potential in the
Paper III [61]).
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In a subsequent paper [57], referred as Paper II, we present a singularity analysis
for these models. That is, we study if the gravitational field equations possesses the
Painleve property; consequently one can find if an analytic explicit integration can
be performed for the field equations. Then, we can apply the classical treatment for
the singularity analysis which is summarized in the ARS algorithm. Furthermore, it is
of interest the formulation of the modified Tolman–Oppenheimer–Volkoff equations
for perfect fluids with linear and polytropic equations of state in the Einstein-aether
theory, and the addition of scalar field with exponential or an harmonic potentials.
One special application which we are interested in is to use dynamical system tools
to determine conditions under which stable stars can form. By using the Tolman–
Oppenheimer–Volkoff (TOV) approach [36–38], the relativistic TOV equations are
drastically modified in Einstein-aether theory, and we can explore the physical impli-
cations of that modification. Then we can construct a 3D dynamical system in compact
variables and obtain a picture of the entire solution space for a linear EoS, that can
visualized in a geometrical way. This study can be extended to a wide class of EoS,
for example polytropic EoS. For higher dimensional systems we still can find infor-
mation by numerical integrations and the use of projections. The results obtained can
be inserted coherently into the physical models, obtaining an appropriate description
of the universe both in local and larger scales. More of this analysis can be found in
the paper [57].

5.1 Summary of relevant saddles

There are relevant equilibrium points which are saddle points:

1. The equilibrium point P+
3 represents the Minkowski spacetime in spherical sym-

metric form. For which we find the more familiar equations

Q = 1 − ε1e
2λ, S = 2

3
(ε2 − ε1)e

2λ, C = 1 − 4

2 + η
((1 − β)ε1 + ε2)e

2λ,

(79)

where ε1 and ε2 are still small constants (we assume they are positive), that repro-
duce equations (27a–27c) of [35] for β = 1. We see that ε = ε1

ε2
parametrize a

1-parameter family of regular solutions with an equation of state parameter at the
center:

pc
μc

= lim
λ→−∞

p

μ
= lim

λ→−∞
μ − μ0

(η − 1)μ
= lim

λ→−∞
C − Q2 + βS2

C(η − 1) − η + Q2 + β(η − 1)S2

= 2 − ε(2β + η)

ε(2β(η − 1) − 3η) + 2(η − 1)
.

The quotient, pc
μc

is a gravitational strength parameter. In GR where the param-

eter β = 1, the maximal value of the gravitational strength, 1
η+1 , is obtained

when ε1 = 0, which corresponds to the subset Q = 1. However, in the
Einstein-aether theory the parameter β is a freely specifiable parameter, and for

123



115 Page 32 of 57 A. Coley, G. Leon

η > 1, β >
3η

2η−2 ,
ε1
ε2

>
2η−2

2βη−2β−3η , the maximal strength is not pc
μc

= 1
η+1 any-

more as it is in GR.

We see that there exists solutions with a regular center but negative pressure, so
that we have to impose the condition

2 − ε(2β + η)

ε(2β(η − 1) − 3η) + 2(η − 1)
> 0,

that is:

(a) η > 1, β ≤ − η
2 , ε > 0, or

(b) η > 1,− η
2 < β ≤ 3η

2η−2 , 0 < ε < 2
2β+η

, or

(c) η > 1, β >
3η

2η−2 , 0 < ε < 2
2β+η

, or

(d) η > 1, β >
3η

2η−2 , ε >
2η−2

2βη−2β−3η .

This condition is reduced in GR, to η > 1, 0 < ε < 2
η+2 , when β = 1.

For C − (Q − S)2 > 0, the first and second Buchdahl conditions are satisfied at
the solution as λ → −∞, if

(β − 1)(η + 2)ε

ε(6β + η − 4) + 2(η − 1)
≥ 0,

η(η + 2)ε(μ0 + (η − 1)pc)

μ0(ε(6β + η − 4) + 2(η − 1))
≤ 1.

Additionally, taking the limit λ → −∞ we have

1

9

(
7C − 3Q2 + 3βS2

)
+2
√
C
(
C + 3Q2 − 3βS2

)− C

+(Q − S)2 → 40

9
> 0,

such that the third Buchdahl condition is also satisfied. Thus, combining these
conditions we have the conditions for the existence of regular solution at the
center associated to P+

3 .
2. The equilibrium point P+

4 generalizes the so called Tolman point (which corre-
sponds to β = 1), which now is promoted to a 1-parameter solution. This solution
exists for 0 ≤ β ≤ 1

8 (η + 2)2. Following the same method as for the analysis of
P+
3 we have explored approximated solutions related to P+

4 by constructing the
unstable manifold of this equilibrium point.
Case 1:
When λ2, λ3 are both reals and negative, that is whenever 63

64 < β ≤ 9
8 , 1 < η ≤

−2+ 8
√

β√
7
, or β > 9

8 , 2
√
2
√

β − 2 < −2+ η ≤ 8
√

β√
7
, we obtain that any solution

near the unstable manifold of P+
4 , satisfies
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Q = 1 − (η + 2)2(−4β + η(2η + 3) + 2)

2
(
(4β + η − 2)

(
(η + 2)2 − 8β

))εe
2ηλ
η+2 ,

S = 2

η + 2
− (η + 2)

(−8β2 − 2(η − 2)β + η(η + 2)2
)

2
(
β(4β + η − 2)

(
(η + 2)2 − 8β

)) εe
2ηλ
η+2 + O(ε2)e

4ηλ
η+2 ,

C = 1 − 8β

(η + 2)2
+ εe

2η
η+2λ + O(ε2)e

4ηλ
η+2 .

This expansion is accurate as long as λ → −∞.
Using this solution, we find

pc
μc

= lim
λ→−∞

C − Q2 + βS2

C(η − 1) − η + Q2 + β(η − 1)S2

= lim
λ→−∞

1

η − 1
−

ε

(

η(η + 2)4(−4β + η(2η + 3) + 2)e
2ηλ
η+2

)

4
(
β(η − 1)2(4β + η − 2)

(
(η + 2)2 − 8β

)) + O
(
ε2
)

= 1

η − 1
> 0.

Furthermore, the Buchdahl conditions that can be expressed as

1 ≥ −(η − 1)
(
C + βS2

)+ η − Q2

3
(
C − (Q − S)2

) ,

1 ≤ η
(
1 − Q2

)
(μ0 + (η − 1)pc)

3μ0
(
C − (Q − S)2

) ,

1

9

(
7C − 3Q2 + 3βS2

)
+ 2
√
C
(
C + 3Q2 − 3βS2

)− C + (Q − S)2 ≥ 0.

And as λ → −∞, applying the above conditions we have that the second one is
satisfied; and the first and third imply

β − βη

6β − 3(η + 1)
≥ 1,

4(7β + 9)

9(η + 2)2
+ 2

√(

4 − 20β

(η + 2)2

)(

1 − 8β

(η + 2)2

)

− 4

η + 2
+ 4

9
≥ 0.

These conditions are not satisfied for β = 1 (that is, for GR). But in AE-theory
β is a free parameter, such that the above inequalities can be satisfied for η >

1, 3η+3
η+5 ≤ β <

η+1
2 , 64β − 7(η + 2)2 ≥ 0.

Case 2:
For the choice 0 < β ≤ 63

64 , η > 1, or β > 63
64 , η > −2 + 8

√
β√
7
, the eigenvalues

λ2, λ3 are complex conjugates with negative real part. We obtain that any solution
near the unstable manifold of P+

4 satisfies
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Q = 1 − (η + 2)2(−4β + η(2η + 3) + 2)

2(4β + η − 2)
(
8β − (η + 2)2

) εe
2ηλ
η+2 ,

S = 2

η + 2
+ (η + 2)ε

(−8β2 − 2β(η − 2) + η(η + 2)2
)
e

2ηλ
η+2

2β(4β + η − 2)
(
8β − (η + 2)2

) + O(ε2)e
4ηλ
η+2 ,

C = 1 − 8β

(η + 2)2
+ εe

2ηλ
η+2 + O(ε2)e

4ηλ
η+2 ,

wherewe have substituted the approximated solution u1 = εe
2η

η+2λ, that is obtained
by integrating the linearized equation along the unstable direction. This expan-
sion is accurate as long as λ → −∞. At the stable manifold the orbits spiral

in and tend asymptotically to the origin with modes cos(
√

7(η+2)2−64β
2(η+2) λ)e− λ

2 ,

sin(
√

7(η+2)2−64β
2(η+2) λ)e− λ

2 .

We have the estimates

pc
μc

= lim
λ→−∞

C − Q2 + βS2

C(η − 1) − η + Q2 + β(η − 1)S2

= lim
λ→−∞

1

η − 1
+ η(η + 2)4ε

(−4β + 2η2 + 3η + 2
)
e

2ηλ
η+2

4β(η − 1)2(4β + η − 2)
(−8β + η2 + 4η + 4

) + O
(
ε2
)

= 1

η − 1
> 0.

Furthermore, for C − (Q − S)2 > 0, the Buchdahl conditions reduce to

2(β − 1)β

−2β + η + 1
+ β ≤ 3, 2βμ0 ≥ (η + 1)μ0,

9
√
40β2 − 13β(η + 2)2 + (η + 2)4 + 7β + η2 − 5η − 5

2β − η − 1
≤ 0,

as λ → −∞, respectively.
That is, when 1 < η ≤ 1.04725, β < 1

64

(
7η2 + 28η + 28

)
, μ0 ≤ 0 or η >

1.04725, β ≤ 3η+3
η+5 , μ0 ≤ 0. We are assuming μ0 ≥ 0, therefore the conditions

are fulfilled if μ0 = 0.

5.2 Summary of sources and sinks

5.2.1 Perfect fluid

For this analysis we have used the formulation {Q, S,C} given by the model (28),
which represents the evolution of a perfect fluid has the EoSμ = μ0+(η − 1) p, η >

1 in the static Eistein-aether theory. We have found the following summary of sources/
sinks:
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1. P+
1 is a source for β = 1, 1 ≤ η < 2. Since the conditions (93) are fulfilled

this solution has a regular center as λ → −∞. Because of C = 0 it belongs to
the plane-symmetric boundary set. Furthermore, it belongs to the scale invariant
boundary Q = +1.

2. P−
1 is a sink for β = 1, 1 ≤ η < 2. Because of C = 0 it belongs to the plane-

symmetric boundary set. Furthermore, it belongs to the scale invariant boundary
Q = −1. Since the conditions (94) are fulfilled this solution is asymptotically flat
as λ → +∞.

3. P+
2 is a source for β = 1, η ≥ 1. Since the first inequality of (93) is not fulfilled,

this solution does not have a regular center. Because of C = 0 it belongs to
the plane-symmetric boundary set. Furthermore, it belongs to the scale invariant
boundary Q = +1.

4. P−
2 is a sink for β = 1, η ≥ 1. Because ofC = 0 it belongs to the plane-symmetric

boundary set. Furthermore, it belongs to the scale invariant boundary Q = −1.
This solution is not asymptotically flat since the conditions (94) are not fulfilled
as λ → +∞.

5. P+
2 is a sink for β = − η+2

4 ≤ 1, η ≥ 1. Because of C = 0 it belongs to the plane-
symmetric boundary set. Furthermore, it belongs to the scale invariant boundary
Q = +1. This solution is not asymptotically flat since the conditions (94) are not
fulfilled as λ → +∞.

6. P−
2 is a source for β = − η+2

4 ≤ 1, η ≥ 1. Since the first inequality of (93) is
not fulfilled, this solution does not have a regular center as λ → −∞. Because of
C = 0 it belongs to the plane-symmetric boundary set. Furthermore, it belongs to
the scale invariant boundary Q = −1.

7. P+
5 is a sink for η ≥ 1, β < 0. Because ofC = 0 it belongs to the plane-symmetric

boundary set. Furthermore, it belongs to the scale invariant boundary Q = −1.
Furthermore, it belongs to the scale invariant boundary Q = +1. This solution is
not asymptotically flat since the conditions (94) are not fulfilled as λ → +∞.

8. P−
5 is a source for η ≥ 1, β < 0. Since the conditions (93) are not fulfilled, this

solution does not have a regular center as λ → −∞. Because of C = 0 it belongs
to the plane-symmetric boundary set. Furthermore, it belongs to the scale invariant
boundary Q = −1.

9. P+
6 is a source for η ≥ 1, 16β ≥ (η+2)2. It has a regular center as λ → −∞ only

when β = 1 (i.e., when this point coincides with P+
1 ). Otherwise the conditions

(93) are not fulfilled, and the solution does not have a regular center as λ → −∞.
Because of C = 0 it belongs to the plane-symmetric boundary set. Furthermore,
it belongs to the scale invariant boundary Q = +1.

10. P−
6 is a sink for η ≥ 1, 16β ≥ (η+2)2. Because of C = 0 it belongs to the plane-

symmetric boundary set. Furthermore, it belongs to the scale invariant boundary
Q = −1. It is not asymptotically flat as λ → +∞ unless β = 1 (i.e., when P−

6
merge with P−

1 ).
11. P+

7 is a source for η ≥ 1, β > 0. The conditions (93) are not fulfilled, and the
solution does not have a regular center as λ → −∞. Because of C = 0 it belongs
to the plane-symmetric boundary set. Furthermore, it belongs to the scale invariant
boundary Q = +1.
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12. P−
7 is a sink for η ≥ 1, β > 0. Because ofC = 0 it belongs to the plane-symmetric

boundary set. Furthermore, it belongs to the scale invariant boundary Q = −1.
13. P+

8 is a sink for β < 0. It is not asymptotically flat as λ → +∞.
14. P−

8 is a source for β < 0. It has a regular center as λ → −∞ if η > 1, β <

0, μ0 > 0, pc ≥ μ0(6β−βη−3)
βη(η−1) .

5.2.2 Perfect fluid plus a scalar field with exponential potential

On the other hand, we have taken a natural extension of the previous analysis, as in
the General Relativistic case [55], by studying the model (72), which corresponds
to a stationary comoving aether with perfect fluid and scalar field with exponential
potential in a static metric. And we have presented the following summary of sources/
sinks:

1. P+
5 is a sink for β < 0, η ≥ 1.

2. P−
5 is source for β < 0, η ≥ 1.

3. P+
8 is non-hyperbolic with a 4D stable manifold.

4. P−
8 is non-hyperbolic with a 4D unstable manifold.

5. The following subsets (arcs, or specific equilibrium points) of the line P+
10(Sc) are

unstable for the given conditions:

(a) Sc < 0, β < 1
Sc2

, η > 1, k <

√
−2Sc2+8Sc−8

βSc2−1
, or

(b) Sc < 0, β = 1
Sc2

, η > 1, k ∈ R, or

(c) Sc = 0, β ∈ R, η > 1, k < 2
√
2, or

(d) 0 < Sc < 4
3 , β < 1

Sc2
, 1 < η < 4−2Sc

Sc
, k <

√
−2Sc2+8Sc−8

βSc2−1
, or

(e) 0 < Sc < 4
3 , β = 1

Sc2
, 1 < η < 4−2Sc

Sc
, k ∈ R.

6. The following subsets (arcs, or specific equilibrium points) of the line P−
10(Sc) are

stable for the given conditions:

(a) Sc < 0, β < 1
Sc2

, η > 1, k <

√
−2Sc2+8Sc−8

βSc2−1
, or

(b) Sc < 0, β = 1
Sc2

, η > 1, k ∈ R, or

(c) Sc = 0, β ∈ R, η > 1, k < 2
√
2, or

(d) 0 < Sc < 4
3 , β < 1

Sc2
, 1 < η < 4−2Sc

Sc
, k <

√
−2Sc2+8Sc−8

βSc2−1
, or

(e) 0 < Sc < 4
3 , β = 1

Sc2
, 1 < η < 4−2Sc

Sc
, k ∈ R.

7. The following subsets (arcs, or specific equilibrium points) of the line P+
11(Sc) are

unstable for the given conditions:

(a) Sc < 0, β < 1
Sc2

, η ≥ 1, k > −√
2

√

− Sc2−4Sc+4
βSc2−1

, or

(b) Sc < 0, β = 1
Sc2

, η ≥ 1, k ∈ R, or
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(c) Sc = 0, β ∈ R, η ≥ 1, k > −2
√
2, or

(d) 0 < Sc < 4
3 , β < 1

Sc2
, 1 ≤ η < 4−2Sc

Sc
, k > −√

2

√

− Sc2−4Sc+4
βSc2−1

, or

(e) 0 < Sc < 4
3 , β = 1

Sc2
, 1 ≤ η < 4−2Sc

Sc
, k ∈ R.

8. The following subsets (arcs, or specific equilibrium points) of the line P−
11(Sc) are

stable for the given conditions:

(a) Sc < 0, β < 1
Sc2

, η ≥ 1, k > −√
2

√

− Sc2−4Sc+4
βSc2−1

, or

(b) Sc < 0, β = 1
Sc2

, η ≥ 1, k ∈ R, or

(c) Sc = 0, β ∈ R, η ≥ 1, k > −2
√
2, or

(d) 0 < Sc < 4
3 , β < 1

Sc2
, 1 ≤ η < 4−2Sc

Sc
, k > −√

2

√

− Sc2−4Sc+4
βSc2−1

, or

(e) 0 < Sc < 4
3 , β = 1

Sc2
, 1 ≤ η < 4−2Sc

Sc
, k ∈ R.

9. P+
12 is non-hyperbolic with a 4D unstable for

(a) β < 0, η ≥ 1, k > −√
2

√
(8β−η−2)2

β(16β−η2−4η−4)
, or

(b) β > 9
16 , 1 ≤ η < 2

(
2
√

β − 1
)
, k <

√
2

√
(8β−η−2)2

β(16β−η2−4η−4)
.

10. P−
12 is non-hyperbolic with a 4D stable manifold for

(a) β < 0, η ≥ 1, k > −√
2

√
(8β−η−2)2

β(16β−η2−4η−4)
, or

(b) β > 9
16 , 1 ≤ η < 2

(
2
√

β − 1
)
, k <

√
2

√
(8β−η−2)2

β(16β−η2−4η−4)
.

11. P+
13 is non-hyperbolic with a 4D unstable manifold for

(a) β < 0, η ≥ 1, k <
√
2

√
(8β−η−2)2

β(16β−η2−4η−4)
, or

(b) β > 9
16 , 1 ≤ η < 2

(
2
√

β − 1
)
, k > −√

2

√
(8β−η−2)2

β(16β−η2−4η−4)
.

12. P−
13 is non-hyperbolic with a 4D stable manifold for

(a) β < 0, η ≥ 1, k <
√
2

√
(8β−η−2)2

β(16β−η2−4η−4)
, or

(b) β > 9
16 , 1 ≤ η < 2

(
2
√

β − 1
)
, k > −√

2

√
(8β−η−2)2

β(16β−η2−4η−4)
.

13. P+
16 is a source for

(a) η ≥ 1, 0 < β <
η+2
8 ,−

√
η
β

< k < −2
√
2
√

η2

−16β+η2+4η+4
, or
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(b) η ≥ 1, 0 < β <
η+2
8 , 2

√
2
√

η2

−16β+η2+4η+4
< k <

√
η
β
.

14. P−
16 is a sink for

(a) η ≥ 1, 0 < β <
η+2
8 ,−

√
η
β

< k < −2
√
2
√

η2

−16β+η2+4η+4
, or

(b) η ≥ 1, 0 < β <
η+2
8 , 2

√
2
√

η2

−16β+η2+4η+4
< k <

√
η
β
.

15. P+
18 is a source for

(a) η ≥ 1, β < 0, k < −√
2
√

4β−1
β

, or

(b) η ≥ 1, β < 0, k >
√
2
√

4β−1
β

, or

(c) η ≥ 1, 0 < β ≤ η+2
8 , k < −

√
η
β
, or

(d) η ≥ 1, 0 < β ≤ η+2
8 , k >

√
η
β
, or

(e) η ≥ 1, β >
η+2
8 , k < −√

2
√

4β−1
β

, or

(f) η ≥ 1, β >
η+2
8 , k >

√
2
√

4β−1
β

.

16. P−
18 is a sink for

(a) η ≥ 1, β < 0, k < −√
2
√

4β−1
β

, or

(b) η ≥ 1, β < 0, k >
√
2
√

4β−1
β

, or

(c) η ≥ 1, 0 < β ≤ η+2
8 , k < −

√
η
β
, or

(d) η ≥ 1, 0 < β ≤ η+2
8 , k >

√
η
β
, or

(e) η ≥ 1, β >
η+2
8 , k < −√

2
√

4β−1
β

, or

(f) η ≥ 1, β >
η+2
8 , k >

√
2
√

4β−1
β

.

5.3 Universal horizons

In the Einstein-aether theory there are spherical black hole solutions formed by grav-
itational collapse for all viable parameter values of the theory. However, due to the
Lorentz-violating nature of the theory, these solutions are quite different from the
standard black holes in GR, since the broken Lorentz invariance completely modifies
the causal structure of gravity, and the Killing horizon does not capture the notion
of the causal boundary. Indeed, Lorentz-violating theories now admit superluminal
excitations, which can cross the Killing horizon and escape to spatial infinity. In
some particular Lorentz-violating theories, like the Einstein-aether theory, the static,
spherically-symmetric, black hole solutions contain a special hypersurface called the
“universal horizon” that acts as a genuine causal boundary because it traps all exci-
tations, even those which could be traveling at arbitrarily high velocities [43,66].
Consequently, still there is a causally disconnected region in black hole solutions but
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now being bounded by a universal horizon not far inside the metric horizon, so that a
notion of black hole persists [43,67].

For studying the causal structure of spacetimes with a causally preferred folia-
tion, a framework was developed that allows for rigorously defined concepts such as
black/white holes and also formalizes the notion of a universal horizon introduced pre-
viously in the simpler setting of static and spherically symmetric geometries [67]. The
question of what happens to the universal horizon in the extremal limit, where no such
region exists any longer, has also been investigated [68]. In addition, Hawking radia-
tion has been found to be associated with the universal horizon. These absolute causal
boundaries are not Killing horizons but still obey a first law of black hole mechanics
[69] andmust consequently have an entropy if they do not violate a generalized second
law. At these horizons, the Hawking radiation is thermal with a temperature propor-
tional to its surface gravity. The viability of the first law (and hence a thermodynamical
interpretation) has been studied for several known exact universal horizon solutions
[70] and calculations do, indeed, appear to predict the emission of a thermal flux [71].

Therefore, there are absolute causal boundaries in gravitational theorieswith broken
Lorentz invariance, in which there exists a surface located at a finite r = ruh called a
universal horizon (and which always lies inside the Killing horizon) which acts like
a one-way membrane, so that particles even with infinitely large speed cannot escape
from it once they are inside it. In stationary spacetimes it has been shown that the
universal horizon can be characterized by the local coordinate and gauge invariant
condition

uaξ
a = 0 at r = ruh, (80)

where ξa denotes the asymptotically time-likeKilling vector associatedwith stationar-
ity and ua is the four-velocity of the aether [67,72]. Since ua is time-like by definition,
the condition uaξa = 0 can only be satisfied in the region of the spacetime where ξa

is spacelike.
Unfortunately, the gauge and coordinates used in the qualitative analysis in this

paper are not well suited for studying the possible existence of a universal horizon
unless, due to a topological pathology, it is located at r = 0 (λ → −∞) or r → ∞
(λ → −∞) and characterized by one of the equilibrium points studied earlier. Here
we are interested in N (ruh) = 0 at finite r = ruh . Assuming that N is analytic at
r = ruh , we can write N = (r − ruh)n

2
f (r), where f (r) = a2 + b(r − ruh) + · · ·

close to r = ruh , so that

y = r
N ′

N
= n2ruh

(r − ruh)
+ · · · → ∞ (81)

as r → ruh . We can study the behavior of N in terms of the variables σ = y and
θ = y − x subject to the constraint (67) or the normalized variables defined by eqn.
(25), e.g.,
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S = σ
√

μ0
η

+ θ2
= 1
√

μ0
ηy2

+
(
1 − x

y

)2
, (82)

and subject to the constraint

1 − C − βS2 ≥ 0, (83)

where C ≥ 0, so that Q, S,C are all bounded when β > 0. Combining all of the
restrictions we find as r → ruh :

1. If x → cy: then (c − 1)2 − β > 0. If c = 1, then β is necessarily negative
and S → ∞. If c 	= 1, then S → S0, where S0 is defined in terms of the other
parameters, and p + K diverges (and assuming that p does not diverges at an
horizontal horizon, this implies that K → ∞).

2. If x � y: x2 � p + K diverges and S → 0 (and C bounded with C < 1); note
that equilibrum point P3 has S = 0,C = 1.

3. If y � x : S → 1, and β ≤ 1; for the GR value β = 1, C → 0.
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A Regularity conditions

In this appendix are summarized some regularity conditions that must satisfy the
relevant physical solutions, especially if they are expected to be used as star models.

A.1 Perfect fluid with linear equation of state

A.1.1 Conditions for regularity at the origin and asymptotic flatness

Using the coordinate change (t, r) → (t, ρ), where ρ is a new radial coordinate, such
that the line element

ds2 = −N 2(r)dt2 + r−2dr2 + K−1(r)(dϑ2 + sin2 ϑdϕ2), (84)

becomes

ds2 = −N (r(ρ))2dt2 + dρ2

1 − 2m(ρ)
ρ

+ ρ2(dϑ2 + sin2 ϑdϕ2), (85)
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we have the identifications

K = ρ−2, (86)

dr

r
= dρ
√
1 − 2m(ρ)

ρ

, (87)

where m(ρ) denotes the mass up to the radius ρ.
Then, we define the Misner–Sharp mass [73]

M (ρ) := m(ρ)

ρ
= C − (Q − S)2

2C
. (88)

As a first approach, we impose regularity at the center, that is, as λ → −∞, by
extrapolating the conditions for relativistic stars as given by the Buchdahl inequalities
[74,75], which in units where 8πG = 1 are expressed as

M ≥ 1

6
ρ2μ, M ≤ 1

6
ρ2μc, M ≤ 2

9

(

1 − 3

4
ρ2 p +

√

1 + 3

4
ρ2 p

)

, (89)

where μc is the energy density at the center of the star and ρ is a radial variable.
To find the generalized regularity conditions we have to integrate the full equations
which determine the star’s structure and the geometry in the static spherically sym-
metric Einstein-aether theory for a perfect fluid starting from the center ρ = 0 with
central density μc, out to the surface ρ = ρ∗ where the pressure vanishes. That is, we
have to consider the boundary conditions

p(0) = p(ρc) = pc, m(0) = 0, e2φ(ρ∗) = 1 − 2
m(ρ∗)

ρ∗
(90)

and follow the same strategy to find estimates for the mass as in [74,75]. Because we
have assumed the linear equation of state μ = μ0 + (η − 1)p, the energy density at
the surface of zero pressure is μ0. The central energy density and central pressure are
related through μc = μ0 + (η − 1)pc.

Notice the additional relations for the radial coordinate;

ρ2 = η(1 − Q2)

μ0C
, (91)

and for the matter energy density:

μ := μ0 + (η − 1)p = μ0
(
η − Q2 − (η − 1)(C + βS2)

)

η
(
1 − Q2

) . (92)
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1. Thus, the Buchdahl conditions (89) can be expressed in terms of the variables
Q, S,C , as

η − Q2 − (η − 1)(C + βS2)

3
≤ C − (Q − S)2

≤ min

{
η(1 − Q2 (μ0 + (η − 1)pc))

3μ0
,
1

9

((
7C − 3Q2 + 3βS2

)
+ 2
√
C
(
C + 3Q2 − 3βS2

)
)}

,

(93)

as λ → −∞, where pc is the central pressure of the star.
2. Asymptotic flatness as ρ → +∞ or, equivalently, as λ → +∞:

lim
λ→+∞[C − (Q − S)2] = 0, lim

λ→+∞[Q2 − C − βS2] = 0. (94)

Thefirst condition corresponds to limλ→+∞ M = 0.The second condition implies
from (36) that

lim
λ→+∞ eφ = α,

and that the surface of zero pressure is reached. The constant α is absorbed by a
time redefinition. This means that asymptotically we obtain theMinkowski metric.

3. From the relations (29), vacuum (μ0 = 0, μ = 0, p = 0) corresponds to

Q2 = 1, C + βS2 = 1. (95)

A.1.2 Stars

To obtain physically reasonable spherically symmetric models with non-negative
pressure one matches each interior solution with the exterior Schwarzschild vacuum
solution

ds2 = −
(

1 − 2M

ρ

)

dt2 + dρ2
(
1 − 2M

ρ

) + ρ2(dϑ2 + sin2 ϑdϕ2). (96)

when the radius, ρ∗ =
√

η(1−Q∗2)
μ0(Q∗2−βS∗2)

, where the pressure becomes zero.5 When

the radio ρ∗ is reached, 1−Q∗2
1−C∗−βS∗2

= 1, eφ = α. This fixes α = √
1 − 2M/R =

√
(Q∗−S∗)2
Q2∗−βS2∗

, where M is the total mass of the star as given by

M = S∗(2Q∗ − (β + 1)S∗)
2
(
Q2∗ − βS2∗

)

√
η(1 − Q∗2)

μ0(Q∗2 − βS∗2)
. (97)

5 In our set up, the solutions in their way from Q = +1 to Q = −1, all intersect the surface of vanishing
pressure C + βS2 − Q2 = 0 at an interior point (Q∗, S∗,C∗).
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The interior solution (evaluated at the surface of zero pressure)

ds2 = − (Q∗ − S∗)2

Q∗2 − βS∗2
dt2 + Q∗2 − βS∗2

(Q∗ − S∗)2
dρ2 + ρ2(dϑ2 + sin2 ϑdϕ2). (98)

is matched at ρ = ρ∗ with the static vacuum spacetime described by (96).

B Equilibrium points in the finite region of the phase space for a
perfect fluid with linear equation of state

We now try to find some asymptotic expansions for all the equilibrium points of (28).
By convenience, we introduce the radial rescaling r = e�, such that � → −∞ as
r → 0 and � → ∞ as r → ∞. Hence, Eq. (84) becomes

ds2 = −N 2(�)dt2 + d�2 + K−1(�)(dϑ2 + sin2 ϑdϕ2), (99)

The equilibrium points of the system (28) are

1. P±
1 : (Q, S,C) = (±1,±1, 0) exist for β = 1 or β = η+2

4 ≤ 0. For
β = 1, 1 ≤ η < 2, P+

1 (respectively, P−
1 ) is a source (respectively, a sink);

for β = 1, η > 2, P±
1 are saddles and for β = η+2

4 ≤ 0, P±
1 are saddles.

On substitution of the values of Q and S into (34a), (34b) and integration we
obtain N = N̄0e±λ and K = K̄0 = constant. After we evaluate the values of

Q, S,C in (26) and (34c), it follows that d�
dλ

= ± 1
y and dy

dλ
=
{∓1, β = 1

∓ η
2 , β = η+2

4
.

Then, y(λ) =
{
c1e−λε, β = 1

c1e− 1
2 ηλε, β = η+2

4

, �(λ) =
⎧
⎨

⎩

eλε

c1
+ c2, β = 1

2e
ηλε
2

c1η
+ c2, β = η+2

4

, where

ε = ±1 and c1, c2 are constants of integration integration. For β = 1 the
metric becomes ds2 = −N̄ 2

0 e
±2λdt2 + e±2λ

c21
dλ2 + K̄−1

0 (dϑ2 + sin2 ϑdϕ2)

or ds2 = −N̄ 2
0 c

2
1ρ

2±dt2 + dρ2± + K̄−1
0 (dϑ2 + sin2 ϑdϕ2) under the coordi-

nate transformation ρ± = e±λ

c1
. They correspond to P±

1 in [35], which are

the Kasner’s plane-symmetric vacuum solutions [39]. For β = η+2
4 ≤ 0 the

metric becomes ds2 = −N̄ 2
0 e

±2λdt2 + e±ηλ

c21
dλ2 + K̄−1

0 (dϑ2 + sin2 ϑdϕ2) or

ds2 = −N̄ 2
0 c

4
η

1 ρ
4
η

±dt2 + 4
η2
dρ2± + K̄−1

0 (dϑ2 + sin2 ϑdϕ2) under the coordinate

transformation ρ± = e± η
2 λ

c1
. In this case the Ricci scalar is R = (η−2)

ρ2±
+2K̄0. Thus

for η 	= 2 there is a naked singularity at ρ± = 0+.
2. P±

2 : (Q, S,C) = (±1,∓1, 0) exist for β = 1 or 4β + η + 2 = 0, β ≤ 1.
For β = 1, η ≥ 1, P+

2 (respectively, P−
2 ) is a source (respectively, a sink). For

4β + η + 2 = 0, β ≤ 1, η ≥ 1, P+
2 (respectively, P−

2 ) is a sink (respectively, a
source). On substitution of the values of Q and S into (34a), (34b) and integration
we obtain N = N̄0e∓λ and K = K̄0e∓4λ. After we evaluate the values of Q, S,C
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in (26) and (34c), it follows that d�
dλ

= ∓ 1
y and dy

dλ
=
{∓3, β = 1

± η
2 , 4β + η + 2 = 0

.

Then, y(λ) =
{
c1e−3λε, β = 1

c1e
ηλε
2 , 4β + η + 2 = 0

,

�(λ) =
⎧
⎨

⎩

c2 − e3λε

3c1
, β = 1

2e− 1
2 ηλε

c1η
+ c2, 4β + η + 2 = 0

, where ε = ±1 and c1, c2 are constants

of integration. For β = 1 the metric becomes ds2 = −N̄ 2
0 e

∓2λdt2 + e±6λ

c21
dλ2 +

K̄−1
0 e±4λ(dϑ2+sin2 ϑdϕ2) or ds2 = − N̄2

0
ρ± dt

2+ ρ±
4c21

dρ2±+ ρ2±
K̄0

(dϑ2+sin2 ϑdϕ2)

under the coordinate transformation ρ± = e±2λ. The Ricci Scalar becomes

R = 2K̄0
ρ2±

. Thus at ρ± = 0+ we have a singularity. The equilibrium points P±
2

correspond to P±
2 in [35], which are the Kasner’s plane-symmetric vacuum solu-

tions [39]. For 4β + η + 2 = 0 the metric becomes ds2 = −N̄ 2
0 e

∓2λdt2 +
e∓ηλ

c21
dλ2 + K̄−1

0 e±4λ(dϑ2 + sin2 ϑdϕ2) or ds2 = − N̄2
0

ρ± dt
2 + ρ

− (4+η)
2±

4c21
dρ2± +

ρ2±
K̄0

(dϑ2 + sin2 ϑdϕ2) under the coordinate transformation ρ± = e±2λ. The Ricci

Scalar becomes R = 2K̄0
ρ2±

− 3
4c

2
1(η + 6)ρη/2

± . Thus at ρ± = 0+ and at ρ± = +∞
we have singularities.

3. P±
3 : (Q, S,C) = (±1, 0, 1), always exist and are saddles. When we substitute

the values of Q and S into (34a), (34b) and integrate, we obtain N = N̄0 =
constant and K = K̄0e∓2λ. From (26) and the definition ofC it follows that d�2 =
K−1dλ2. Thus the line element (14) becomes ds2 = −N̄ 2

0 dt
2 + K̄−1

0 e±2λdλ2 +
K̄−1
0 e±2λ

(
dϑ2 + sin2 ϑdϕ2

)
. Defining ρ± = e±λ√

K̄0
, we get ds2 = −N̄ 2

0 dt
2 +

dρ2± + ρ2±
(
dϑ2 + sin2 ϑdϕ2

)
, which corresponds to Minkowski spacetime on

explicitly spherically symmetric form [35]. These points are the analogues of P±
3

investigated in [35].

4. P±
4 : (Q, S,C) =

(
±1,± 2

η+2 , 1 − 8β
(η+2)2

)
exist for η ≥ 1, 0 ≤ β ≤ 1

8 (η + 2)2

and are saddles. When we substitute the values of Q and S into (34a), (34b)

and integrate, we obtain N = N̄0e
± 2λ

2+η and K = K̄0e
∓ 2ηλ

2+η . From (26) and

the definition of C it follows that d�2 = 1
K̄0

(
1 − 8β

(η+2)2

)
e± 2ηλ

2+η dλ2. Thus the

line element (14) becomes ds2 = −N̄ 2
0 e

± 4λ
2+η dt2 + 1

K̄0

(
1 − 8β

(η+2)2

)
e± 2ηλ

2+η dλ2 +
1
K̄0

e± 2ηλ
2+η
(
dϑ2 + sin2 ϑdϕ2

)
. Defining ρ± = 1√

K̄0
e± ηλ

2+η , T = N̄0 K̄
1
η

0 t , we

obtain ds2 = −ρ
4
η

±dT 2 +
(

(η+2)2−8β
η2

)
dρ2± + ρ2±

(
dϑ2 + sin2 ϑdϕ2

)
. For β = 1

these points are the analogues of P±
4 investigated in [35], which corresponds to a

nonregular self-similar perfect fluid solution discussed in [36–38]. One interest-
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ing feature is that following the ARS algorithm, the dominant terms found in the
previous part of this Section correspond to the points P±

4 .

5. P±
5 : (Q, S,C) =

(
±1,± η+2

4β , 0
)
exist for η ≥ 1, β < 0 or η > 1, 16β ≥

(η+2)2. P+
5 (respectively, P−

5 ) is a sink (respectively, a source) for η ≥ 1, β < 0.
Otherwise they are saddles. When we substitute the values of Q and S into (34a),

(34b) and integrate, we obtain N = N̄0e
± (η+2)λ

4β and K = K̄0e
∓2
(
1− η+2

4β

)
λ
.

From (26) and the definition of S it follows that d�
dλ

= ± η+2
4β y . On the other

hand, when we evaluate the values of Q, S,C in (34c), it follows that dy
dλ

=
∓ η(η+2)

8β y. Then we have y(λ) = c1e
− η(η+2)λε

8β , �(λ) = 2e
η(η+2) λε

8β

c1η
+ c2, where

ε = ±1 and c1, c2 are constants of integration. The metric (14) becomes ds2 =
−N̄ 2

0 e
± (η+2)λ

2β dt2 + (η+2)2e
± η(η+2)λ

4β

16c21β
2 dλ2 + K̄−1

0 e
±2
(
1− η+2

4β

)
λ
(dϑ2 + sin2 ϑdϕ2). On

the introduction of ρ± = e
±
(
1− η+2

4β

)
λ
the line element becomes−N̄ 2

0ρ

2(η+2)
4β−η−2
± dt2+

(η+2)2

2c21(4β−η−2)2
ρ

− 16β−η2−6η+24
2(4β−η−2)

± dρ2± + ρ2±
K̄0

(dϑ2 + sin2 ϑdϕ2). For β = 1 these solu-

tions are the analogues of P±
5 investigated in [35], which correspond to self-similar

plane-symmetric perfect fluid models. For η ≥ 1, 16β ≥ (η +2)(η +4) the expo-
nent of the t t component is positive and the exponent of the ρ±ρ± component is
negative. Thus the singularity has an horizon at ρ± = 0+.

6. P±
6 : (Q, S,C) =

(
±1,± 1√

β
, 0
)
. They exist for η ≥ 1, β > 0. P+

6 (respec-

tively, P−
6 ) is a source (respectively, a sink) for η ≥ 1, 16β ≥ (η + 2)2. They

are saddles for η ≥ 1, 0 < β < 1
4 or η ≥ 1, 1

4 < β < 1
16 (η + 2)2. Other-

wise they are non-hyperbolic. When we substitute the values of Q and S into

(34a), (34b) and integrate, we obtain N = N̄0e
± λ√

β and K = K̄0e
∓ 2(

√
β−1)λ√
β .

From (26) and the definition of S it follows that d�
dλ

= ± 1
y
√

β
. On the other

hand, when we evaluate the values of Q, S,C in (34c), it follows that dy
dλ

=

± 1−2
√

β√
β

y. Then y(λ) = c1e

(
− 1√

β
−2
)
λε

, �(λ) = c2 − e

(
1√
β

+2

)

λε

c1(2
√

β+1)
, where ε = ±1

and c1, c2 are constants of integration. The line element (14) becomes ds2 =
−N̄ 2

0 e
± 2λ√

β dt2 + e
± 2(2

√
β+1)λ√
β

c21β
dλ2 + K̄−1

0 e
± 2(

√
β−1)λ√
β (dϑ2 + sin2 ϑdϕ2). Under the

transformation ρ± = e
± (

√
β−1)λ√

β , the metric becomes ds2 = −N̄ 2
0ρ

2(1+√
β)

β−1
± dt2 +

ρ

2(2+β+3
√

β)
β−1

±
c21(1+β−2

√
β)
dρ±2 + ρ2±

K̄0
(dϑ2 + sin2 ϑdϕ2). Because the exponents of the t t and

ρ±ρ± components are of the same sign for β > 0, ρ± = 0+ is a naked sin-
gularity. For β = 1 these points correspond to P±

1 in [35], which are Kasner’s
plane-symmetric vacuum solutions [39].
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7. P±
7 : (Q, S,C) =

(
±1,∓ 1√

β
, 0
)
exist for η ≥ 1, β > 0. P+

7 (respectively, P−
7 )

is a source (respectively, a sink) for η ≥ 1, β > 0. When we substitute the

values of Q and S in (34a), (34b) and integrate, we obtain N = N̄0e
∓ λ√

β and

K = K̄0e
∓ 2(1+√

β)λ√
β . From (26) and the definition of S it follows that d�

dλ
= ∓ 1

y
√

β
.

On the other hand, when we evaluate the values of Q, S,C in (34c), it follows

that dy
dλ

= ∓ 1+2
√

β√
β

y. Then y(λ) = c1e

(
− 1√

β
−2
)
λε

, �(λ) = c2 − e

(
1√
β

+2

)

λε

c1(2
√

β+1)
, where

ε = ±1. The line element (14) becomes ds2 = −N̄ 2
0 e

∓ 2λ√
β dt2+ e

± 2(1+2
√

β)λ√
β

c21β
dλ2+

K̄−1
0 e

± 2(1+√
β)λ√

β (dϑ2+sin2 ϑdϕ2). Under the change of variables ρ± = e
± (1+√

β)λ√
β ,

the metric becomes−N̄ 2
0ρ

2(1−√
β)

β−1
± dt2+ ρ

2(β−√
β)

β−1
±

c21(1+β+2
√

β)
dρ2± + ρ2±

K̄0
(dϑ2+sin2 ϑdϕ2).

As the exponents of the t t and ρ±ρ± components are both negative for β > 0,
ρ± = 0+ is a naked singularity. For β = 1 these points correspond to P±

2 in [35]
and these are the Kasner’s plane-symmetric vacuum solutions [39].

8. P±
8 : (Q, S,C) =

(
± 1√

1−β
,± 1√

1−β
,
2β−1
β−1

)
. They exist for β ≤ 0. P+

8 (respec-

tively, P−
8 ) is a sink (respectively, a source) for β < 0. When we substitute the

values of Q and S into (34a), (34b) and integrate, we obtain N = N̄0e
± λ√

1−β ,
and K = K̄0 = constant. From (26) and the definition of Q it follows

that d�2 = η
μ0

(
β

β−1

)
dλ2. The metric becomes ds2 = −N̄ 2

0 e
± 2λ√

1−β dt2 +
η
μ0

(
β

β−1

)
dλ2+ K̄−1

0 (dϑ2+sin2 ϑdϕ2).These are regular solutionswith constant

curvature R = 2
(

μ0
βη

+ K̄0

)
for β < 0.

9. P±
9 : (Q, S,C) =

(
±2

√
β,± 1√

β
, 0
)
exist for η ≥ 1, 0 < β ≤ 1

4 . They are saddles

for η ≥ 1, 0 < β ≤ 1
4 and non-hyperbolic forβ = 1

4 (numerically it is the saddle in
Fig. 1f). When we substitute the values of Q and S into (34a), (34b) and integrate,

we obtain N = N̄0e
± λ√

β and K = K̄0e
∓ 2(2β−1)λ√

β . For β < 1
4 it follows from (26)

and the definition of Q that d�2 = η
μ0

(1−4β)dλ2. The line element (14) becomes

ds2 = −N̄ 2
0 e

± 2λ√
β dt2 + η

μ0
(1 − 4β)dλ2 + K̄−1

0 e
± 2(2β−1)λ√

β (dϑ2 + sin2 ϑdϕ2).

Under the change of variables ρ± = 1√
K̄0

e
± (2β−1)λ√

β , T = N̄0 K̄
1

2(2β−1)
0 t , the metric

becomes ds2 = −ρ
2

2β−1
± dT 2 + η(1−4β)β

μ0(2β−1)2
dρ2±
ρ2±

+ ρ2±(dϑ2 + sin2 ϑdϕ2). Because

the exponents of the T T and ρ±ρ± components are both negative for 0 < β < 1
4 ,

ρ± = 0+ is a naked singularity.
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C Equilibrium points in the finite region of the phase space for the
exponential potential

The system admits the equilibrium points P±
1 –P±

9 discussed before in the invariant set
Aϕ = AW = 0. For further details about the physical interpretation of the equilibrium
points P±

1 –P±
9 we submit the reader to Appendix B, where we have represented the

line elements of their corresponding cosmological solutions. The stability conditions
change slightly due to the new axis Aϕ , AW .

1. P±
1 as discussed in the previous section.

2. P±
2 as discussed in the previous section.

3. P±
3 := (±1, 0, 1, 0, 0). They always exist and are saddle since the eigenvalues

are: ∓1,∓1,±1,±2,±2.
4. P±

4 :=
(
±1,± 2

2+η
, 1 − 8β

(2+η)2
, 0, 0

)
. Exists for 0 ≤ β ≤ 1

8 (η + 2)2, η ≥ 1.

The eigenvalues are± η
η+2 ,± 2η

η+2 ,∓1,∓ η+2+
√

64β−7(η+2)2

2(η+2) ,∓ η+2−
√

64β−7(η+2)2

2(η+2) .

This point is a saddle (at least two eigenvalues have different signs).

5. P±
5 :=

(
±1,± 2+η

4β , 0, 0, 0
)
. Exist for η ≥ 1, β < 0 or η ≥ 1, β ≥ 1

16 (η + 2)2.

The eigenvalues are ± η(η+2)
8β ,± (η+2)2−8β

4β ,± (η+2)2−16β
8β ,± (η+2)2−16β

8β ,± η(η+2)
4β .

P+
5 (respectively, P−

5 ) is a sink (respectively, a source), for β < 0, η ≥ 1. Other-
wise, they are saddles.

6. P±
6 as discussed in the previous section are not isolated anymore, and belong to

the lines of equilibrium points P±
10, P

±
11 as we will see below. This is different to

the results in Appendix B.
7. P±

7 as discussed in the previous section are not isolated anymore, and belong to
the lines of equilibrium points P±

10, P
±
11 as we will see below. This a different to

the results in Appendix B.

8. P±
8 :=

(
± 1√

1−β
,± 1√

1−β
,
2β−1
β−1 , 0, 0

)
. They exist for η ≥ 1, β ≤ 0. The eigen-

values are
0,∓ 1√

1−β
,∓ 1−√

16β−7
2
√
1−β

,∓ 1+√
16β−7

2
√
1−β

,∓ η√
1−β

. These points are non-hyperbolic.

For P+
8 (respectively, P−

8 ) and given β < 0 (we have assumed η ≥ 1), there are
two negative (respectively, positive) eigenvalues, and two complex eigenvalues
with negative (respectively, positive) real parts. So P+

8 (respectively, P−
8 ) has a

4D stable (respectively, unstable) manifold.

9. P±
9 :=

(
±2

√
β,± 1√

β
, 0, 0, 0

)
. Exist for η ≥ 1, 0 < β ≤ 1

4 .

The eigenvalues are 0,± 2(1−2β)√
β

,± 1−4β√
β

,± 1−4β√
β

,∓ η√
β
. The equilibrium point is

saddle for η ≥ 1, 0 < β < 1
4 , and non-hyperbolic when β = 1

4 .

Now, let’s discuss the new equilibrium points, due to the extra coordinates Aϕ and
AW related to the scalar field. They are:

10. Line of equilibrium points P±
10(Sc) :=

(
±1,±Sc, 0,±

√
1 − βS2c , 0

)
, where we

have explicitly shown the dependence on the parameter Sc of the lines. They exist
for β ≤ 0, Sc ∈ R or β > 0,− 1√

β
≤ Sc ≤ 1√

β
.
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Eigenvalues: 0,±2,±2(2 − Sc),±
(

2 − Sc − k
√

1−βS2c√
2

)

,± (4 − Sc(2 + η)).

These lines cover the points P±
7 and P±

6 in the previous section for the choices
Sc = − 1√

β
and Sc = 1√

β
respectively. Since Q2 = 1 (μ0 = 0), it follows

from the definition of λ that the metric can be written as ds2 = −N 2dt2 +
S2c
y2
dλ2 + K−1

(
dϑ2 + sin2 ϑdϕ2

)
. When we substitute the values of Q, S,C, Aϕ

and AW into (76a), (76b), and (76c) and integrating, we get N = N̄0e±Scλ, K =
K̄0e∓2(1−Sc)λ, y = ȳ0e∓(2−Sc)λ. Thus, the metric can be written as ds2 =
−N̄0e±2Scλdt2 + S2c

ȳ20
e±2(2−Sc)λdλ2 + K̄−1

0 e±2(1−Sc)λ
(
dϑ2 + sin2 ϑdϕ2

)
.

The following subsets (arcs, or specific equilibrium points) of the line P+
10(Sc)

(respectively, P−
10(Sc)) are unstable (respectively, stable) for the given conditions:

(a) Sc < 0, β < 1
Sc2

, η > 1, k <

√
−2Sc2+8Sc−8

βSc2−1
, or

(b) Sc < 0, β = 1
Sc2

, η > 1, k ∈ R, or

(c) Sc = 0, β ∈ R, η > 1, k < 2
√
2, or

(d) 0 < Sc < 4
3 , β < 1

Sc2
, 1 < η < 4−2Sc

Sc
, k <

√
−2Sc2+8Sc−8

βSc2−1
, or

(e) 0 < Sc < 4
3 , β = 1

Sc2
, 1 < η < 4−2Sc

Sc
, k ∈ R.

11. Line of equilibrium points P±
11(Sc) :=

(
±1,±Sc, 0,∓

√
1 − βS2c , 0

)
, where

we have explicitly shown the dependence on the parameter Sc of the lines.
They exist for β ≤ 0, Sc ∈ R or β > 0,− 1√

β
≤ Sc ≤ 1√

β
. Eigenval-

ues: 0,±2,±2(2−Sc),±
(

2 − Sc + k
√

1−βS2c√
2

)

,± (4 − Sc(2 + η)). These lines

cover the points P±
7 and P±

6 in the previous section for the choices Sc = − 1√
β

and Sc = 1√
β
respectively. When we substitute the values of Q, S,C, Aϕ and

AW into (76a), (76b), and (76c) and integrating, we get N = N̄0e±Scλ, K =
K̄0e∓2(1−Sc)λ, y = ȳ0e∓(2−Sc)λ. Thus, the metric can be written as ds2 =
−N̄0e±2Scλdt2 + S2c

ȳ20
e±2(2−Sc)λdλ2 + K̄−1

0 e±2(1−Sc)λ
(
dϑ2 + sin2 ϑdϕ2

)
.

The following subsets (arcs, or specific equilibrium points) of the line P+
11(Sc)

(respectively, P−
11(Sc)) are unstable (respectively, stable) for the given conditions:

(a) Sc < 0, β < 1
Sc2

, η ≥ 1, k > −√
2

√

− Sc2−4Sc+4
βSc2−1

, or

(b) Sc < 0, β = 1
Sc2

, η ≥ 1, k ∈ R, or

(c) Sc = 0, β ∈ R, η ≥ 1, k > −2
√
2, or

(d) 0 < Sc < 4
3 , β < 1

Sc2
, 1 ≤ η < 4−2Sc

Sc
, k > −√

2

√

− Sc2−4Sc+4
βSc2−1

, or

(e) 0 < Sc < 4
3 , β = 1

Sc2
, 1 ≤ η < 4−2Sc

Sc
, k ∈ R.
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12. P±
12 :=

(

±1,± 2+η
4β , 0,±

√
16β−(η+2)2

4
√

β
, 0

)

. These exist for η ≥ 1, β < 0; or η ≥

1, β ≥ 1
16 (η+2)2. The eigenvalues are: 0,±2,∓−16β+2(η+2)+√

2
√

βk
√

16β−(η+2)2

8β ,

∓−8β+η+2
2β ,∓ (η+2)2−16β

4β . Substituting the values of Q, S,C, Aϕ and AW into

(76a), (76b), and (76c) and integrating, we get N = N̄0e
± (η+2)λ

4β , K =
K̄0e

∓ λ(4β−η−2)
2β , y = ȳ0e

∓ ηλ(−8β+η(η+4)+4)
4β(η+2) . It follows from the definition of λ that

the metric can be written as
ds2 = −N̄ 2

0 e
± (η+2)λ

2β dt2 + (2+η)2

16ȳ20β2 e
± ηλ(−8β+η(η+4)+4)

2β(η+2) dλ2 + K̄−1
0 e± λ(4β−η−2)

2β
(
dϑ2 +

sin2 ϑdϕ2
)
. The equilibrium point P+

12 (respectively, P−
12) has a 4D unstable

(respectively, stable) manifold for

(a) β < 0, η ≥ 1, k > −√
2

√
(8β−η−2)2

β(16β−η2−4η−4)
, or

(b) β > 9
16 , 1 ≤ η < 2

(
2
√

β − 1
)
, k <

√
2

√
(8β−η−2)2

β(16β−η2−4η−4)
.

13. P±
13 :=

(

±1,± 2+η
4β , 0,∓

√
16β−(η+2)2

4
√

β
, 0

)

. These exist for η ≥ 1, β < 0; or η ≥

1, β ≥ 1
16 (η+2)2. The eigenvalues are: 0,±2,± 16β−2(η+2)+√

2
√

βk
√

16β−(η+2)2

8β ,

∓−8β+η+2
2β ,∓ (η+2)2−16β

4β . Substituting the values of Q, S,C, Aϕ and AW into

(76a), (76b), and (76c) and integrating, we get N = N̄0e
± (η+2)λ

4β , K =
K̄0e

∓ λ(4β−η−2)
2β , y = ȳ0e

∓ ηλ(−8β+η(η+4)+4)
4β(η+2) . It follows from the definition of λ that the

metric can be written as ds2 = −N̄ 2
0 e

± (η+2)λ
2β dt2 + (2+η)2

16ȳ20β2 e
± ηλ(−8β+η(η+4)+4)

2β(η+2) dλ2 +
K̄−1
0 e± λ(4β−η−2)

2β
(
dϑ2 + sin2 ϑdϕ2

)
. These points are non-hyperbolic (one zero

eigenvalue). The equilibrium point P+
13 (respectively, P−

13) has a 4D unstable
(respectively, stable) manifold for

(a) β < 0, η ≥ 1, k <
√
2

√
(8β−η−2)2

β(16β−η2−4η−4)
, or

(b) β > 9
16 , 1 ≤ η < 2

(
2
√

β − 1
)
, k > −√

2

√
(8β−η−2)2

β(16β−η2−4η−4)
.

14. P±
14 :=

(

±1,± k
√

β(k2−8)+2+4
βk2+2

, 0,∓
√
2
(√

β(k2−8)+2−2βk
)

βk2+2
, 0

)

. These exist for

(a) β < 0,−√
2
√

4β−1
β

≤ k < −√
2
√

− 1
β
, η ≥ 1, or

(b) β < 0,−√
2
√

− 1
β

< k <
√
2
√

− 1
β
, η ≥ 1, or

(c) β < 0,
√
2
√

− 1
β

< k ≤ √
2
√

4β−1
β

, η ≥ 1, or

(d) 0 ≤ β ≤ 1
4 , k ∈ R, η ≥ 1 or
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(e) β > 1
4 , k ≤ −√

2
√

4β−1
β

, η ≥ 1, or

(f) β > 1
4 , k ≥ √

2
√

4β−1
β

, η ≥ 1.

The eigenvalues are: 0, 0,±2,∓ 2k
(√

β(k2−8)+2−2βk
)

βk2+2
,

±−4η−(η+2)k
√

β(k2−8)+2+4βk2

βk2+2
. Substituting the values of Q, S,C, Aϕ and AW

into (76a), (76b), and (76c) and integrating, we get N = N̄0 exp(

±λ
(
k
√

β(k2−8)+2+4
)

βk2+2

)

, K = K̄0 exp

(

∓ 2kλ
(
βk−√

β(k2−8)+2−2
)

βk2+2

)

, y = ȳ0 exp

(

∓ kλ
(
2βk−√

β(k2−8)+2
)

βk2+2

)

. It follows from the definition of λ that the metric

can be written as ds2 = −N̄ 2
0 e

± 2λ
(
k
√

β(k2−8)+2+4
)

βk2+2 dt2 + 1
ȳ20

(
4+k

√
β(k2−8)+2
2+βk2

)2

e
± 2kλ

(
2βk−

√
β(k2−8)+2

)

βk2+2 dλ2+ K̄−1
0 e

± 2kλ
(
βk−

√
β(k2−8)+2−2

)

βk2+2
(
dϑ2 + sin2 ϑdϕ2

)
. The

equilibrium points are non-hyperbolic (two zero eigenvalues). The equilibrium
point P+

14 (respectively, P
−
14) has a 3D unstable (respectively, stable) manifold in

the following cases:

(a) β > 9
16 , η ≥ 2(4β − 1), k < −2

√
2
√

η2

−16β+η2+4η+4
, or

(b) 3
8 < β < 9

16 , η ≥ 2(4β − 1), k < −2
√
2
√

η2

−16β+η2+4η+4
, or

(c) β < − 1
4 , η ≥ 2(4β−1)

4β+1 ,−√
2
√

4β−1
β

≤ k < −2
√
2
√

η2

−16β+η2+4η+4
, or

(d) − 1
4 ≤ β < 0, η ≥ 1,−√

2
√

− 1
β

< k < −2
√
2
√

η2

−16β+η2+4η+4
, or

(e) 0 ≤ β ≤ 3
8 , η ≥ 1, k < −2

√
2
√

η2

−16β+η2+4η+4
, or

(f) β < − 1
4 , 1 ≤ η <

2(4β−1)
4β+1 ,−√

2
√

− 1
β

< k < −2
√
2
√

η2

−16β+η2+4η+4
, or

(g) β = 9
16 , η = 1, k ≥ 2

√
10
3 , or

(h) β = 9
16 , 1 < η < 5

2 ,
2
√
10
3 ≤ k < 2

√
2
√

η2

η2+4η−5
, or

(i) β = 9
16 , 1 ≤ η < 5

2 , k ≤ − 2
√
10
3 , or

(j) β = 9
16 , η ≥ 5

2 , k < −2
√
2
√

η2

η2+4η−5
, or

(k) β > 9
16 , 1 ≤ η ≤ 2

(
2
√

β − 1
)
, k ≥ √

2
√

4β−1
β

, or

(l) β > 9
16 , 2

(
2
√

β − 1
)

< η < 2(4β − 1),
√
2
√

4β−1
β

≤ k < 2
√
2

√
η2

−16β+η2+4η+4
, or
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(m) β > 9
16 , 2

(
2
√

β − 1
)

< η < 2(4β − 1), k ≤ −√
2
√

4β−1
β

, or

(n) β > 9
16 , 1 ≤ η ≤ 2

(
2
√

β − 1
)
, k ≤ −√

2
√

4β−1
β

, or

(o) β < − 1
4 , η ≥ 2(4β−1)

4β+1 ,
√
2
√

− 1
β

< k ≤ √
2
√

4β−1
β

, or

(p) β < 0, η ≥ 1,
√
2
√

− 1
β

< k ≤ √
2
√

4β−1
β

, or

(q) − 1
4 ≤ β < 0, η ≥ 1,−√

2
√

4β−1
β

≤ k < −√
2
√

− 1
β
, or

(r) β < − 1
4 , 1 ≤ η <

2(4β−1)
4β+1 ,−√

2
√

4β−1
β

≤ k < −√
2
√

− 1
β
, or

(s) 3
8 < β < 9

16 , 1 ≤ η < 2(4β − 1),
√
2
√

4β−1
β

≤ k < 2
√
2
√

η2

−16β+η2+4η+4
, or

(t) 3
8 < β < 9

16 , 1 ≤ η < 2(4β − 1), k ≤ −√
2
√

4β−1
β

.

15. P±
15 :=

(

±1,± 4−k
√

β(k2−8)+2
2+βk2

, 0,±
√
2
(
2βk+√

β(k2−8)+2
)

2+βk2
, 0

)

. These exist for

(a) β < 0,−√
2
√

4β−1
β

≤ k < −√
2
√

− 1
β
, η ≥ 1, or

(b) β < 0,−√
2
√

− 1
β

< k <
√
2
√

− 1
β
, η ≥ 1, or

(c) β < 0,
√
2
√

− 1
β

< k ≤ √
2
√

4β−1
β

, η ≥ 1, or

(d) 0 ≤ β ≤ 1
4 , η ≥ 1, k ∈ R, or

(e) β > 1
4 , k ≤ −√

2
√

4β−1
β

, η ≥ 1, or

(f) β > 1
4 , k ≥ √

2
√

4β−1
β

, η ≥ 1.

The eigenvalues are: 0, 0,±2,± 2k
(√

β(k2−8)+2+2βk
)

βk2+2
,

±−4η+(η+2)k
√

β(k2−8)+2+4βk2

βk2+2
. Substituting the values of Q, S,C, Aϕ and AW

into (76a), (76b), and (76c) and integrating, we get N = N̄0 exp(

±λ
(
4−k

√
β(k2−8)+2

)

βk2+2

)

, K = K̄0 exp

(

∓ 2kλ
(
βk+√

β(k2−8)+2−2
)

βk2+2

)

, y = ȳ0 exp

(

∓ kλ
(
2βk+√

β(k2−8)+2
)

βk2+2

)

. It follows from the definition of λ that the metric

can be written as ds2 = −N̄ 2
0 e

± 2λ
(
4−k

√
β(k2−8)+2

)

βk2+2 dt2 + 1
ȳ20

(
4−k

√
β(k2−8)+2
2+β

)2

e
± 2kλ

(
2βk+

√
β(k2−8)+2

)

βk2+2 dλ2 + K̄−1
0 e

± 2kλ
(
βk+

√
β(k2−8)+2−2

)

βk2+2
(
dϑ2 + sin2 ϑdϕ2

)
. The

equilibrium points are non-hyperbolic (two zero eigenvalues). The equilibrium
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point P+
15 (respectively, P

−
15) has a 3D unstable (respectively, stable) manifold in

the following cases:

(a) β < − 1
4 , 1 ≤ η <

2(4β−1)
4β+1 , 2

√
2
√

η2

−16β+η2+4η+4
< k <

√
2
√

− 1
β
, or

(b) β < − 1
4 , 1 ≤ η <

2(4β−1)
4β+1 ,−√

2
√

4β−1
β

≤ k < −√
2
√

− 1
β
, or

(c) β < − 1
4 , η ≥ 2(4β−1)

4β+1 ,−√
2
√

4β−1
β

≤ k < −√
2
√

− 1
β
, or

(d) β < − 1
4 , 1 ≤ η <

2(4β−1)
4β+1 ,

√
2
√

− 1
β

< k ≤ √
2
√

4β−1
β

, or

(e) β < − 1
4 , η ≥ 2(4β−1)

4β+1 , 2
√
2
√

η2

−16β+η2+4η+4
< k ≤ √

2
√

4β−1
β

, or

(f) − 1
4 ≤ β < 0, η ≥ 1, 2

√
2
√

η2

−16β+η2+4η+4
< k <

√
2
√

− 1
β
, or

(g) − 1
4 ≤ β < 0, η ≥ 1,−√

2
√

4β−1
β

≤ k < −√
2
√

− 1
β
, or

(h) − 1
4 ≤ β < 0, η ≥ 1,

√
2
√

− 1
β

< k ≤ √
2
√

4β−1
β

, or

(i) 0 ≤ β ≤ 3
8 , η ≥ 1, k > 2

√
2
√

η2

−16β+η2+4η+4
, or

(j) 3
8 < β < 9

16 , 1 ≤ η < 2(4β − 1), k ≥ √
2
√

4β−1
β

, or

(k) 3
8 < β < 9

16 , 1 ≤ η < 2(4β − 1),−2
√
2
√

η2

−16β+η2+4η+4
< k ≤

−√
2
√

4β−1
β

, or

(l) 3
8 < β < 9

16 , η ≥ 2(4β − 1), k > 2
√
2
√

η2

−16β+η2+4η+4
, or

(m) β = 9
16 , η = 1, k ≤ − 2

√
10
3 , or

(n) β = 9
16 , 1 ≤ η < 5

2 , k ≥ 2
√
10
3 , or

(o) β = 9
16 , 1 < η < 5

2 ,−2
√
2
√

η2

η2+4η−5
< k ≤ − 2

√
10
3 , or

(p) β = 9
16 , η ≥ 5

2 , k > 2
√
2
√

η2

η2+4η−5
, or

(q) β > 9
16 , 2

(
2
√

β − 1
)

< η < 2(4β − 1), k ≥ √
2
√

4β−1
β

, or

(r) β > 9
16 , 1 ≤ η ≤ 2

(
2
√

β − 1
)
, k ≥ √

2
√

4β−1
β

, or

(s) β > 9
16 , 2

(
2
√

β − 1
)

< η < 2(4β − 1),−2
√
2
√

η2

−16β+η2+4η+4
< k ≤

−√
2
√

4β−1
β

, or

(t) β > 9
16 , 1 ≤ η ≤ 2

(
2
√

β − 1
)
, k ≤ −√

2
√

4β−1
β

, or

(u) β > 9
16 , η ≥ 2(4β − 1), k > 2

√
2
√

η2

−16β+η2+4η+4
.
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16. P±
16 :=

(

±1,± (η+2)k2

2(η2+2βk2)
, 0,± η(η+2)k

2
√
2(η2+2βk2)

,
√

η
√

η+2
√

k2((η+2)2−16β)−8η2

2
√
2(η2+2βk2)

)

.

These exist for

(a) η ≥ 1, β = 0, k ≥ 2
√
2η

η+2 , or

(b) η ≥ 1, β = 0, k ≤ − 2
√
2η

η+2 , or

(c) η ≥ 1, β < 0,−
√

− η2
β√
2

< k ≤ −2
√
2
√

η2

−16β+η2+4η+4
, or

(d) η ≥ 1, η+2
8 ≤ β < 1

16 (η + 2)2 , k = 2η√
1
2 (η+2)2−8β

, or

(e) η ≥ 1, η+2
8 ≤ β < 1

16 (η + 2)2 , k = − 2η√
1
2 (η+2)2−8β

, or

(f) η ≥ 1, β < 0, 2
√
2
√

η2

−16β+η2+4η+4
≤ k <

√

− η2
β√
2

, or

(g) η ≥ 1, 0 < β <
η+2
8 ,−

√
η
β

≤ k ≤ −2
√
2
√

η2

−16β+η2+4η+4
, or

(h) η ≥ 1, 0 < β <
η+2
8 , 2

√
2
√

η2

−16β+η2+4η+4
≤ k ≤

√
η
β
.

The eigenvalues are: ∓ 8η2+k2
(
16β−(η+2)2

)

4(η2+2βk2)
,∓ 4η2+k2

(
8β−(η+2)2

)

2(η2+2βk2)
,± η(η+2)k2

2(η2+2βk2)
,

∓
√

β
(
8η2+k2

(
16β−(η+2)2

))−√
8η2+k2(16β−(η+2)2)

√
8η2(β+η+2)+βk2(16β−(η+2)(9η+2))

8
√

β(η2+2βk2)
,

∓
√

β
(
8η2+k2

(
16β−(η+2)2

))+
√

8η2(β+η+2)+βk2(16β−(η+2)(9η+2))
√

8η2+k2(16β−(η+2)2)
8
√

β(η2+2βk2)
.

Substituting the values of Q, S,C, Aϕ and AW into (76a), (76b), and (76c)

and integrating, we get N = N̄0e
± (η+2)k2λ

2(2βk2+η2) , K = K̄0e
∓ λ(k2(4β−η−2)+2η2)

2βk2+η2 , y =
ȳ0e

∓ η(η+2)k2λ

4(2βk2+η2) . From the definition of λ the metric can be written as

ds2 = −N̄ 2
0 e

± (η+2)k2λ

2βk2+η2 dt2 + 1

ȳ20

(
k2(2 + η)

4βk2 + 2η2

)2
e
± η(η+2)k2λ

2(2βk2+η2) dλ2

+K̄−1
0 e

± λ(k2(4β−η−2)+2η2)
2βk2+η2

(
dϑ2 + sin2 ϑdϕ2

)
.

P+
16 (respectively, P

−
16) is a source (respectively, a sink) for

(a) η ≥ 1, 0 < β <
η+2
8 ,−

√
η
β

< k < −2
√
2
√

η2

−16β+η2+4η+4
, or

(b) η ≥ 1, 0 < β <
η+2
8 , 2

√
2
√

η2

−16β+η2+4η+4
< k <

√
η
β
.

It is a saddle for
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(a) η ≥ 1, β < 0,−
√

− η2
β√
2

< k < −2
√
2
√

η2

−16β+η2+4η+4
or

(b) η ≥ 1, β < 0, 2
√
2
√

η2

−16β+η2+4η+4
< k <

√

− η2
β√
2

.

non-hyperbolic otherwise.

17. P±
17 :=

(

±1,± (η+2)k2

2(η2+2βk2)
, 0,± η(η+2)k

2
√
2(η2+2βk2)

,−
√

η
√

η+2
√

k2((η+2)2−16β)−8η2

2
√
2(η2+2βk2)

)

.

These exist for

(a) η ≥ 1, β < 0, k < −
√

− η2
β√
2

, or

(b) η ≥ 1, β < 0, k = −2
√
2
√

η2

−16β+η2+4η+4
, or

(c) η ≥ 1, β < 0, k = 2
√
2
√

η2

−16β+η2+4η+4
, or

(d) η ≥ 1, β < 0, k >

√

− η2
β√
2

, or

(e) η ≥ 1, 0 ≤ β < 1
16 (η + 2)2, k = −2

√
2
√

η2

−16β+η2+4η+4
, or

(f) η ≥ 1, 0 ≤ β < 1
16 (η + 2)2, k = 2

√
2
√

η2

−16β+η2+4η+4
.

Eigenvalues: ∓ 8η2+k2
(
16β−(η+2)2

)

4(η2+2βk2)
,∓ 4η2+k2

(
8β−(η+2)2

)

2(η2+2βk2)
,± η(η+2)k2

2(η2+2βk2)
,

∓
√

β
(
8η2+k2

(
16β−(η+2)2

))−√
8η2+k2(16β−(η+2)2)

√
8η2(β+η+2)+βk2(16β−(η+2)(9η+2))

8
√

β(η2+2βk2)
,

∓
√

β
(
8η2+k2

(
16β−(η+2)2

))+
√

8η2(β+η+2)+βk2(16β−(η+2)(9η+2))
√

8η2+k2(16β−(η+2)2)
8
√

β(η2+2βk2)
.

Substituting the values of Q, S,C, Aϕ and AW into (76a), (76b), and (76c)

and integrating, we get N = N̄0e
± (η+2)k2λ

4βk2+2η2 , K = K̄0e
∓ λ(k2(4β−η−2)+2η2)

2βk2+η2 , y =
ȳ0e

∓ η(η+2)k2λ

4(2βk2+η2) . It follows from the definition of λ that the metric can be writ-
ten as

ds2 = −N̄ 2
0 e

± (η+2)k2λ

2βk2+η2 dt2 + 1

ȳ20

(
k2(2 + η)

4βk2 + 2η2

)2
e
± η(η+2)k2λ

2(2βk2+η2) dλ2

+K̄−1
0 e

± λ(k2(4β−η−2)+2η2)
2βk2+η2

(
dϑ2 + sin2 ϑdϕ2

)
.

They are a saddle for

(a) η ≥ 1, β < 0, k < −
√

− η2
β√
2

, or
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(b) η ≥ 1, β < 0, k >

√

− η2
β√
2

.

non-hyperbolic, otherwise.

18. P±
18 :=

(

±1,± 1
2β , 0,± k

2
√
2
,

√
β(k2−8)+2

2
√
2
√

β

)

.

These exist for

(a) η ≥ 1, 0 < β ≤ 1
4 , k ∈ R, or

(b) η ≥ 1, β > 1
4 , k ≤ −√

2
√

4β−1
β

, or

(c) η ≥ 1, β > 1
4 , k ≥ √

2
√

4β−1
β

.

The eigenvalues are: ± k2
2 ,±−4β+βk2+2

2β ,±−8β+βk2+2
4β ,±−8β+βk2+2

4β ,±βk2−η
2β .

Substituting the values of Q, S,C, Aϕ and AW into (76a), (76b), and (76c) and

integrating, we get N = N̄0e
± λ

2β , K = K̄0e
∓ (2β−1)λ

β , y = ȳ0e∓ 1
4 k

2λ. It follows

from the definition of λ that the metric can be written as ds2 = −N̄ 2
0 e

± λ
β dt2 +

1
4 ȳ20β2 e

± k2λ
2 dλ2 + K̄−1

0 e± (2β−1)λ
β
(
dϑ2 + sin2 ϑdϕ2

)
.

P+
18 (respectively, P

−
18) is a source (respectively, a sink) for

(a) η ≥ 1, β < 0, k < −√
2
√

4β−1
β

, or

(b) η ≥ 1, β < 0, k >
√
2
√

4β−1
β

, or

(c) η ≥ 1, 0 < β ≤ η+2
8 , k < −

√
η
β
, or

(d) η ≥ 1, 0 < β ≤ η+2
8 , k >

√
η
β
, or

(e) η ≥ 1, β >
η+2
8 , k < −√

2
√

4β−1
β

, or

(f) η ≥ 1, β >
η+2
8 , k >

√
2
√

4β−1
β

.

It is non-hyperbolic for

(a) η ≥ 1, 0 < β ≤ 1
4 , k ∈

{
−
√

η
β
, 0,
√

η
β

}
, or

(b) η ≥ 1, 1
4 < β <

η+2
8 , k ∈

{
−
√

η
β
,−√

2
√

4β−1
β

,
√
2
√

4β−1
β

,
√

η
β

}
, or

(c) η ≥ 1, β ≥ η+2
8 , k ∈

{
−√

2
√

4β−1
β

,
√
2
√

4β−1
β

}

Otherwise, they are saddle.

19. P±
19 :=

(

±1,± 2
βk2+2

,
β
(
k2−4

)+2
βk2+2

,±
√
2βk

βk2+2
,
√

− 2β
βk2+2

)

.
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There exist for

(a) η ≥ 1, β = 0, k ∈ R, or

(b) η ≥ 1, β < 0,−√
2
√

− 1
β

< k <
√
2
√

− 1
β
.

For β = 0 these points reduces to P±
8 . Substituting the values of Q, S,C, Aϕ and

AW into (76a), (76b), and (76c) and integrating, we get N = N̄0e
± 2λ

βk2+2 , K =
K̄0e

∓ 2βk2λ

βk2+2 , y = ȳ0e
∓ βk2λ

ε(βk2+2) . Since Q2 = 1,C 	= 0, it follows from the defini-
tion of λ that the metric can be written as

ds2 = −N̄ 2
0 e

± 4λ
βk2+2 dt2+ K̄−1

0 e
± 2βk2λ

βk2+2

[(
β
(
k2−4

)+2
βk2+2

)

dλ2+(dϑ2+sin2 ϑdϕ2
)
]

.

For β 	= 0, the eigenvalues are

∓1,± 2βk2

βk2+2
,± 2

(
βk2−η

)

βk2+2
,∓βk2+2+

√
64β−7β2k4+32β2k2−28βk2−28

2(βk2+2)
,

∓βk2+2−
√

64β−7β2k4+32β2k2−28βk2−28
2(βk2+2)

. Hence, the point P+
19 (respectively, P−

19)

behaves as a saddle.
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