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Abstract
We provide a (simplified) quantum description of primordial black holes at the time of
their formation. Specifically, we employ the horizon quantum mechanics to compute
the probability of black hole formation starting from a simple quantum mechanical
characterization of primordial density fluctuations given by a Planckian spectrum. We
then estimate the initial number of primordial black holes in the early universe as a
function of their typical mass, spatial width and temperature of the fluctuation.
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1 Introduction

The interest in primordial black holes (PBH) started over fifty years ago [1,2], and the
conjecture was soon put forward that they could account for a (possibly significant)
fraction of the dark matter [3]. The basic idea is that, in the early radiation domi-
nated Universe, a sufficiently overdense region should collapse into a black hole [4].
Many mechanisms to generate primordial fluctuations of sufficient density have then
been proposed and their confrontation with astrophysical and cosmological data has
generated a huge literature (for a review, see, e.g. Ref. [5]).

In thiswork,we are interested in the fundamental issue of the formation of PBH’s. In
fact, the importance of the spatial profile of perturbations in classical general relativity
has already been pointed out in Refs. [6–8]. Our aim here is to show that the quan-
tum nature of primordial fluctuations and the overall process of black hole formation
could also be very relevant. For this purpose, we shall consider a simplified scenario in
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which we can carry out a complete analysis, albeit without the presumption to obtain
predictions directly comparable with the observations. For estimating the initial num-
ber of PBH’s, we shall then employ the Horizon QuantumMechanics (HQM) [9–13],
which was precisely proposed with the purpose of describing the gravitational radius
of spherically symmetric compact sources and determining the existence of a horizon
in a quantum mechanical fashion.

2 Quantum primordial black holes

We shall here model a primordial fluctuation as a quantum state of excited gravitons
with a thermal distribution above the de Sitter ground state [14], and then employ
the (global) HQM [9–13] in order to compute the probability that this fluctuation is a
black hole.

The corpuscular picture of gravity [14] was first introduced for describing black
holes, but it also applies to cosmology and inflation in particular [15–17]. In order to
have the de Sitter space-time in general relativity, one must assume the existence of a
cosmological constant�, or vacuum energy density ρL , so that the Friedman equation
reads 1

H2 ≡
(
ȧ

a

)2

= GN ρL . (1)

Upon integrating on the volume inside the Hubble radius

L = H−1 = √
3/�, (2)

we obtain

L � GN L3 ρL � GN EL . (3)

The length L therefore satisfies a relation exactly like the Schwarzschild radius for a
black hole of ADM mass EL , which supports the conjecture that the de Sitter space-
time could likewise be described as a condensate [16,17]. One can roughly describe
the corpuscular model by assuming that the graviton self-interaction gives rise to a
condensate of N (soft virtual) gravitons of typical Compton length of the order of L ,
so that EL � N �pmp/L and the usual consistency conditions

N � E2
L

m2
p

(4)

turns out to be a natural consequence [14]. Equivalently, one finds

1 We shall use units with c = kB = 1, GN = �p/mp and � = �p mp, where �p ∼ 10−35 m and
mp ∼ 10−8 kg denote the Planck length and mass, respectively.
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L �
√
N

�p
, (5)

which shows that for a macroscopic black hole, or universe, one needs N � 1. If one
wishes to describe the present dark energydominatedUniverse [18,19], one should take
L � H−1

0 , where H0 ∼ 70 (km/s)/Mpc is the present value of the Hubble constant,
and obtains L ∼ 1027 m and N ∼ 10120. For studying primordial black holes, one
should consider values of L corresponding to the size of the inflating patch within
which the black hole is forming. For instance, assuming the initial size is of the order
of the Planck length and inflation lasts 60 e-foldings, one has 10−35 m� L � 10−9 m,
corresponding to 1 � N � 1026.

2.1 Schwarzschild-de Sitter space-time

For our analysis of primordial perturbations, we shall employ the spherically symmet-
ric and static Schwarzschild-de Sitter metric

ds2 = − f dt2 + f −1 dr2 + r2 d�2, (6)

with

f = 1 − 2GN M

r
− r2

L2 . (7)

This metric represents the exterior of a black hole of mass M as seen by a static
observer located at constant radial position r , provided RH < r < RL, where RH
is the black hole horizon and RL the cosmological horizon. For our purpose, we can
associate L with the background homogenous space-time undergoing inflation, and
the mass M with the energy of the local fluctuation.

As usual, horizons are given by real solutions of the equation f (r) = 0, that is

RH/L = 2 L√
3
cos

[
π

3
± 1

3
arccos

(
3
√
3GN M

L

)]
, (8)

and the nomenclature is then justified by the fact that RH < RL for L ≥ 3
√
3GN M ≥

0, with the proper metric signature (− + ++) in the region RH < r < RL, as
anticipated above. Moreover, for L � GN M , the black hole horizon approaches the
usual Schwarzschild radius, that is

RH � 2GN M

[
1 +

(
RM

L

)2
]

. (9)

In the same limit, the cosmological horizon approaches the de Sitter value,

RL � L

(
1 − RM

2 L

)
. (10)
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Finally, we note that the extremal configuration is

RH = RL = 3GN M = L/
√
3, (11)

in which case the coordinate r is always time-like and there are no values of r corre-
sponding to a static observer. Nonetheless, since

2GN M ≤ RH(M, L) ≤ 3GN M, (12)

in the following we shall consider the case RH � 3GN M for simplicity and for
maximising the probability of black hole formation. In fact, one in general finds that
the probability for a system to be a black hole is larger when a given value of the mass
M corresponds to a larger gravitational radius RH. However, since the range (12) is
rather limited, from a comparison with cases studied previously [9–12], we do not
expect that this probability is suppressed by more than an exponential factor of the
order of e−3/2 ∼ 0.2.

2.2 Horizon quantummechanics

According to this approach [9–13], we assume the existence of two observables, the
quantum Hamiltonian corresponding to the energy M of the fluctuation which might
result in a black hole,

Ĥ =
∑
α

Eα | Eα 〉〈 Eα |, (13)

and the gravitational radius corresponding to the black hole horizon, with eigenstates

r̂H | rHβ 〉 = rHβ | rHβ 〉. (14)

The cosmological length L , being associated with the background space-time, is
instead regarded as a classical parameter here, like the electric charge of the Reissner-
Nordström space-time in Refs. [20,21].2

General quantum states for the fluctuation can be described by linear combinations
of the form

| 	 〉 =
∑
α,β

C(Eα, rHβ), | Eα 〉 | rHβ 〉, (15)

but only those for which the relation (8) between the Hamiltonian and the gravitational
radii hold are viewed as physical. In particular, we invert Eq. (9) in order to write

M(RH; L) = RH

2GN

(
1 − R2

H

L2

)
, (16)

2 Amore general treatment in which L is also quantised is left for future developments (see also Ref. [15]).
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and then impose this condition as the weak Gupta–Bleuler constraint

0 =
[
Ĥ − M(r̂H; L)

]
| 	 〉

=
∑
α,β

[
Eα − M(rHβ; L)

]
C(Eα, rHβ) | Eα 〉 | rHβ 〉. (17)

The solution is given by

C(Eα, rHβ) = C (Eα, RH(Eα; L)) δαβ, (18)

which means that Hamiltonian eigenmodes and gravitational radius eigenmodes can
only appear suitably paired in a physical state.

By tracing out the gravitational radius, we recover the spectral decomposition of
the system,

| ψS 〉 =
∑
α

C (Eα, RH(Eα, L)) | Eα 〉

≡
∑
α

CS(Eα, L) | Eα 〉, (19)

in which we used the (generalised) orthonormality of the gravitational radius eigen-
modes [13]. Conversely, by integrating out the energy eigenstates, we obtain the
Horizon Wave-Function (HWF) [9–12]

ψH(rHα) = CS(M(rHα, L)). (20)

If the index α is continuous (again, see Ref. [13] for some important remarks), the
probability density that we detect a gravitational radius of size rH associated with the
quantum state ψS is given by

PH(rH) = 4π r2H |ψH(rH)|2, (21)

and we can define the conditional probability density that the source lies inside its
own gravitational radius rH as

P<(r < rH) = PS(r < rH)PH(rH), (22)

where

PS(r < rH) = 4π

∫ rH

0
|ψS(r)|2 r2 dr . (23)

Finally, the probability that the system in the state ψS is a black hole will be obtained
by integrating (22) over all possible values of rH, namely

PBH =
∫ ∞

0
P<(r < rH) drH. (24)
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2.3 Thermal density fluctuations in de Sitter

As we mentioned above, we assume the spectral decomposition of a primordial per-
turbation is given by a Planckian distribution at the temperature T = k TdS, that is

C2
S(E) � N2

T 3

(E − EL)2

exp {(E − EL)/T } − 1
, (25)

where EL is the background de Sitter energy in Eq. (3) and the de Sitter temperature
TdS � mp �p/L . The mean energy density above the ground state associated to such a
fluctuation is thus given by

�E

EL
�

∫ ∞

EL

(E − EL)

EL
C2
S(E) dE

� π4 T

30 ζ(3) EL
� 2.7

k

N
, (26)

which implies that a fluctuation can carry a significant fraction of the energy within
the length L ∼ √

N only if the temperature is k ∼ N times the de Sitter temperature
TdS ∼ 1/

√
N . Let us also note that the above result �E/EL ∼ 1/N for k = 1 is

analogous to the one for thermal corpuscular black holes [22–24].

2.4 Black hole formation

From the spectral decomposition of the whole fluctuation (25), on assuming the
extremal relation (11), that is

rH � 3 �p
E − EL

mp
, (27)

one immediately finds the HWF

ψH(rH) � NH (L/k)5/2 rH/�5p√
exp{L rH/3 k �2p} − 1

, (28)

with NH = 1/108
√
2π ζ(5)) � 3.6 · 10−3 and where we used T = k TdS =

k mp �p/L .
In order to proceed, we describe the fluctuation in position space by means of a

Gaussian wave-function of width λ ∼ L ,

ψ(r) = e− r2

2 λ2(
λ

√
π

)3/2 , (29)

from which we then obtain
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P<(r < rH) � (L/k)5 r4H

5832 ζ(5) �10p

(
e

L rH
3 k �2p − 1

)2

×
⎡
⎢⎣Erf

(rH
λ

)
− 2 e− r2H

λ2 rH√
π λ

⎤
⎥⎦ . (30)

Upon integrating this expression over rH (numerically) for fixed values of λ, L and
k = T /TdS one obtains the probability (24) that the fluctuation is a black hole.

The result as a function of L for k = 1 and λ = L is plotted in Fig. 1, and, for
L � 10 �p, it is extremely well approximated by

PBH(L) � Kλ=L,k=1

(
�p

L

)6

, (31)

with KL,1 � 4 · 103. For values of λ < L , the probability PBH remains of the form in
Eq. (31), with Kλ=L/2,k=1 � 4 · 104 and Kλ=L/4,k=1 � 3 · 105. For larger values of
the temperature (that is, for k > 1), we notice that the function in front of the square
brackets in Eq. (30) depends on the effective length L/k. We therefore expect that
doubling the temperature is (roughly) equivalent to halving the Hubble scale L . In
general, we find that for L � �p, the coefficient in Eq. (31) is very well approximated
by

Kλ,k � 4 · 103
(
k L

λ

)3

, (32)

as is shown in Fig. 2. Upon including this result, one finally obtains

PBH(L) � 4 · 103
(

T

TdS

)3 (
�p

λ

)3 (
�p

L

)3

, (33)

which holds for L � λ � �p and T � TdS.
Since the typical mass M of these PBH is related to L according to Eq. (26), that

is M � E� � mp L/�p, we can equivalently write

PBH(M) � 30

(
T

TdS

)3 (
�p

λ

)3 (mp

M

)3
, (34)

for M � mp/10. We remark that there appears no sharp threshold in the black hole
mass, which is in fact what one expects from the HQM [9–12]. Upon multiplying this
probability for the number of de Sitter patches of size L ∼ M , one can estimate the
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Fig. 1 Black hole probability for λ = L (solid line) vs. analytical approximation (31) (dotted line) with
T = TdS (equivalent to k = 1)

Fig. 2 Coefficient Kλ=L,k evaluated numerically (solid line) and analytical approximation (32)

total number of PBH’s inside the visible universe of a given mass,

NBH(M) � R0 mp

3
√
3 �p M

PBH(M)

� 6 · 1062
(

T

TdS

)3 (
�p

λ

)3 (mp

M

)4
, (35)

in which we used R0 � 1062 �p for the size of the visible Universe. We remark that
this counting applies to the initial number PBH’s and neglects both the subsequent
evaporation and possible accretion.

The above result can be recast in the following form. First we note that the de Sitter
energy density is holographic [18,19], that is

ρL � 3mp

8π �p L2 , (36)
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whereas the energy density of the fluctuation is given by

δρ � �E

(4π λ3/3)
� π3 T

40 ζ(3) λ3
� 0.7

T

λ3
. (37)

Upon recalling that TdS � mp �p/L , one finds

δρ

ρL
� 6

T

TdS

(
�p

L

)2 (
L

λ

)3

, (38)

and therefore

NBH(M) � 2 · 1058
(

λ

�p

)6 (
δρ

ρL

)3 (mp

M

)7

� 5 · 1062
(

δρ

ρL

)3 mp

M
, (39)

where we assumed λ � L in the last approximation.

3 Conclusions and outlook

In this work, we have computed the probability of PBH formation in a simple frame-
work for the early Universe and quantum density perturbations. Our results should
first and foremost caution that the details of the process of black hole formation still
need to be understood better and that quantum effects might not be negligible.

In particular, after a brief reviewof theHQM,wehave provided an explicit computa-
tion of the probability of black hole formation by describing the primordial fluctuations
in terms of a Planckian distribution of typical temperature T � k TdS. The factor k
was left arbitrary here, but it should be easy be obtained it from any specific models
in the literature.

The key result of our analysis is that the mass spectrum of PBH’s (39) appears to
be extremely suppressed in this simplified setup. In particular, it seems that a purely
quantum mechanical treatment of primordial density perturbations implies a very low
likelihood for the formation of PBH’s in the very earlyUniverse, unless one has reasons
to consider for the fluctuations some very large values of δρ/ρL ∼ T /TdS.

As we mentioned in the Introduction, much of the present interest stems from
PBH’s as candidates for the dark matter [3,25]. This of course requires a significant
productionwhich could occur during inflation only during stages of departure from the
(quasi de Sitter) slow-roll evolution, or later on during the radiation dominated era [26–
30]. The calculation in the present work should therefore be adapted to such scenarios
in order to say something of relevance in this respect.Moreover, it would be interesting
to understand if the probability of black hole formation changes significantly when
the seeding fluctuation is not spherically symmetric. Preliminary works to extend the
HQM to include non-spherical and rotating cases were presented in Refs. [31,32]
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but their generalisation to a (quasi) de Sitter space will require further fundamental
investigation.
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